Decapoda, Brachyura) and a Key to Such Larvae from the Brazilian Coast

Total Page:16

File Type:pdf, Size:1020Kb

Decapoda, Brachyura) and a Key to Such Larvae from the Brazilian Coast THE FIRST ZOEAL STAGE OF TWO SPECIES OF GRAPSIDAE (DECAPODA, BRACHYURA) AND A KEY TO SUCH LARVAE FROM THE BRAZILIAN COAST BY A. FRANSOZO1), J. A. CUESTA2) and M. L. NEGREIROS-FRANSOZO1) 1) NEBECC (Group of Studies on Crustacean Biology, Ecology and Culture), Departamento de Zoologia, Instituto de Biociências, Centro de Aqüicultura, Universidade Estadual Paulista, C. P. 510, Cep 18618-000 Botucatu, São Paulo, Brazil 2) Departamento de Ecologia, Facultad de Biologia, Universidad de Sevilla, Apdo. 1095, E-41080 Sevilla, Spain ABSTRACT First zoeal stages of the grapsinid Goniopsis cruentata (Latreille, 1803) and the sesarminid Aratus pisonii (H. Milne Edwards, 1837), are described and illustrated. Grapsinae zoeae can be distinguished from the other grapsid larvae by the absence of lateral spines on the carapace and the reduction of the antennal exopod to a small seta. A key to the first zoeal stage of the Brazilian coast Grapsidae is provided. RÉSUMÉ Les premiers stades zoé du grapsinide Goniopsis cruentata (Latreille, 1803) et du sesarminide Aratus pisonii (H. Milne Edwards, 1837) sont décrits et figurés. Les zoés de Grapsinae peuvent être distinguées de celles des autres larves de Grapsidae par l'absence d'épines latérales sur la carapace et la réduction de l'écaille exopodiale de l'antenne à une petite soie. Une clef du premier stade zoé des Grapsidae de la côte brésilienne est fournie. INTRODUCTION Decapod classification is based on adult characters which are influenced by adaptations to different life styles. There are many taxonomic uncertainties re- sulting from the difficulty of recognizing apomorphic features in adult crus- taceans. However, according to Rice (1980), the adaptations of adult brachyurans are not reflected in larval development. Most marine decapods have comparable planktonic larvae, and giving more consideration to larval characters would hopefully solve many of the problems of existing classifications. 332 The known Brazilian fauna is composed of 302 brachyuran species (Melo, 1996), of which only 25% have their complete larval development described. Among the Brachyura, there are 22 species of littoral Grapsidae, distributed in four subfamilies. The species with reference to larval descriptions, are the following: Grapsinae: Pachygrapsus gracilis (Saussure, 1858) studied by Ingle (1987) and Brossi-Garcia & Rodrigues (1993), Pachygrapsus transversus (Gibbes, 1850) by Ingle (1987) and Cuesta & Rodriguez (1994), Planes cyaneus Dana, 1852 by Konishi & Minigawa (1990), and Geograpsus lividus (H. Milne Edwards, 1837) by Cuesta (unpubl. data). Sesarminae: Chasmagnathus granulatus Dana, 1851 studied by Boschi et al. ( 1967), Aratus pisonii (H. Milne Edwards, 1837) by Warner (1968), Cyclograp- sus integer (H. Milne Edwards, 1837) by Gore & Scotto (1982), Metasesarma rubripes (Rathbun, 1897) by Diaz & Ewald (1968) and Montu et al. (1990), Sesarma ricordi H. Milne Edwards, 1853 by Díaz & Ewald (1968), Sesarma rectum Randall, 1840 by Fransozo & Hebling (1986), and Armases angustipes (Dana, 1852) by Kowalczuk (1994); the larvae described by Aikawa (1937) as Grapsus grapsus (Linnaeus, 1758) should probably be ascribed to a species of this subfamily (Cuesta et al., in press). Varuninae: Cyrtograpsus altimanus Rathbun, 1914 studied by Scelzo & Bas- tida (1979), Euchirograpsus americanus A. Milne Edwards, 1880 by Wilson (1980), and Cyrtograpsus angulatus Dana, 1851 by Boschi ( 1981 ). Plagusiinae: Plagusia depressa (Fabricius, 1775) studied by Wilson & Gore (1980), and Percnon gibbesi (H. Milne Edwards, 1853) by Paula & Hartnoll (1989). At present there are no larval data of Pachygrapsus corrugatus (Von Martens, 1872), Armases benedicti (Rathbun, 1897), Sesarma crassipes Cano, 1889, Cyr- tograpsus affinis (Dana, 1851), and Euchirograpsus kingsleyi (Miers, 1885). Abele (1992) reviewed all the known American species of Sesarma and some species were moved to the new genus Armases. For instance, Sesarma angustipes changed to Armases angustipes, and Sesarma ricordi to Armases ricordi. Later, Niem (1993) also referred Metasesarma rubripes to the genus Armases. Only more descriptions of reared larvae will lead to identifications of plank- tonic zoeae and a more valid classification of decapod crustaceans. This paper aims to facilitate the identification of planktonic grapsid larvae from the Brazilian coast by providing the first description of zoea I of Goniopsis cruentata and a redescription of the same stage of Aratus pisonii, both hatched in the laboratory. .
Recommended publications
  • Phylogenetic Relationships of the Plagusiidae Dana, 1851
    PHYLOGENETIC RELATIONSHIPS OF THE PLAGUSIIDAE DANA, 1851 (BRACHYURA), WITH DESCRIPTION OF A NEW GENUS AND RECOGNITION OF PERCNIDAE ŠTEVCIˇ C,´ 2005, AS AN INDEPENDENT FAMILY BY CHRISTOPH D. SCHUBART1,3) and JOSÉ A. CUESTA2,4) 1) Biologie I, Universität Regensburg, D-93040 Regensburg, Germany 2) Instituto de Ciencias Marinas de Andalucía, CSIC, Avenida República Saharaui, 2, E-11519 Puerto Real, Cádiz, Spain ABSTRACT A molecular and morphological analysis of representatives of the family Plagusiidae, including all members of Plagusia Latreille, 1804, and the recently established Davusia Guinot, 2007, was carried out. Due to marked differences in adult and larval morphology, as well as mitochondrial and nuclear DNA, two species of Plagusia,viz.,P. chabrus (Linnaeus, 1758), and P. dentipes De Haan, 1835, are considered sister taxa but distinct from other members of the genus. They are transferred to a new genus, Guinusia. A molecular phylogeny suggests that Guinusia is not closer related to Plagusia than to the plagusiid genera Euchirograpsus H. Milne Edwards, 1853, and Miersiograpsus Türkay, 1978. Furthermore, with new evidence from mitochondrial and nuclear DNA as well as a reappraisal of the larval morphology, the genus Percnon Gistel, 1848, is formally removed from the Plagusiidae and recognized as a separate family, Percnidae Števciˇ c,´ 2005. RÉSUMÉ Une analyse moléculaire et morphologique des représentants de la famille des Plagusiidae comprenant tous les membres du genre Plagusia Latreille, 1804, et le genre récemment établi Davusia Guinot, 2007, a été réalisée. Pour tenir compte des nettes différences dans la morphologie adulte et larvaire ainsi que sur l’ADN nucléaire et mitochondrial, deux espèces de Plagusia, P.
    [Show full text]
  • And Gecarcoidea Lalandii H. Milne
    Journal of Natural History, 2002, 36, 1671–1685 First zoealstages of Epigrapsuspolitus Heller, E. notatus (Heller)and Gecarcoidealalandii H.Milne-Edwards, with remarks on zoeal morphologyof the Gecarcinidae Macleay (Crustacea: Brachyura) JOSE´ A.CUESTA†, HUNG-CHANG LIU‡and CHRISTOPH D. SCHUBART†1 †Department ofBiology, Laboratory for CrustaceanResearch, University ofLouisianaat Lafayette,Lafayette, LA 70504-2451,USA; e-mail: [email protected] ‡Department ofLife Science, National Tsing Hua University, Hsinchu, Taiwan (Accepted10 April 2001 ) Thecrab family Gecarcinidae Macleay, 1838 currently consists of 18speciesthat aregrouped in four genera. Larval data for the Gecarcinidae were only known forspecies of the genera Cardisoma Latreille,1825 and Gecarcinus Leach,1814. Inthe present paper, the rstzoeal stage of Gecarcoidealalandii H. Milne- Edwards,1837, Epigrapsuspolitus Heller,1862 and E. notatus Heller,1865 are describedand illustrated. Zoeal morphology of the Gecarcinidae is reviewed, takinginto account all previous descriptions and analysing the relationships betweenthe di Verentgenera of Gecarcinidae based on zoeal morphological characters.A seriesof typical morphological features is proposed for the zoea larvaeof this family di Verentiatingthem from the rest of the Grapsoidea. Keywords: Larvalmorphology, Gecarcinidae, Gecarcoidea , Epigrapsus, zoea. Introduction The grapsoid familyGecarcinidae has acircumtropical distribution, with many species known only from oceanic islands. The familypresently consists of 18species that aredistributed
    [Show full text]
  • Pu'u Wa'awa'a Biological Assessment
    PU‘U WA‘AWA‘A BIOLOGICAL ASSESSMENT PU‘U WA‘AWA‘A, NORTH KONA, HAWAII Prepared by: Jon G. Giffin Forestry & Wildlife Manager August 2003 STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE TABLE OF CONTENTS TITLE PAGE ................................................................................................................................. i TABLE OF CONTENTS ............................................................................................................. ii GENERAL SETTING...................................................................................................................1 Introduction..........................................................................................................................1 Land Use Practices...............................................................................................................1 Geology..................................................................................................................................3 Lava Flows............................................................................................................................5 Lava Tubes ...........................................................................................................................5 Cinder Cones ........................................................................................................................7 Soils .......................................................................................................................................9
    [Show full text]
  • Caribbean Wildlife Undersea 2017
    Caribbean Wildlife Undersea life This document is a compilation of wildlife pictures from The Caribbean, taken from holidays and cruise visits. Species identification can be frustratingly difficult and our conclusions must be checked via whatever other resources are available. We hope this publication may help others having similar problems. While every effort has been taken to ensure the accuracy of the information in this document, the authors cannot be held re- sponsible for any errors. Copyright © John and Diana Manning, 2017 1 Angelfishes (Pomacanthidae) Corals (Cnidaria, Anthozoa) French angelfish 7 Bipinnate sea plume 19 (Pomacanthus pardu) (Antillogorgia bipinnata) Grey angelfish 8 Black sea rod 20 (Pomacanthus arcuatus) (Plexaura homomalla) Queen angelfish 8 Blade fire coral 20 (Holacanthus ciliaris) (Millepora complanata) Rock beauty 9 Branching fire coral 21 (Holacanthus tricolor) (Millepora alcicornis) Townsend angelfish 9 Bristle Coral 21 (Hybrid) (Galaxea fascicularis) Elkhorn coral 22 Barracudas (Sphyraenidae) (Acropora palmata) Great barracuda 10 Finger coral 22 (Sphyraena barracuda) (Porites porites) Fire coral 23 Basslets (Grammatidae) (Millepora dichotoma) Fairy basslet 10 Great star coral 23 (Gramma loreto) (Montastraea cavernosa) Grooved brain coral 24 Bonnetmouths (Inermiidae) (Diploria labyrinthiformis) Boga( Inermia Vittata) 11 Massive starlet coral 24 (Siderastrea siderea) Bigeyes (Priacanthidae) Pillar coral 25 Glasseye snapper 11 (Dendrogyra cylindrus) (Heteropriacanthus cruentatus) Porous sea rod 25 (Pseudoplexaura
    [Show full text]
  • 2010-11-23-MO-DEA-Kalaupapa
    National Park Service U.S. Department of the Interior Kalaupapa National Historical Park Hawaii Project to Repair the Kalaupapa Dock Structures Environmental Assessment August 2010 EXECUTIVE SUMMARY The Kalaupapa Settlement is home to surviving Hansen's disease (leprosy) patients, and is cur- rently managed jointly by the Hawaii Department of Health and the National Park Service (NPS). The vast majority of materials needed to sustain the park and the Kalaupapa Settlement is received by barge delivery. An engineering study (Daly 2005) has determined that severe win- ter swell conditions have compromised the structural integrity of the Kalaupapa harbor facilities used by the barge. The NPS proposes to ensure delivery of supplies essential to operate and maintain Kalaupapa National Historical Park (“the park”) and the community by improving conditions of the dock structures at the harbor. This environmental assessment considered two alternatives for improving conditions of the dock structures: Alternative A: The No Action Alternative: Current NPS management operations at the dock and harbor would remain unchanged without repair to the dock structures. The integrity and stability of the pier may be compromised to the point of being unsafe for barge operations. Over the long-term, barge service to the park would likely be disrupted or become sporadic. Delive- ries of annual supplies and materials used for state operations, park programs, and the park’s ongoing rehabilitation of historic properties would be affected. Alternative B: The Preferred Alternative: This alternative would include completion of the repairs necessary to maintain service via a small barge. Voids in the bulkhead wall toe, the low dock toe, and the breakwater would be filled for structural integrity, and repairs would be made to the pier dock.
    [Show full text]
  • 17 the Crabs Belonging to the Grapsoidea Include a Lot Of
    17 SUPERFAMILY GRAPSOIDEA The crabs belonging to the Grapsoidea include a lot of ubiquitous species collected in the mangrove and/or along the coastline. As a result, most of the species listed here under the ‘Coastal Rock-rubble’ biotope of table 2b could be reasonably listed also with marine species. This is particularly true for the Grapsidae: Grapsus, Pachygrapsus, Pseudograpsus, and Thalassograpsus. FAMILY GECARCINIDAE Cardisoma carnifex (Herbst, 1796). Figure 12. – Cardisoma carnifex - Guinot, 1967: 289 (Checklist of WIO species, with mention of Grande Comore and Mayotte). - Bouchard, 2009: 6, 8, Mayotte, Malamani mangrove, 16 April 2008, St. 1, 12°55.337 S, 44°09.263 E, upper mangrove in shaded area, burrow, about 1.5 m depth, 1 male 61×74 mm (MNHN B32409). - KUW fieldwork November 2009, St. 6, Petite Terre, Badamiers spillway, upper littoral, 1 female 53×64 mm (MNHN B32410), 1 male 65×75.5 mm (MNHN B32411); St. 29, Ngouja hotel, Mboianatsa beach, in situ photographs only. Distribution. – Widespread in the IWP. Red Sea, Somalia, Kenya, Tanzania, Mozambique, South Africa, Europa, Madagascar, Comoros, Seychelles, Réunion, Mauritius, India, Taiwan, Japan, Australia, New Caledonia, Fiji, Wallis & Futuna, French Polynesia. Comment. – Gecarcinid land crabs are of large size and eaten in some places (West Indies, Wallis & Futuna, and French Polynesia). In Mayotte, however, they are not much prized for food and are not eaten. Figure 12. Cardisoma carnifex. Mayotte, KUW 2009 fieldwork: A) aspect of station 29, upper littoral Ngouja hotel, Mboianatsa beach; B) same, detail of a crab at the entrance of its burrow; C) St. 6, 1 female 53×64 mm (MNHN B32410); D) probably the same specimen, in situ at St.
    [Show full text]
  • Some Reproductive Aspects of Gecarcoidea Lalandii
    Zoological Studies 46(3): 347-354 (2007) Some Reproductive Aspects of Gecarcoidea lalandii (Brachyura: Gecarcinidae) in Taiwan Hung-Chang Liu1 and Ming-Shiou Jeng2,* 1Department of Ecology, Providence University, Shalu, Taichung County, 433 Taiwan. E-mail:[email protected] 2Research Center for Biodiversity, Academia Sinica, Nankang, Taipei 115, Taiwan (Accepted May 10, 2006) Hung-Chang Liu and Ming-Shiou Jeng (2007) Some reproductive aspects of Gecarcoidea lalandii (Brachyura: Gecarcinidae) in Taiwan. Zoological Studies 46(3): 347-354. The reproductive biology of the land crab Gecarcoidea lalandii was documented on the Hengchun Peninsula, southern Taiwan. Ovigerous females have an average carapace width of 57 ± 7 (range, 42-78) mm (n = 287). The breeding season is variable, depending on the beginning of the rainy season, and in 2003, it lasted from June to Oct., a relatively longer breeding season than determined for its congener, G. natalis. Ovigerous females usually release their larvae during 7-10 d in the last quarter of the lunar cycle. Larval release shows a closer relationship with the timing of sunrise than with the high tide. This species exhibits an unusual larval release behavior while clinging to verti- cal rock faces in which the ovigerous females drop egg masses into the water without actually entering the water. This unusual larval release from above the water and the choice of surge channels as release sites are thought to be adaptations to life on land which may reduce the risks of mortality to ovigerous females. http://zoolstud.sinica.edu.tw/Journals/46.3/347.pdf Key words: Gecarcoidea, Gecarcinidae, Larval release, Reproduction.
    [Show full text]
  • Checklist of Brachyuran Crabs (Crustacea: Decapoda) from the Eastern Tropical Pacific by Michel E
    BULLETIN DE L'INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE, BIOLOGIE, 65: 125-150, 1995 BULLETIN VAN HET KONINKLIJK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN, BIOLOGIE, 65: 125-150, 1995 Checklist of brachyuran crabs (Crustacea: Decapoda) from the eastern tropical Pacific by Michel E. HENDRICKX Abstract Introduction Literature dealing with brachyuran crabs from the east Pacific When available, reliable checklists of marine species is reviewed. Marine and brackish water species reported at least occurring in distinct geographic regions of the world are once in the Eastern Tropical Pacific zoogeographic subregion, of multiple use. In addition of providing comparative which extends from Magdalena Bay, on the west coast of Baja figures for biodiversity studies, they serve as an impor- California, Mexico, to Paita, in northern Peru, are listed and tant tool in defining extension of protected area, inferr- their distribution range along the Pacific coast of America is provided. Unpublished records, based on material kept in the ing potential impact of anthropogenic activity and author's collections were also considered to determine or con- complexity of communities, and estimating availability of firm the presence of species, or to modify previously published living resources. Checklists for zoogeographic regions or distribution ranges within the study area. A total of 450 species, provinces also facilitate biodiversity studies in specific belonging to 181 genera, are included in the checklist, the first habitats, which serve as points of departure for (among ever made available for the entire tropical zoogeographic others) studying the structure of food chains, the relative subregion of the west coast of America. A list of names of species abundance of species, and number of species or total and subspecies currently recognized as invalid for the area is number of organisms of various physical sizes (MAY, also included.
    [Show full text]
  • ZOOLOGISCHE MEDEDELINGEN UITGEGEVEN DOOR HET RIJKSMUSEUM VAN NATUURLIJKE HISTORIE TE LEIDEN (MINISTERIE VAN CULTUUR, RECREATIE EN MAATSCHAPPELIJK WERK) Deel 56 No
    ZOOLOGISCHE MEDEDELINGEN UITGEGEVEN DOOR HET RIJKSMUSEUM VAN NATUURLIJKE HISTORIE TE LEIDEN (MINISTERIE VAN CULTUUR, RECREATIE EN MAATSCHAPPELIJK WERK) Deel 56 no. 3 23 december 1980 THE DECAPOD AND STOMATOPQD CRUSTACEA OF ST PAUL'S ROCKS by L. B. HOLTHUIS Rijksmuseum van Natuurlijke Historie, Leiden, Netherlands A. J. EDWARDS and H. R. LUBBOCK Department of Zoology, University of Cambridge, Cambridge, U.K. With two text-figures and one plate INTRODUCTION Saint Paul's Rocks (Penedos de Sao Pedro e Sao Paulo) are a small group of rocky islets on the mid-Atlantic ridge near the equator, occupying an area of roughly 250 by 425 m. There is no vegetation and, apart from birds and invertebrates, the islands are uninhabited. The Cambridge Expedi­ tion to Saint Paul's Rocks visited the group from 16 to 24 September 1979 and made extensive collections of the terrestrial and marine fauna; these included a number of Crustacea. The Decapoda and Stomatopoda of St Paul's Rocks are the subject of the present paper. Few detailed studies have been published to date on the Crustacea of St Paul's Rocks, largely because of the Rocks' remoteness and inhospitable nature. Crustacea, especially the common and conspicuous rock crab Grapsus grapsus, have been mentioned in several narratives and popular accounts, but the only material on which scientific reports have been based is that collected by H.M.S. "Challenger" in 1873. The Challenger reports mention eight species of Decapoda (5 Macrura, 1 Anomuran and 2 Brachyura) from St Paul's Rocks. The Cambridge Expedition collected nine species of Deca­ poda (2 Macrura and 7 Brachyura) and one species of Stomatopoda; in addition one macrurous decapod was observed but not collected.
    [Show full text]
  • ATOLL RESEARCH Bulletln
    ATOLL RESEARCH BULLETlN NO. 235 Issued by E SMTPISONIAIV INSTITUTION Washington, D.C., U.S.A. November 1979 CONTENTS Abstract Introduction Environment and Natural History Situation and Climate People Soils and Vegetation Invertebrate Animals Vertebrate Animals Material and Methods Systematics of the Land Crabs Coenobitidae Coenobi ta Coenobi ta brevimana Coenobi ta per1 a ta Coenobi ta rugosa Birgus Birgus latro Grapsidae Geogxapsus Geograpsus crinipes Geograpsus grayi Metopograpsus Metopograpsus thukuhar Sesarma Sesarma (Labuaniurn) ?gardineri ii Gecarcinidae page 23 Cardisoma 2 4 Cardisoma carnif ex 2 5 Cardisoma rotundum 2 7 Tokelau Names for Land Crabs 30 Notes on the Ecology of the Land Crabs 37 Summary 4 3 Acknowledgements 44 Literature Cited 4 5 iii LIST OF FIGURES (following page 53) 1. Map of Atafu Atoll, based on N.Z. Lands and Survey Department Aerial Plan No. 1036/7~(1974) . 2. Map of Nukunonu Atoll, based on N.Z. Lands and Survey Department Aerial Plan No. 1036/7~sheets 1 and 2 (1974). 3. Map of Fakaofo Atoll, based on N.Z. Lands and Survey Department Aerial Plan No. 1036/7C (1974). 4. Sesarma (Labuanium) ?gardineri. Dorsal view of male, carapace length 28 rnm from Nautua, Atafu. (Photo T.R. Ulyatt, National Museum of N. Z.) 5. Cardisoma carnifex. Dorsal view of female, carapace length 64 mm from Atafu. (Photo T.R. Ulyatt) 6. Cardisoma rotundurn. Dorsal view of male, carapace length 41.5 mm from Village Motu, Nukunonu. (Photo T.R. Ulyatt) LIST OF TABLES 0 I. Surface temperature in the Tokelau Islands ( C) Page 5 11. Mean rainfall in the Tokelau Islands (mm) 6 111, Comparative list of crab names from the Tokelau Islands, Samoa, Niue and the Cook islands, 3 5 IV.
    [Show full text]
  • Sally Lightfoot Crab
    Stephen Nowak Sally Lightfoot Crab Scientific Name: Arthropoda Crustacea Decapoda Grapsidae Grapsus grapsus Spanish Name: Abuete Negro Closest Relative: Percnon gibbesi Atlantic Ocean; Also known as Sally Lightfoot © 2004-5 Select Latin America Ltd Sally Lightfoot crab scavenging on a dead animal Geographical/Habitat: The Sally Lightfoot crab geographical local extends from the coasts of Baja California through the western coasts of Central and South America. This species of crab is a land dwelling species which spend the majority of its day on dark rocky beaches and in intertidal zones where many other animals find the constant barrage of waves too difficult to inhabit. What to Look for Physically: These creatures normally range from 5-7 cm but in the Galapagos they grow slightly larger. The Sally Lightfoot crab has developed a few adaptations to best survive in its ecological niche. As immature crabs the species' carapace is cryptically colored to match the beaches it dwells upon to remain hidden from overhead attacks from predators flying above. As the species develops, the exoskeleton becomes more difficult for these birds to break through, and sexual selection becomes the new priority to overcome. Adult Sally Lightfoot crabs are characterized by a vibrant red shell which contrasts strikingly with the lava rock beaches of the Galapagos. The name Sally Lightfoot was given to these crabs because of their agility to elude skilled trappers across the beaches. John Steinbeck comments in The Log of the Sea of Cortez “They seem to be able to run in all four directions; but more than this, perhaps because of their rapid reaction time they appear to read the mind of their hunter.
    [Show full text]
  • Guide to Theecological Systemsof Puerto Rico
    United States Department of Agriculture Guide to the Forest Service Ecological Systems International Institute of Tropical Forestry of Puerto Rico General Technical Report IITF-GTR-35 June 2009 Gary L. Miller and Ariel E. Lugo The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and national grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable sex, marital status, familial status, parental status, religion, sexual orientation genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD).To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W. Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Authors Gary L. Miller is a professor, University of North Carolina, Environmental Studies, One University Heights, Asheville, NC 28804-3299.
    [Show full text]