Anacardiaceae – Cashew (Sumac) Family

Total Page:16

File Type:pdf, Size:1020Kb

Anacardiaceae – Cashew (Sumac) Family ANACARDIACEAE – CASHEW (SUMAC) FAMILY Plant: vines (usually woody), shrubs, or small trees Stem: woody, particularly with age, often with milky or resinous juice (resin ducts in bark) Root: Leaves: simple or most often pinnately compound (or 3’s, trifoliate), mostly alternate; stipules none or very small Flowers: regular (actinomorphic), perfect or most often imperfect (dioecious); petals 0 or 3 but usually 5, small; sepals 3 or usually 5 and often fused at base; 5 or 10 stamens in 2 series alternate with petals or reduced or absent; ovary superior, carpels and styles usually 3 Fruit: berry or berry-like (drupe), usually oily Other: mostly tropical; Sumac and Poison Ivy is very common locally, many are toxic; family also includes pistachio, cashew and mango; Dicotyledons Group Genera: 80+ genera; locally Cotinus (smoke tree), Rhus (sumac) and Toxicodendron (poision- sumac, oak, and ivy's) WARNING – family descriptions are only a layman’s guide and should not be used as definitive Flower Morphology in the Anacardiaceae (Cashew family) Examples of common genera European Smoketree Cotinus coggygria Scop. (Introduced) [Common] Poison Ivy Toxicodendron radicans (L.) Kuntze Smooth Sumac Rhus glabra L. ID OF THE 4 SUMACS [Shining] Winged Sumac - Rhus copallinum Fragrant Sumac - Rhus aromatica Pinnate leaves (13 or fewer leaflets usually), mostly entire or with fine teeth, both petiole Ternate (trifoliate or 3-part) compound leaf, and rachis winged. note that the middle or terminal leaflet narrows to the rachis and is not “stalked” as is poison ivy; leaf shape differences above helps to define 2 varieties. Smooth Sumac - Rhus glabra Staghorn Sumac - Rhus typhina Leaves pinnate (11-21 leaflets), with teeth, mostly sessile; stem with raised dots (resin canals), Leaves pinnate (7-(10-25)) leaflets, toothed; my be glaucous; twigs mostly fruit, twigs and leaf axis with dense, long hairs. glabrous. ID OF THE POISON 3 Poison Sumac Poison Ivy Poison Oak Toxicodendron vernix Toxicodendron radicans Toxicodendron pubescens Britton, N.L., and A. Brown. 1913. An illustrated flora of the northern United States, Canada and the British Possessions. 3 vols. Charles Scribner's Sons, New York. Vol. 2: 484 Leaves pinnate, 7-13+ leaflets, Trifoliate (3 leaflets) - the entire, rachis red and not terminal (middle) leaflet has a winged; fruit white, in panicles; Trifoliate (3 leaflets) - the terminal definite stalk, 3-6(7) rounded leaves scarlet red in fall; most (middle) leaflet has a definite lobes; small or low shrubs, common in swamps and bogs stalk, ± coarse teeth (variable); woody toward base, NOT stem woody toward base, often climbing (no aerial roots) climbing with aerial roots or may be prostrate and “shrubby” ANACARDIACEAE – CASHEW (SUMAC) FAMILY European Smoketree; Cotinus coggygria Scop. (Introduced) Smoke Tree; Cotinus obovatus Raf. Fragrant Sumac; Rhus aromatica Aiton [Shining] Winged Sumac; Rhus copallinum L. Smooth Sumac; Rhus glabra L. Staghorn Sumac; Rhus typhina L. [Eastern] Poison Ivy; Toxicodendron radicans (L.) Kuntze Poison Sumac; Toxicodendron vernix (L.) Kuntze European Smoketree USDA Cotinus coggygria Scop. (Introduced) Anacardiaceae (Cashew Family) Lenawee County, Michigan Notes: shrub to small tree; flowers dioecious, small, white to yellowish, dropping early leaving long stalks with purple hairs (very showy); leaves simple, alternate, elliptical to oval; twigs reddish when young but brownish later; fruits asymmetrical and flattened; spring (determined to be C. coggygria due to more northern location) [V Max Brown, 2008] Smoke Tree USDA Cotinus obovatus Raf. Anacardiaceae (Cashew Family) Close Memorial Park, Springfield, Greene County, Missouri (planted tree) Notes: shrub to small tree; flowers dioecious, small, greenish yellow in clusters, dropping early leaving long stalks with purple hairs (very showy); leaves simple, alternate, mostly oval; twigs reddish when young but gray later; fruits asymmetrical and flattened; spring [V Max Brown, 2012] Fragrant Sumac USDA Rhus aromatica Aiton Anacardiaceae (Cashew Family) Maumee River Metroparks, Lucas County, Ohio Notes: shrub; flowers yellowish green in clusters on catkin-like structure; leaves alternate, trifoliate, terminal leaflet mostly sessile, fragrant when crushed, shape and pubescence variable (form varieties); stem with lenticels or pores; twigs thin, often bent; fruit bright red, with long hairs, in clusters; spring [V Max Brown, 2008] [Shining] Winged USDA Sumac Rhus copallinum L. var. latifolia Engl. Anacardiaceae (Cashew Family) Irwin Prairie State Nature Preserve, Lucas County, Ohio Notes: shrub; flowers greenish yellow; pinnate leaves (13 or fewer leaflets usually), mostly entire or with fine teeth, both petiole and rachis winged, upper surface lustrous, 2-3+ cm wide; bark with raised bumps and streaks (resin canals); twigs and buds with velvety hair; fruit red in upright spikes, with dense short hairs; summer [V Max Brown, 2006] Smooth Sumac USDA Rhus glabra L. Anacardiaceae (Cashew Family) Maumee River Metroparks, Lucas County, Ohio Notes: shrub; flowers yellowish green; leaves pinnate (11- 21 leaflets), with teeth, mostly sessile; stem with raised dots (resin canals), my be glaucous; twigs mostly glabrous; fruit red, in upright panicle or spike, short hairy; widespread shrub; spring [V Max Brown, 2005] Staghorn Sumac USDA Rhus typhina L. Anacardiaceae (Cashew Family) Maumee Bay State Park, Lucas County, Ohio Notes: shrub; flowers yellowish green; leaves pinnate (7-(10-25)) leaflets, toothed; fruit, twigs and leaf axis with dense, long hairs; trunk lenticels horizontal; leaf scars very deep; spring; the largest of the sumacs [V Max Brown, 2006] [Common] Poison Ivy USDA Toxicodendron radicans (L.) Kuntze Anacardiaceae (Cashew Family) Maumee River Metroparks, Lucas County, Ohio Notes: shrub or vine; flowers small, yellowish white to greenish, form clusters in leaf axils; 3 leaflets (trifoliate), ± coarse teeth; stem woody toward base, climbing or prostrate; fruit white to gray; buds with very fine hairs; poisonous to touch at all times (resinous oil); variable with several varieties [V Max Brown, 2005] Poison Sumac USDA Toxicodendron vernix (L.) Kuntze Anacardiaceae (Cashew Family) Pokagon State Park, Steuben County, Indiana Notes: shrub to small tree; flowers yellowish green; leaves pinnate, 7-13+ leaflets, entire, rachis red and not winged; fruit white, in panicles; leaves scarlet red in fall; buds downy hairy; swamps, bogs, etc.; late spring to early summer (Poisonous) [V Max Brown, 2009].
Recommended publications
  • Allergic Contact Dermatitis to Plants: Understanding The
    Document downloaded from http://http://www.actasdermo.org, day 06/09/2012. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Actas Dermosifiliogr. 2012;103(6):456---477 REVIEW Allergic Contact Dermatitis to Plants: Understanding the ଝ Chemistry will Help our Diagnostic Approach a,∗ b a a E. Rozas-Munoz,˜ J.P. Lepoittevin, R.M. Pujol, A. Giménez-Arnau a Department of Dermatology, Hospital del Mar. Parc de Salut Mar, Barcelona, Spain b Dermatochemistry Laboratory, Institut of Chemistry, University of Strasbourg, Strasbourg, France Received 12 April 2011; accepted 29 July 2011 Available online 10 August 2012 KEYWORDS Abstract Allergic contact dermatitis due to plants is common. Potentially allergenic plants and plant products are found in many everyday environments, such as the home, the garden, Contact dermatitis; Plants; the workplace, and recreational settings. By improving our knowledge of allergenic plant- ␣-Methylene-␥- derived chemical compounds, we will be better positioned to identify novel allergens. We butyrolactone; review the most relevant chemical allergens that contribute to plant allergic contact dermatitis Quinones; and propose a clinical classification system based on 5 major families of chemical sensitiz- ␣ ␥ Terpenes; ers: -methylene- -butyrolactones, quinones, phenol derivatives, terpenes, and miscellaneous Phenols structures (disulfides, isothiocyanates, and polyacetylenic derivates). We also describe the dif- ferent clinical pictures of plant allergic contact dermatitis and review currently available patch test materials. A better understanding of the specific allergens involved in plant allergic contact dermatitis will help to predict cross-reactivity between different plant species or families. © 2011 Elsevier España, S.L. and AEDV.
    [Show full text]
  • Poison Ivy Vs. Lookalike Species
    Poison Ivy vs. Lookalike Species Poison ivy comes in many different forms. Because of its variable appearance, it can often be difficult to identify. Using the handy guide below, learn how to distinguish poison ivy from other common lookalike plants (see back for a list of lookalikes). Poison ivy (Toxicodendron radicans) is a native plant valued by wildlife. Humans are one of the few species vulnerable to its “poison.” It can be found as a vine climbing fences, posts and trees, laying low as a trail vine, or as a shrub. The vine is the easiest form to identify because of its unique “hairy” appearance; the hairs are rootlets. The three leaves of poison ivy all have pointed tips. The leaf edges can be either serrated or smooth. The leaves typically look smooth and glossy with the middle leaf being the longest. It is typically reddish in the fall, while green to yellow the remainder of the year. Most have heard the catchy phrase, “leaves of three let it be”—it’s an easy-to-remember expression to help identify the plant. Images (front, top to bottom): Young poison ivy, credit R.A. Nonenmacher, via Wikimedia Commons Mature poison ivy, credit R.A. Nonenmacher, via Wikimedia Commons Poison Ivy Vine and leaves (note “hairy” rootlets), via Wikimedia Commons Images (back, top to bottom): Virginia Creeper (note 5 leaves, smooth vine). Credit: Chris Light, via Wikimedia Commons Box elder leaves; note smooth/fuzzy stem. Credit: Susan Charkes Mock strawberry leaves and fruit. Credit: Andrewbogott, via Wikimedia Commons Jack-in-the-pulpit.
    [Show full text]
  • Winged Sumac T
    32Southern SOIL 32 Coppice of winged sumac T. Davis Snydor, Ohio State University a growing food movement Native Plant Highlight: Winged Sumac Rhus copallinum by Amy Carter, Coastal Plains Chapter, Georgia Native Plant Society Description Rhus copallinum or winged sumac is a deciduous upright shrub that can be a colorful addition to your landscape. Other common names include shining su- mac, flameleaf sumac, dwarf sumac, wing-rib sumac, black sumac, and upland sumac. Winged Sumac gets its name from the winged stalk between leaflets. Unlike poison sumac (Toxicodendron vernix), for which it is often mistaken, it is not a skin irritant. A member of the cashew family, this sumac is considered a large shrub or small tree usually growing to about 10 feet although it can reach heights of 20 to 35 feet or more in good soils. It has a small, short trunk with open branching. The shiny green leaves of winged sumac are pinnately compound, 33 alternate and spiral up stems. Leaflet mar- gins are usually entire (or serrate), elliptic to lanceolate in shape, 3-8 cm long, and 1-3 cm wide. Leaves turn a shiny bright red in the fall. Unlike other sumacs winged sumac Leaf with winged rachis Vern Wilkins, Indiana University has a watery sap. Male and female flowers usually occur on separate trees so both are necessary for fertile seed produc- tion. Flowers occur in showy greenish-white clusters during summer months. Fruits occur in a panicle and are small and covered with fine hairs. They occur in red to reddish brown pyramidal clusters on the female tree and persist on the plants through the winter into spring.
    [Show full text]
  • American Smoketree (Cotinus Obovatus Raf.)
    ACADBJIY OJl'· SCIBNCm FOR 1M2 11 o AMERICAN SMOKETREE (COTINUS OBOVATUS RAP.), ONE OF OKLAHOMA'S RAREST TREE SPECIES ELBERT L. LITTLE, IlL, Forest Senlee United States DepartmeDt of J.grlealture, Washington, D. C. Though the American Smoketree was discovered in Oklahoma by Thomu Nuttall in 1819, only one more collection of this rare tree species within the state has been reported. This article summarizes these records, add8 a third Oklahoma locality, and calle attention to the older lClenttf1c name, Cotfftu ob0'V4tu Ral, which 8hould replace the one In ue, Coth," (lm.en. eo".. Hutt. II PROCDDINGS OJ' THE OKLAHOMA Nattall (1821), the flnt botaDl8t to mit what 11 now Okahoma, men­ tlODed In hie journal for July 18, 1819, the dl8covery, to his great 81U'Prlse, of thla new, Jarp Ihrub, aearcely dlltlnet from BA.. cot'"'' of Europe. He deIcrlbed the location as on l1mestone clUb of the Grand (or Neosho) RITer near a bend called the Eagle'e Neat more tban thirty miles north of the confluence of the Grand and Arkanlla8 River.. The place probably ..... alODC the 8&lt bank of the river In eoutheastern Mayes County, at the weetern edge of the Ozark Plateau in northeastern Oklahoma. It 11 hoped that Oklahoma botaDleti w1ll revisit the type locality and a1eo die. COTer other etatloD•. Thll Dew species was Dot mentioned In Nuttall'. (1837) unfinished publication on his collections of the flora of Arkansas Territory. Torrey aD4 Gray (1888) IDcluded Nuttall's frultfng specimens doubtfully under the related European species, then known as Rhu coUnu L., with Nuttall's upubllehed herbariUM Dame, Bh., coUnoUles Nutt., as a synonym.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Weed Risk Assessment for Pistacia Chinensis Bunge (Anacardiaceae)
    Weed Risk Assessment for Pistacia United States chinensis Bunge (Anacardiaceae) – Department of Agriculture Chinese pistache Animal and Plant Health Inspection Service November 27, 2012 Version 1 Pistacia chinensis (source: D. Boufford, efloras.com) Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Weed Risk Assessment for Pistacia chinensis Introduction Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is defined as “any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment” (7 U.S.C. § 7701-7786, 2000). We use weed risk assessment (WRA)—specifically, the PPQ WRA model (Koop et al., 2012)—to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world. Because the PPQ WRA model is geographically and climatically neutral, it can be used to evaluate the baseline invasive/weed potential of any plant species for the entire United States or for any area within it. As part of this analysis, we use a stochastic simulation to evaluate how much the uncertainty associated with the analysis affects the model outcomes.
    [Show full text]
  • Toxicodendron Diversilobum (Torr
    A WEED REPORT from the book Weed Control in Natural Areas in the Western United States This WEED REPORT does not constitute a formal recommendation. When using herbicides always read the label, and when in doubt consult your farm advisor or county agent. This WEED REPORT is an excerpt from the book Weed Control in Natural Areas in the Western United States and is available wholesale through the UC Weed Research & Information Center (wric.ucdavis.edu) or retail through the Western Society of Weed Science (wsweedscience.org) or the California Invasive Species Council (cal-ipc.org). Toxicodendron diversilobum (Torr. & A. Gray) E. Greene Pacific poison-oak Family: Anacardiaceae Range: Baja California to British Columbia. West of the Cascade Range in Washington and Oregon; ubiquitous in California west of the Sierra Nevada. Also along the western side of Nevada. Habitat: Mixed evergreen forests, woodlands, chaparral, coastal sage scrub, and riparian zones. It is one of the most widespread shrubs in California. It generally occurs on acid soils, but is not limited to any particular soil type, texture or drainage pattern. Pacific poison-oak is typically found at less than 5,000 ft elevation and grows on all aspects. It can tolerate drought, fire, and low temperatures. Origin: Native to the Pacific Coast of the western United States from British Columbia to Baja California. Impacts: One of the most hazardous native plants in the western states. It can be problematic wherever people are likely to contact the plant such as along trails or during brush removal around homes, along rights-of-way, fire breaks, construction sites, etc.
    [Show full text]
  • University of Michigan University Library
    CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN VOL.XX, NO. 5, pp. 89-119 (6 pls., 1 fig.) MAY10, 1966 ADDITIONS TO AND REVISION OF THE OLIGOCENE RUBY PAPER SHALE FLORA OF SOUTHWESTERN MONTANA BY HERMAN I?. BECKER Published with aid from the Paleontology Accessions Fund through the generosity of MR. AND MRS.EDWARD PULTENEY WRIGHT MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY Director: LEWIS B. KELLUM The series of contributions from the Museum of Paleontology is a medium for the publication of papers based chiefly upon the collection in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate papers may also be obtained. Correspondence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan. VOLS.11-XIX. Parts of volumes may be obtained if available 1. Upper Devonian and Lower Mississipian Pectinoid Pelecypods from Michi- gan, Ohio, Indiana, Iowa, and Missouri, by Thomas W. Hutchinson and Erwin C. Stumm. Pages 1-48, with 7 plates. 2. Two New Middle Devonian Species of the Starfish Devonaster from South- western Ontario, by Robert V. Kesling and Jean D. Wright. Pages 49-61, with 4 plates. 3. A Revision of the Ordovician Trilobite Asaphus platycephalus Stokes, by David G. Darby and Erwin C. Stumm. Pages 63-73, with 2 plates. 4. Proctotkylacocrinus esseri, a New Crinoid from the Middle Devonian Silica Formation of Northwestern Ohio, by Robert V.
    [Show full text]
  • Environmental Assessment Northern Border Remote Radio Link Pilot Project Essex and Orleans Counties, Vermont
    DRAFT ENVIRONMENTAL ASSESSMENT NORTHERN BORDER REMOTE RADIO LINK PILOT PROJECT ESSEX AND ORLEANS COUNTIES, VERMONT February 2019 Lead Agency: U.S. Customs and Border Protection 24000 Avila Road, Suite 5020 Laguna Niguel, California 92677 Prepared by: Gulf South Research Corporation 8081 Innovation Park Drive Baton Rouge, Louisiana 70820 EXECUTIVE SUMMARY Background and Purpose and Need The area near the U.S./Canada International border in Vermont is extremely remote and contains dense forest and steep terrain intersected by numerous streams, lakes, and bogs. These conditions make it very difficult for U.S. Border Patrol (USBP) agents to patrol the area and communicate with each other and station personnel while on patrol. The Department of Homeland Security (DHS), Science and Technology Directorate (S&T), has developed a prototypical Remote Radio Link Project that includes the installation of a buried communications cable to enhance the communications capability and safety of Border Patrol agents who are conducting enforcement activities in these areas. U.S. Customs and Border Protection (CBP) is assisting S&T in developing this Environmental Assessment (EA) to address the proposed installation and operation of the pilot project. The purpose of this pilot project is to determine the effectiveness of this type of remote radio link system in four-season weather. The need for the project is to identify such reliable communication methods that can enhance USBP enforcement activities and agent safety. Proposed Action The Proposed Action includes the installation, operation, and maintenance of a Remote Radio Link Pilot Project along the U.S./Canada International border west of Norton, Vermont.
    [Show full text]
  • Vascular Plants of Williamson County Rhus Aromatica − SKUNKBRUSH, FRAGRANT SUMAC [Anacardiaceae]
    Vascular Plants of Williamson County Rhus aromatica − SKUNKBRUSH, FRAGRANT SUMAC [Anacardiaceae] Rhus aromatica Aiton (includes varieties), SKUNKBRUSH, FRAGRANT SUMAC. Shrub, winter-deciduous, clump-forming, with long shoots and short lateral and spur shoots, 50– 200 cm tall; shoots short-tomentose, strongly aromatic like wintergreen (Gaultheria) when cut or crushed (having resin ducts with terpenes); bark tight, light gray, ± smooth. Stems: cylindric, when young typically < 4 mm diameter, limber, reddish, puberulent on young periderm, knobby at nodes from persistent, short-projecting bases of old petioles (1 mm); containing colorless resin from ducts in stem. Leaves: helically alternate, 3-foliolate, typically 30–50 mm long, petiolate with the 3 leaflets subsessile to sessile arising at same point, without stipules; petiole 5−15 mm long; blades of leaflets ovate to obovate or fan- shaped to rhombic, 5−28 × 5−26 mm, terminal leaflet > lateral leaflets, rounded or obtuse (lateral leaflets) to tapered (terminal leaflets) at base, shallowly to deeply 3-lobed and short-crenate, pinnately veined with principal veins slightly raised on lower surface. Inflorescence: panicle of racemes, on spur shoots clustered at tips of winter stems, panicle to 60 mm long, racemes to 10, 10−15 mm long, each raceme ± 20-flowered, flowers helically arranged and tightly clustered, buds formed in midsummer and flowering starting before leaves, bracteate, densely short-tomentose with brown hairs; peduncle to 5 mm long; bract subtending each branch deltate-broadly awl-shaped and cupped, 1−2 mm long, brownish red, stiff, short-tomentose especially below midpoint, persistent; axes stiff, short-hairy; bractlets subtending pedicel 2, partially hidden by and ⊥ to bract, ovate, 1 mm long, keeled, puberulent at base and on inner surface; pedicel 1−2 mm long increasing in fruit, greenish, sparsely hairy or glabrous.
    [Show full text]
  • Family Scientific Name Life Form Anacardiaceae Spondias Tuberosa
    Supplementary Materials: Figure S1 Performance of the gap-filling algorithm on the daily Gcc time-series of the woody cerrado site. The algorithm created, based on an Auto-regressive moving average model (ARMA) fitting over the Gcc time-series, consists of three steps: first, the optimal order of the ARMA model is chosen based on physical principles; secondly, data segments before and after a given gap are fitted using an ARMA model of the order selected in the first step; and next, the gap is interpolated using a weighted function of a forward and a backward prediction based on the models of the selected data segments. The second and third steps are repeated for each gap contained in the entire time series. Table S1 List of plant species identified in the field that appeared in the images retrieved from the digital camera at the caatinga site. Family Scientific name Life form Anacardiaceae Spondias tuberosa Arruda Shrub|Tree Anacardiaceae Myracrodruon urundeuva Allemão Tree Anacardiaceae Schinopsis brasiliensis Engl. Tree Apocynaceae Aspidosperma pyrifolium Mart. & Zucc. Tree Bignoniaceae Handroanthus spongiosus (Rizzini) S.Grose Tree Burseraceae Commiphora leptophloeos (Mart.) J.B.Gillett Shrub|Tree Cactaceae Pilosocereus Byles & Rowley NA Euphorbiaceae Sapium argutum (Müll.Arg.) Huber Shrub|Tree Euphorbiaceae Sapium glandulosum (L.) Morong Shrub|Tree Euphorbiaceae Cnidoscolus quercifolius Pohl Shrub|Tree Euphorbiaceae Manihot pseudoglaziovii Pax & K.Hoffm. NA Euphorbiaceae Croton conduplicatus Kunth Shrub|Sub-Shrub Fabaceae Mimosa tenuiflora (Willd.) Poir. Shrub|Tree|Sub-Shrub Fabaceae Poincianella microphylla (Mart. ex G.Don) L.P.Queiroz Shrub|Tree Fabaceae Senegalia piauhiensis (Benth.) Seigler & Ebinger Shrub|Tree Fabaceae Poincianella pyramidalis (Tul.) L.P.Queiroz NA Malvaceae Pseudobombax simplicifolium A.Robyns Tree Table S2 List of plant species identified in the field that appeared in the images taken at the cerrado shrubland.
    [Show full text]
  • First Record of Citheronia Regalis (Lepidoptera: Saturniidae) Feeding on Cotinus Obovatus (Anacardiaceae) Author(S): Gary R
    First Record of Citheronia regalis (Lepidoptera: Saturniidae) Feeding on Cotinus obovatus (Anacardiaceae) Author(s): Gary R. Graves Source: Florida Entomologist, 100(2):474-475. Published By: Florida Entomological Society https://doi.org/10.1653/024.100.0210 URL: http://www.bioone.org/doi/full/10.1653/024.100.0210 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Scientific Notes First record of Citheronia regalis (Lepidoptera: Saturniidae) feeding on Cotinus obovatus (Anacardiaceae) Gary R. Graves1,2,* The regal moth (Citheronia regalis F.; Lepidoptera: Saturniidae) 2016) shows historic and recent records of C. regalis for only 11 of was historically distributed in eastern North America from southern the 34 counties in which natural populations of smoketree have been New England and southern Michigan, south to southern Florida, and documented (Davis & Graves 2016). west to eastern Nebraska and eastern Texas (Tuskes et al.
    [Show full text]