British Chemical Abstracts

Total Page:16

File Type:pdf, Size:1020Kb

British Chemical Abstracts BRITISH CHEMICAL ABSTRACTS A.-PURE CHEMISTRY FEBRUARY, 1935. General, Physical, and Inorganic Chemistry. Excitation of Balmer series by electrodeless Heat of dissociation of hydrogen molecule discharge. H. N a g a o k a , Y. S u g iu r a , and T. deduced from a new ultra-violet resonance band Mish im a (Proc. Imp. Acad. Tokyo, 1934, 10, 450— sequence. Heats of dissociation of HH2, Hi;, and 451).—Dry II2 was circulated at low pressure through HC1. H. B e u t l e r (Z. physikal. Chem., 1934, B, atube 10 cm. diam., surrounded bya coil of thick wire. 27, 287— 302).—Discharge through A containing Discharges from a 125-kv. transformer of frequency traces of H2 reveals lines due to H2 which constitute C X 106 cycles per sec. were passed between Zn balls. aresonance-band system leading from 2pa1SJ, v' — 10, C. W. G. K' = 2-— ^lsaiS+.v" = 1 -1 4 , 11" = 1 and 3. Excit Influence of the Stark effect on the fine struc­ ation i3 effected by absorption of the A line 1066-4 A. ture of the Balmer lines of hydrogen. N. P. by mols. at the level«" = 2, K" = 1. The extension He y d e n b u r g (Physical Rev., 1934, [ii], 46, 1069— of the scries of vibrations v" by v" = 13 and 14 shows 1075).—The possibility of small electric fields, present the no. of v" vibrational levels to be finite and permits in a discharge tube, accounting for the discrepancies a more exact extrapolation giving heat of dissociation between observed and calc, doublet splitting of the of H2, 102-68 ± 0-12kg.-cal. Thevals. 103-50 ± 0-12, Balmer lines is investigated. Doppler curves are 104-48 i 0-12, and 101-63 ± 0-22 kg.-cal. are calc, plotted for each component and superimposed. For for the heats of dissociation of HH2, H2, and HC1, the Hg line, fields > 100 volts per cm. do not explain respectively. R. C. Houston’s results (cf. A., 1934, 467). A field of 500 Fine structure of H2a. F. H. Sp e d d i n g , C. D. volts per cm. agrees with Gibbs’ results (cf. ibid., 575) S h a n e , and N. S. G r a c e (Physical Rev., 1933, [ii], for H„, but not for H^. N. M . B . 44, 58).— Spectroscopic measurements of H20 con­ Spectrum of the hydrogen molecule. I. The 3, taining 50% HiO show that H1« and H2a are widely 4§?S,n, A— >- 2p3n, and 3s3E— 2p3II systems. separated, each showing its own system of interference 0. W. R ic h a r d s o n and T. B. R y m e r (Proc. Roy. fringes. Preliminary vals. for e/m are < 1-758 X 107 Soc., 1934, A , 147, 24— 47).— Several new bands e.m.u. L. S. T. and a new band system ending on the lowest triplet Spectrum of deuterium ? F. S a n f o r d (Science, state are described. These include : (1) the 1934, 80, 478). L. S. T. 4d3Att— >-2y3n system; (2) the substitution of new Influence of the polarisation of the inner o' ■= 2 and 3 levels for those given by Richardson and electron in the field of the outer [electron] on the Davidson (A., 1933,1219); (3) the non-diagonal lines spectral terms of a two-electron system (especi­ of 4<Z32,11;,, n o, and A&— -> 2^3n ; (4) extension of the ally helium ). G. L u d w ig (Helv. phys. Acta, 1934, 3s3S— >- 2p3n system to the v' — 0, 2, 3, and 4 (?) 7, 273—284; Chem. Zcntr., 1934, ii, 722).—Theoreti­ levels; and (5) extension of the 3c232IIA complex cal. H. J. E. — y 2p3n to the v',v" = 4',4" levels. L. L. B. Inert gas molecules. K. G. E m e l e u s and O. S. Spectrum of H2. II. Band systems due to D u f f e n d a c k (Physical Rev., 1933, [ii], 44, 945).— transitions from four new triplet states to 2Jp3n. The behaviour of the He band spectrum in discharge HI. New bands and band systems ending on tubes carrying small currents indicates that the He 2s3E and an extension of the singlet system mol. is actually produced under discharge conditions lQ ~ 2;>1S. 0 . W. R ic h a r d s o n and T. B. from one normal and one metastable He atom R y m er (Proc. Roy. Soc., 1934, A , 147, 251— 272, according to the scheme H e(l1,3yS) + He(21,3>5)— >- 272—292).—II. Pour new hand systems from He2(21,3S). The possibility of observing the visible hitherto undiscovered upper triplet states to 2jj3II are He band spectrum is closely associated with the described. The consts. and properties of the upper metastability of the 23S level. The band spectra of states are worked out and the possible electronic the mols. Ne2, A2, etc. will be difficult, if not im­ configurations considered. possible, to excite. L. S. T. III. Three new band systems ending on 2s3£ and coming from hitherto undiscovered upper states Li+ fine structure and wave functions near the are described. An account is given of the v' = 0 pro­ nucleus. J. A. W h e e l e r and G. B r e it (Physical gression of the singlet system 1Q— >-2p12, and the Rev., 1933, [ii], 44, 948).—The fine structure of the progression previously known (A., 1929, 616, 731) is (Is 2j>)zP level of Li+ has been calc. L. S. T. shown to be v' = 1. The band consts. and properties Be in lsitp 1P1—ls21S0 series. P. G. K r u g e r ot the upper states are worked out. L. L. B. and F. S. Co o p e r (Physical Rev., 1933, [ii], 44,418).— Jj 135 136 BRITISH CHEMICAL ABSTRACTS.----A. Wave-lengths, term vals., and the series limit are 176).—The absorption spectrum and pleochroism calc. The ionisation potential of Be in is 153-012 of rhombic S between 4000 and 5800 Ä. have been volts. L. S. T. observed for 4 directions of the electric vector of the incident light relative to the crystal axes. The Ionisation potential of Be ill. B. E d l e n differences of the fractional transmissions for (Physical Rev., 1933, [ii], 4 4 , 778).—New investig­ ations confirm the author’s previous val. (A., 1931,539) the various directions are relatively small, despite the for the series limit, which is Is2 1S0 = 1,241,180 cm.4 marked anisotropic structure of the crystals, but the (see above). L. S. T. change in the long wave-length limit of the ultra­ violet absorption exhibits marked variations. Magnetic dipole radiation and the atmo­ H. F. G. spheric absorption bands of oxygen. J. H. Structure of discontinuities in the absorption V a n V l e c k (Astrophys. J., 1934, 8 0 , 161— 170).— of some gases in the region 1 0 —1 0 0 Ä . J. A. The atm. bands of 0 2 are best interpreted as magnetic P r in s (Physica, 1934, 1, 1174—1180; cf. A., 1934, dipole radiation rather than as ordinary dipole or 712).—Measurements for A, CC14, and N2 are recorded quadrupole radiation. L. S. T. and discussed. H. J. E. Regularities in the radiation emitted by the Hyperfine structure of spectrum lines of man­ positive column in the neon discharge. H. ganese arc in vacuum. I. W. M o h a m m a d and K r e f f t and E. 0. Se it z (Physikal. Z., 1934, 35, P. N. Sh a r m a (Phil. M ag., 1934, [ v i i ] , 1 8 , 1144— 1149; 9S0—983).—The spectral energy distribution of the cf. White, A., 1930, 970).— Structure data for 20 lines red Ne lines in the positive column is characteristic in the visible region are reported. N. M. B. and easily reproducible, but the abs. efficiency depends on experimental conditions. A. J. M. Persistence of some lines due to impurities in iron. R. B r e c k p o t and A. M e v is (Ami. Soc. Sei. Widening and displacement of absorption Bruxelles, 1934,5 4 , B, 290—298).— In connexion with lines. C. F u c h t b a u e r [with P. S c h u l z , A. F. quant, spectral analysis, the spectra obtained when B r a n d t , and F . G o ssler ] (Physikal. Z., 1934, 3 5 , known amounts of impurities (Cu, B a , Pb, Bi, Sn, Sb) 975—977).—The displacement of the absorption line in an Fe base are used in the method (A., 1934, 857, of the principal series of K, Na, and Cs up to the 23rd 858> are examined. A. J. M. and 26th members by the addition of He, Ne, and A was investigated. The curves for He and Ne show Hyperfine structure of the arc lines of molyb­ max. in the violet, whilst A produces only red dis­ denum and copper. L. Si b a i y a (Proc. Indian placement. The limiting vals. are the same for Na Acad. Sei., 1934,1, A , 321— 324).—Lines arising from and K. The effective cross-section of He for very slow transitions to the ground state in the arc spectra of electrons obtained from the above data is 15-5 cm.2 Cu and Mo in a Schüler tube are self-reversed, but give per cm.3 The effect of A and He on the width of the correct vals.
Recommended publications
  • List of Lists
    United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals
    [Show full text]
  • Physical Chemical Studies on Inorganic Coordination Compounds. I. Metallic Complexes of Dimethylsulfoxide. II. Preparation and Spectral Studies of Vanadyl Complexes
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1961 Physical Chemical Studies on Inorganic Coordination Compounds. I. Metallic Complexes of Dimethylsulfoxide. II. Preparation and Spectral Studies of Vanadyl Complexes. Lawrence Henry Holmes Jr Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Holmes, Lawrence Henry Jr, "Physical Chemical Studies on Inorganic Coordination Compounds. I. Metallic Complexes of Dimethylsulfoxide. II. Preparation and Spectral Studies of Vanadyl Complexes." (1961). LSU Historical Dissertations and Theses. 713. https://digitalcommons.lsu.edu/gradschool_disstheses/713 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been 62-1233 microfilmed exactly as received H O L M E S , Jr., Lawrence Henry, 1935- PHYSICAL CHEMICAL STUDIES ON INORGANIC COORDINATION COMPOUNDS. I. METALLIC COMPLEXES OF DIMETHYLSULFOXIDE. II. PRE­ PARATION AND SPECTRAL STUDIES OF VANA­ DYL COMPLEXES. University Microfilms, Inc., Ann Arbor, Michigan H O L M E S , Jr., Lawrence Henry, 193 5- 62-1233 Louisiana State University, Ph.D., 1961 Chemistry, inorganic University Microfilms, Inc., Ann Arbor, Michigan PHYSICAL' CHEMICAL STUDIES ON INORGANIC COORDINATION COMPOUNDS I. METALLIC COMPLEXES OF DIMETHYIBULFOXIDE II. PREPARATION AND SPECTRAL STUDIES OF VANADYL COMPLEXES A DISSERTATION Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Ffechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Lawrence Henry Holmes, Jr.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,931,573 Wada Et Al
    United States Patent (19) 11 Patent Number: 4,931,573 Wada et al. 45 Date of Patent: Jun. 5, 1990 54 METHOD FOR PRODUCING ALACTONE FOREIGN PATENT DOCUMENTS 75) Inventors: Keisuke Wada, Yokohama; Yoshinori 2195374 8/1987 Japan ................................... 549/325 Hara, Machida; Koushi Sasaki, Primary Examiner-Glennon H. Hollrah Kawasaki, all of Japan Assistant Examiner-Susan P. Treanor 73) Assignee: Mitsubishi Kasei Corporation, Attorney, Agent, or Firm-Oblon, Spivak, McClelland, Tokyo, Japan Maier & Neustadt 57 ABSTRACT 21 Appl. No.: 177,363 A method for producing a lactone by hydrogenating a dicarboxylic acid, a dicarboxylic acid anhydride and/or 22 Filed: Apr. 4, 1988 a dicarboxylic acid ester in the presence of a catalyst, wherein the hydrogenation reaction is conducted in the 30 Foreign Application Priority Data liquid phase in the presence of (1) ruthenium, (2) an Apr. 18, 1987 JP Japan .................................. 62-95682 organic phosphine and (3) a compound of a metal se lected from the group consisting of Groups IVA, VA 511 Int. Cli............................................ COTD 307/28 and IIIB in the Periodic Table. 52 U.S. C. .................................... 549/325; 549/326; According to the present invention, for the production 502/213 of a lactone by hydrogenating a dicarboxylic acid, a 58 Field of Search ................. 549/325, 326; 502/213 dicarboxylic acid anhydride and/or a dicarboxylic es ter, the reaction is conducted in a homogeneous liquid 56) References Cited phase reaction by using the ruthenium, organic phos U.S. PATENT DOCUMENTS phine and compound of a metal selected from the group 3,312,7i8 4/1967 Woskow ............................. 549/325 consisting of Groups IVA, VA and IIIB, of the present 3,957,827 5/1976 Lyons .................................
    [Show full text]
  • Volume 31B: Arene−X (X = N, P)
    IX Volume 31b: Arene-X (X = N, P) Preface ................................................................. V Volume Editors Preface ................................................ VII Table of Contents ....................................................... XI 31.21 Product Class 21: Nitroarenes K. M. Aitken and R. A. Aitken ............................................. 1183 31.22 Product Class 22: Nitrosoarenes K. Rck-Braun and B. Priewisch ........................................... 1321 31.23 Product Class 23: Arenediazonium Salts P. OLeary ............................................................... 1361 31.24 Product Class 24: Azoxyarenes (Di- and Monoaryldiazene Oxides) K. Rck-Braun and B. Priewisch ........................................... 1401 31.25 Product Class 25: Azoarenes K. Rck-Braun, S. Dietrich, S. Kempa, and B. Priewisch ..................... 1425 31.26 Product Class 26: (Arylimino)phosphines and (Arylimino)phosphoranes M. Alajarn, C. Lpez-Leonardo, and J. Bern ............................... 1539 31.27 Product Class 27: Arylamine N-Oxides and Arylaminoxyl Radicals A. Schmidt .............................................................. 1555 31.28 Product Class 28: Arylamines U. Scholz and B. Schlummer .............................................. 1565 31.29 Product Class 29: Arylammonium Salts B. Schlummer and U. Scholz .............................................. 1679 31.30 Product Class 30: N-Silylarylamines J. L. Chiara ............................................................... 1697 31.31 Product Class
    [Show full text]
  • NBO Applications, 2009
    NBO 2009 (Jan-Dec) - 1024 references Compiled by Ariel Neff; Updated 4/16/13 Abdelatif, M. L.; Belmiloud, Y.; Brahimi, M. HF, DFT Studies and NBO Analysis of Phosphazenes and Its-Na+ Complex Asian Journal of Chemistry, (21): 5029-5047 2009. Abdurahman, A.; Renger, T. Density Functional Studies of Iron-Porphyrin Cation with Small Ligands X (X: O, CO, NO, O-2, N-2, H2O, N2O, CO2) Journal of Physical Chemistry A, (113): 9202-9206 2009. Abiram, A.; Kolandaivel, P. INTERACTION OF THE TAUTOMERIC STATES OF HISTIDINE WITH Cu AND Zn METAL IONS - A THEORETICAL STUDY Journal of Theoretical & Computational Chemistry, (8): 657-676 2009. Abrahao, O., Jr.; Panconato Teixeira, T. S.; Madurro, J. M.; da Hora Machado, A. E.; Brito-Madurro, A. G. Quantum mechanical investigation of polymer formation from aminophenols Journal of Molecular Structure-Theochem, (913): 28-37 2009. Adcock, W. Transmission of polar substituent effects across the cubane ring system: F-19 substituent chemical shifts (SCS) of 4-substitute (X) cub-1-yl fluorides revisited Journal of Physical Organic Chemistry, (22): 1065-1069 2009. Adcock, W.; Schamschurin, A.; Taylor, J. F. Nature of transmission of polar substituent effects in gamma-disposed bicyclo[2.2.1]heptane (norbornane) and adamantane ring systems as monitored by F-19 NMR: A DFT-GIAO and - NBO Analysis Arkivoc: 23-37 2009. Adhikari, D.; Pink, M.; Mindiola, D. J. Mild Protocol for the Synthesis of Stable Nickel Complexes Having Primary and Secondary Silyl Ligands Organometallics, (28): 2072-2077 2009. Aghabozorg, H.; Manteghi, F.; Ghadermazi, M.; Mirzaei, M.; Salimi, A. R.; Shokrollahi, A.; Derki, S.; Eshtiagh-Hosseini, H.
    [Show full text]
  • Naming and Indexing of Chemical Substances for Chemical Abstractstm
    Naming and Indexing of Chemical Substances for Chemical AbstractsTM 2007 Edition A publication of Chemical Abstracts Service Published by the American Chemical Society Naming and Indexing of Chemical Substances for Chemical AbstractsTM A publication of Chemical Abstracts Service Published by the American Chemical Society Copyright © 2008 American Chemical Society All Rights Reserved. Printed in the USA Inquiries concerning editorial content should be sent to: Editorial Office, Chemical Abstracts Service, 2540 Olentangy River Road, P.O. Box 3012, Columbus, Ohio 43210-0012 USA SUBSCRIPTION INFORMATION Questions about CAS products and services should be directed to: United States and Canada: CAS Customer Care Phone: 800-753-4227 (North America) 2540 Olentangy River Road 614-447-3700 (worldwide) P.O. Box 3012 Fax: 614-447-3751 Columbus, Ohio 43210-0012 USA E-mail: [email protected] Japan: JAICI (Japan Association for International Phone: 81-3-5978-3621 Chemical Information) Fax: 81-3-5978-3600 6-25-4 Honkomagome E-mail: [email protected] Bunkyo-ku, Tokyo Japan, 113-0021 Countries not named above: Contact CAS Customer Care, 2540 Olentangy River Road, P.O. Box 3012, Columbus, Ohio 43210-0012 USA; Telephone 614-447-3700; Fax 614-447-3751; E-mail [email protected]. For a list of toll-free numbers from outside North America, visit www.cas.org. 1 Naming and Indexing of Chemical Substances for Chemical Abstracts 2007 ¶ 102 NAMING AND INDEXING OF CHEMICAL SUBSTANCES 101. Foreword. Although the account which follows describes in consid- zwitterions (inner salts, sydnones). The changes for the Fourteenth (1997- erable detail the selection of substance names for Chemical Abstracts (CA) in- 2001) Collective Index period affect coordination nomenclature, stereochemi- dexes, it is not a nomenclature manual.
    [Show full text]
  • Consolidated List of Chemicals Subject to EPCRA + Section 112(R)
    United States Office of Land EPA 550-B-20-001 Environmental Protection and August 2020 Agency Emergency Management www.epa.gov/epcra LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals for Accidental Release Prevention TABLE OF CONTENTS Introduction ..................................................................................................................................... 1 List of Lists: Consolidated List of Chemicals (By CAS Number) ................................................. 1 Appendix A: Consolidated List of Chemicals (By Alphabetical Name) .................................... A-1 Appendix B: Radionuclides Listed Under CERCLA ................................................................. B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes ....................................... C-1 Appendix D: EPCRA Section 313, Toxic Release Inventory (TRI) Chemical Categories ........ D-1 Appendix E: ................................................................................................................................. E-1 EPCRA Section 313 (TRI) PER- and Polyfluoroalkyl Substances CAS Number Listing ................... E-1 EPCRA Section 313 (TRI) PER- and Polyfluoroalkyl Substances
    [Show full text]
  • Inorganic Chemistry Radiochemistry
    Advunces in INORGANIC CHEMISTRY AND RADIOCHEMISTRY EDITORS H. J. EMELEUS A. G. SHARPE Universify Chemical laboratory Cambridge, England VOlUME 6 7964 ACADEMIC PRESS New York and London COPYRIGHT0 1964, BY ACADEMICbaa INC. ALL RIGHTS BESEBVED. NO PART OF THIS BOOK MAY BE REPBODUCED IN ANY FORM, BY PHOTOSTAT, MICBOBILM, OR ANY OTHER mANS, WITHOUT WRI'ITEN PERMISSION FROM THE PUBLISHERS. ACADEMIC PRESS INC. 111 Fifth Avenue, New York, Now York loo03 United Kingdom Edition publtkhed tg ACADEMIC INC. Berkeley 8qitarePRESS House, London(LONDON) W.l LTD. TIBltARY OF bNGRESS CATALOG CAD NUMBER:68-7699 PRINTED IN THE UNIWD STATES OF AMEBICA LIST OF CONTRIBUTORS C. C. ADDISON,Department of Chemistry, The University, Nottingham, England A. H. W. ATEX,Jn., Instituut voor Kernphysisch Onderzoek, Amsterdam-Oost The Netherlands G. BOOTH,Imperial Chemical Industries Limited, Dyestugs Division, Blackley, Manchester, England J. A. COR"OR,*University Chemical Laboratory, Lensjield Road, Cambridge, England E. A. V. EBSWOIZTH,University Chemical Laboratory, Lensjield Road, Cambridge, England M. FLUCK,Anorganisch-Chemisches Institut der Universitut Heidelberg, Germany ADLIS. KAXA'AX,Department of Chemistry, Rice University, Houston, Texas N. LOGAN,Department of Chemistry, The University, Nottingham, England JOHN L. MARGRAVE,Department of Chemistry, Rice University, Houston, Texas u. WANNAGAT,The Technical University of Graz, Austria J. J. ZUCKEIZM.~,Baker Laboratory, Cornell University, Ithaca, New York * Present address: Department of Chemistry, Faculty of Technology, University of Manchcster, England. V COMPLEXES OF THE TRANSITISONMETALS WITH PHOSPHINES. ARSINES. AND STlBlNES G. Booth Imperial Chemical Industries limited. Dyestuffs Division. Blackley. Manchester. England I . Introduction .... .......... 1 I1. Group IV ..... .......... 4 A . Titanium .............. 4 B .
    [Show full text]
  • Rev. 23 Table 2: Pacs by Chemical Name (Pdf)
    Table 2: Protective Action Criteria (PAC) Rev 23 based on applicable AEGLs, ERPGs, or TEELs (chemicals listed in alphabetical order) PAC Rev 23 – August 2007 Table 2 presents an alphabetical listing of the chemicals in the PAC data set and provides Chemical Abstracts Service Registry Numbers (CAS RNs)1, PAC data, and technical comments focusing on changes in the PACs since the previous version of the PAC/TEEL data set (Rev 21). PACs are provided for TEEL-0 (i.e., PAC-0), PAC-1, PAC-2, and PAC-3. Values are usually given in parts per million (ppm) for gases and volatile liquids and in milligrams per cubic meter (mg/m3) for particulate materials (aerosols) and nonvolatile liquids. The columns presented in Table 2 provide the following information: Heading Definition No. The ordered numbering of the chemicals as they appear in this alphabetical listing. Chemical The common name of the chemical compound. Compound CAS RN The Chemical Abstracts Service Registry Number for this chemical. TEEL-0 This is the threshold concentration below which most people will experience no appreciable risk of health effects. This PAC is always based on TEEL-0 because AEGL-0 or ERPG-0 values do not exist. PAC-1 Based on the applicable AEGL-1, ERPG-1, or TEEL-1 value. PAC-2 Based on the applicable AEGL-2, ERPG-2, or TEEL-3 value. PAC-3 Based on the applicable AEGL-3, ERPG-3, or TEEL-3 value. Units The units for the PAC values (ppm or mg/m3). Comments Technical comments by the developers of the PAC data set.
    [Show full text]