The Fourier Transform

Total Page:16

File Type:pdf, Size:1020Kb

The Fourier Transform Chapter 6 The Fourier Transform In this chapter we will turn to the study of Fourier transforms. These will provide an integral representation of functions de¯ned on the real line. Such functions can represent analog signals. Analog signals are continuous signals which may be sums over a continuous set of frequencies, as opposed to the sum over discrete frequencies, which Fourier series were used to represent. We will see how to rewrite our trigonometric Fourier series as complex exponential series. Then we will extend our series to signals with in¯nite periods. In later chapters we will see the connection between analog and digital signals. 6.1 Complex Exponential Fourier Series We ¯rst recall the trigonometric Fourier series representation of a function de¯ned on [¡¼; ¼] with period 2¼. The Fourier series is given by 1 a0 X f(x) » + (an cos nx + bn sin nx) ; (6.1) 2 n=1 where the Fourier coe±cients were found as Z 1 ¼ an = f(x) cos nx dx; n = 0; 1;:::; ¼ ¡¼ 133 134 CHAPTER 6. THE FOURIER TRANSFORM Z 1 ¼ bn = f(x) sin nx dx; n = 1; 2;::: (6.2) ¼ ¡¼ In order to derive the exponential Fourier series, we replace the trigonometric functions with exponential functions and collect like terms. This gives à à ! à !! 1 inx ¡inx inx ¡inx a0 X e + e e ¡ e f(x) » + an + bn 2 n=1 2 2i µ ¶ µ ¶ a X1 a ¡ ib X1 a + ib = 0 + n n einx + n n e¡inx: (6.3) 2 n=1 2 n=1 2 The coe±cients can be rewritten by de¯ning 1 c = (a + ib ); n = 1; 2;:::: (6.4) n 2 n n Then we also have that 1 c¹ = (a ¡ ib ); n = 1; 2;:::: (6.5) n 2 n n This gives our representation as X1 X1 a0 inx ¡inx f(x) » + c¹ne + cne : 2 n=1 n=1 Reindexing the ¯rst sum, by letting k = ¡n, we can write a ¡1X X1 f(x) » 0 + c¹ e¡ikx + c e¡inx: 2 ¡k n k=¡1 n=1 Now, we can de¯ne cn =c ¹¡n; n = ¡1; ¡2;:::: a0 Finally, we note that we can take c0 = 2 : So, we can write the complex exponential Fourier series representation as X1 ¡inx f(x) » cne ; (6.6) ¡1 6.1. COMPLEX EXPONENTIAL FOURIER SERIES 135 where 1 c = (a + ib ); n = 1; 2;::: n 2 n n 1 c = (a ¡ ib ); n = ¡1; ¡2;::: n 2 ¡n ¡n a c = 0 : (6.7) 0 2 Given such a representation, we would like to write out the integral forms of the coe±cients, cn. So, we replace the an's and bn's with their integral representations and replace the trigonometric functions with complex exponential functions. Doing this, we have for n = 1; 2;:::: 1 cn = (an + ibn) 2 · Z Z ¸ 1 1 ¼ i ¼ = f(x) cos nx dx + f(x) sin nx dx 2 ¼ ¡¼ ¼ ¡¼ Z à ! Z à ! 1 ¼ einx + e¡inx i ¼ einx ¡ e¡inx = f(x) dx + f(x) dx 2¼ ¡¼ 2 2¼ ¡¼ 2i Z 1 ¼ = f(x)einx dx (6.8) 2¼ ¡¼ It is a simple matter to determine the cn's for other values of n. For n = 0, we have that Z ¼ a0 1 c0 = = f(x) dx: 2 2¼ ¡¼ For n = ¡1; ¡2;:::, we ¯nd that Z ¼ Z ¼ 1 ¡inx 1 inx cn =c ¹n = f(x)e dx = f(x)e dx: 2¼ ¡¼ 2¼ ¡¼ Therefore, for all n we have show that Z ¼ 1 inx cn = f(x)e dx: (6.9) 2¼ ¡¼ We have converted our trigonometric series for functions de¯ned on [¡¼; ¼] to a complex exponential series in Equation (6.6) with Fourier coe±cients given by (6.9). We can easily extend the above analysis to other intervals. For example, for x 2 [¡L; L] the Fourier trigonometric series is 1 µ ¶ a0 X n¼x n¼x f(x) » + an cos + bn sin 2 n=1 L L 136 CHAPTER 6. THE FOURIER TRANSFORM with Fourier coe±cients Z 1 L n¼x an = f(x) cos dx; n = 0; 1;:::; L ¡L L Z 1 L n¼x bn = f(x) sin dx; n = 1; 2;:::: L ¡L L This can be rewritten in an exponential Fourier series of the form X1 ¡in¼x=L f(x) » cne ¡1 with Z L 1 in¼x=L cn = e dx: 2¼ ¡L 6.2 Exponential Fourier Transform Both the trigonometric and complex exponential Fourier series provide us with representations of a class of functions in term of sums over a discrete set of frequencies for functions of ¯nite period. On intervals [¡L; L] the period is 2L. Writing the arguments in terms of frequencies, we have n¼ n 2¼f = L , or the sums are over frequencies f = 2L : This is a discrete, or countable, set of frequencies. We would now like to extend our interval to x 2 (¡1; 1) and to extend the discrete set of frequencies to a continuous set of frequencies. One can do this rigorously, but it amounts to letting L and n get large and keeping n L ¯xed. We de¯ne ! = 2¼f and the sum over a continuous set of frequencies becomes an integral. Formally, we arrive at the Fourier transform Z 1 F [f] = f^(!) = f(x)ei!x dx: (6.10) ¡1 This is a generalization of the Fourier coe±cients (6.9). Once we know the Fourier transform, then we can reconstruct our function using the inverse Fourier transform, which is given by Z 1 F ¡1[f] = f(x) = f^(!)e¡i!x d!: (6.11) ¡1 6.2. EXPONENTIAL FOURIER TRANSFORM 137 We note that it can be proven that the Fourier transform exists when f(x) is absolutely integrable, i.e., Z 1 jf(x)j dx < 1: ¡1 Such functions are said to be L1. The Fourier transfrom and inverse Fourier transform are inverse operations. This means that F ¡1[F [f]] = f(x) and F [F ¡1[f^]] = f^(!): We will now prove the ¯rst of these equations. The second follows in a similar way. This is done by inserting the de¯nition of the Fourier transform into the inverse transform de¯nition and then interchanging the orders of integration. Thus, we have Z 1 1 F ¡1[F [f]] = F [f]e¡i!x d! 2¼ ¡1 Z ·Z ¸ 1 1 1 = f(»)ei!» d» e¡i!x d! 2¼ Z¡1 Z ¡1 1 1 1 = f(»)ei!(»¡x) d»d! 2¼ ¡1 ¡1 Z ·Z ¸ 1 1 1 = ei!(»¡x) d! f(») d»: (6.12) 2¼ ¡1 ¡1 In order to complete the proof, we need to evaluate the inside integral, which does not depend upon f(x). This is an improper integral, so we will de¯ne Z L i!x DL(x) = e d! ¡L and compute the inner integral as Z 1 i!(»¡x) e d! = lim DL(» ¡ x): ¡1 L!1 We can compute DL(x): A simple evaluation yields Z L i!x DL(x) = e d! ¡L 138 CHAPTER 6. THE FOURIER TRANSFORM 8 6 4 2 ±4 ±3 ±2 ±10 1 2 3 4 x Figure 6.1: A plot of the function DL(x) for L = 4. 80 60 40 20 ±4 ±20 2 4 x Figure 6.2: A plot of the function DL(x) for L = 40. ei!x = jL ix ¡L eixL ¡ e¡ixL = 2ix 2 sin xL = : (6.13) x We can graph this function. As x ! 0, DL(x) ! 2L. For large x, The function tends to zero. A plot of this function is in Figure 6.1. For large L the peak grows and the values of DL(x) for x 6= 0 tend to zero as show in Figure 6.2. We note that in the limit L !, DL(x) = 0 for x 6= 0 and it is in¯nite at 6.2. EXPONENTIAL FOURIER TRANSFORM 139 4 3 2 1 ±1 ±0.8 ±0.6 ±0.4 ±0.20 0.2 0.4 0.6 0.8 1 x Figure 6.3: A plot of the functions fn(x) for n = 2; 4; 8. x = 0. However, the area is constant for each L. In fact, Z 1 DL(x) dx = 2¼: ¡1 This behavior can be represented by the limit of other sequences of functions. De¯ne the sequence of functions ( 1 0; jxj > n fn(x) = n 1 2 ; jxj < n This is a sequence of functions as shown in Figure 6.4. As n ! 1, we ¯nd the limit is zero for x 6= 0 and is in¯nite for x = 0. However, the area under each member of the sequences is one. Thus, the limiting function is zero at most points but has area one. The limit is not really a function. It is a generalized function. It is called the Dirac delta function, which is de¯ned by 1. ±(x) = 0 for x 6= 0. R 1 2. ¡1 ±(x) dx = 1: Before returning to the proof, we state one more property of the Dirac delta function, which we will prove in the next section. We have that Z 1 ±(x ¡ a)f(x) dx = f(a): ¡1 140 CHAPTER 6. THE FOURIER TRANSFORM Returning to the proof, we now have that Z 1 i!(»¡x) e d! = lim DL(» ¡ x) = 2¼±(» ¡ x): ¡1 L!1 Inserting this into (6.12), we have Z ·Z ¸ 1 1 1 F ¡1[F [f]] = ei!(»¡x) d! f(») d»: 2¼ Z¡1 ¡1 1 1 = 2¼±(» ¡ x)f(») d»: 2¼ ¡1 = f(x): (6.14) Thus, we have proven that the inverse transform of the Fourier transform of f is f.
Recommended publications
  • The Convolution Theorem
    Module 2 : Signals in Frequency Domain Lecture 18 : The Convolution Theorem Objectives In this lecture you will learn the following We shall prove the most important theorem regarding the Fourier Transform- the Convolution Theorem We are going to learn about filters. Proof of 'the Convolution theorem for the Fourier Transform'. The Dual version of the Convolution Theorem Parseval's theorem The Convolution Theorem We shall in this lecture prove the most important theorem regarding the Fourier Transform- the Convolution Theorem. It is this theorem that links the Fourier Transform to LSI systems, and opens up a wide range of applications for the Fourier Transform. We shall inspire its importance with an application example. Modulation Modulation refers to the process of embedding an information-bearing signal into a second carrier signal. Extracting the information- bearing signal is called demodulation. Modulation allows us to transmit information signals efficiently. It also makes possible the simultaneous transmission of more than one signal with overlapping spectra over the same channel. That is why we can have so many channels being broadcast on radio at the same time which would have been impossible without modulation There are several ways in which modulation is done. One technique is amplitude modulation or AM in which the information signal is used to modulate the amplitude of the carrier signal. Another important technique is frequency modulation or FM, in which the information signal is used to vary the frequency of the carrier signal. Let us consider a very simple example of AM. Consider the signal x(t) which has the spectrum X(f) as shown : Why such a spectrum ? Because it's the simplest possible multi-valued function.
    [Show full text]
  • Lecture 7: Fourier Series and Complex Power Series 1 Fourier
    Math 1d Instructor: Padraic Bartlett Lecture 7: Fourier Series and Complex Power Series Week 7 Caltech 2013 1 Fourier Series 1.1 Definitions and Motivation Definition 1.1. A Fourier series is a series of functions of the form 1 C X + (a sin(nx) + b cos(nx)) ; 2 n n n=1 where C; an; bn are some collection of real numbers. The first, immediate use of Fourier series is the following theorem, which tells us that they (in a sense) can approximate far more functions than power series can: Theorem 1.2. Suppose that f(x) is a real-valued function such that • f(x) is continuous with continuous derivative, except for at most finitely many points in [−π; π]. • f(x) is periodic with period 2π: i.e. f(x) = f(x ± 2π), for any x 2 R. C P1 Then there is a Fourier series 2 + n=1 (an sin(nx) + bn cos(nx)) such that 1 C X f(x) = + (a sin(nx) + b cos(nx)) : 2 n n n=1 In other words, where power series can only converge to functions that are continu- ous and infinitely differentiable everywhere the power series is defined, Fourier series can converge to far more functions! This makes them, in practice, a quite useful concept, as in science we'll often want to study functions that aren't always continuous, or infinitely differentiable. A very specific application of Fourier series is to sound and music! Specifically, re- call/observe that a musical note with frequency f is caused by the propogation of the lon- gitudinal wave sin(2πft) through some medium.
    [Show full text]
  • Fourier Series
    Academic Press Encyclopedia of Physical Science and Technology Fourier Series James S. Walker Department of Mathematics University of Wisconsin–Eau Claire Eau Claire, WI 54702–4004 Phone: 715–836–3301 Fax: 715–836–2924 e-mail: [email protected] 1 2 Encyclopedia of Physical Science and Technology I. Introduction II. Historical background III. Definition of Fourier series IV. Convergence of Fourier series V. Convergence in norm VI. Summability of Fourier series VII. Generalized Fourier series VIII. Discrete Fourier series IX. Conclusion GLOSSARY ¢¤£¦¥¨§ Bounded variation: A function has bounded variation on a closed interval ¡ ¢ if there exists a positive constant © such that, for all finite sets of points "! "! $#&% (' #*) © ¥ , the inequality is satisfied. Jordan proved that a function has bounded variation if and only if it can be expressed as the difference of two non-decreasing functions. Countably infinite set: A set is countably infinite if it can be put into one-to-one £0/"£ correspondence with the set of natural numbers ( +,£¦-.£ ). Examples: The integers and the rational numbers are countably infinite sets. "! "!;: # # 123547698 Continuous function: If , then the function is continuous at the point : . Such a point is called a continuity point for . A function which is continuous at all points is simply referred to as continuous. Lebesgue measure zero: A set < of real numbers is said to have Lebesgue measure ! $#¨CED B ¢ £¦¥ zero if, for each =?>A@ , there exists a collection of open intervals such ! ! D D J# K% $#L) ¢ £¦¥ ¥ ¢ = that <GFIH and . Examples: All finite sets, and all countably infinite sets, have Lebesgue measure zero. "! "! % # % # Odd and even functions: A function is odd if for all in its "! "! % # # domain.
    [Show full text]
  • The Summation of Power Series and Fourier Series
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 12&13 (1985) 447-457 447 North-Holland The summation of power series and Fourier . series I.M. LONGMAN Department of Geophysics and Planetary Sciences, Tel Aviv University, Ramat Aviv, Israel Received 27 July 1984 Abstract: The well-known correspondence of a power series with a certain Stieltjes integral is exploited for summation of the series by numerical integration. The emphasis in this paper is thus on actual summation of series. rather than mere acceleration of convergence. It is assumed that the coefficients of the series are given analytically, and then the numerator of the integrand is determined by the aid of the inverse of the two-sided Laplace transform, while the denominator is standard (and known) for all power series. Since Fourier series can be expressed in terms of power series, the method is applicable also to them. The treatment is extended to divergent series, and a fair number of numerical examples are given, in order to illustrate various techniques for the numerical evaluation of the resulting integrals. Keywork Summation of series. 1. Introduction We start by considering a power series, which it is convenient to write in the form s(x)=/.Q-~2x+&x2..., (1) for reasons which will become apparent presently. Here there is no intention to limit ourselves to alternating series since, even if the pLkare all of one sign, x may take negative and even complex values. It will be assumed in this paper that the pLk are real.
    [Show full text]
  • Harmonic Analysis from Fourier to Wavelets
    STUDENT MATHEMATICAL LIBRARY ⍀ IAS/PARK CITY MATHEMATICAL SUBSERIES Volume 63 Harmonic Analysis From Fourier to Wavelets María Cristina Pereyra Lesley A. Ward American Mathematical Society Institute for Advanced Study Harmonic Analysis From Fourier to Wavelets STUDENT MATHEMATICAL LIBRARY IAS/PARK CITY MATHEMATICAL SUBSERIES Volume 63 Harmonic Analysis From Fourier to Wavelets María Cristina Pereyra Lesley A. Ward American Mathematical Society, Providence, Rhode Island Institute for Advanced Study, Princeton, New Jersey Editorial Board of the Student Mathematical Library Gerald B. Folland Brad G. Osgood (Chair) Robin Forman John Stillwell Series Editor for the Park City Mathematics Institute John Polking 2010 Mathematics Subject Classification. Primary 42–01; Secondary 42–02, 42Axx, 42B25, 42C40. The anteater on the dedication page is by Miguel. The dragon at the back of the book is by Alexander. For additional information and updates on this book, visit www.ams.org/bookpages/stml-63 Library of Congress Cataloging-in-Publication Data Pereyra, Mar´ıa Cristina. Harmonic analysis : from Fourier to wavelets / Mar´ıa Cristina Pereyra, Lesley A. Ward. p. cm. — (Student mathematical library ; 63. IAS/Park City mathematical subseries) Includes bibliographical references and indexes. ISBN 978-0-8218-7566-7 (alk. paper) 1. Harmonic analysis—Textbooks. I. Ward, Lesley A., 1963– II. Title. QA403.P44 2012 515.2433—dc23 2012001283 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.
    [Show full text]
  • Convolution.Pdf
    Convolution March 22, 2020 0.0.1 Setting up [23]: from bokeh.plotting import figure from bokeh.io import output_notebook, show,curdoc from bokeh.themes import Theme import numpy as np output_notebook() theme=Theme(json={}) curdoc().theme=theme 0.1 Convolution Convolution is a fundamental operation that appears in many different contexts in both pure and applied settings in mathematics. Polynomials: a simple case Let’s look at a simple case first. Consider the space of real valued polynomial functions P. If f 2 P, we have X1 i f(z) = aiz i=0 where ai = 0 for i sufficiently large. There is an obvious linear map a : P! c00(R) where c00(R) is the space of sequences that are eventually zero. i For each integer i, we have a projection map ai : c00(R) ! R so that ai(f) is the coefficient of z for f 2 P. Since P is a ring under addition and multiplication of functions, these operations must be reflected on the other side of the map a. 1 Clearly we can add sequences in c00(R) componentwise, and since addition of polynomials is also componentwise we have: a(f + g) = a(f) + a(g) What about multiplication? We know that X Xn X1 an(fg) = ar(f)as(g) = ar(f)an−r(g) = ar(f)an−r(g) r+s=n r=0 r=0 where we adopt the convention that ai(f) = 0 if i < 0. Given (a0; a1;:::) and (b0; b1;:::) in c00(R), define a ∗ b = (c0; c1;:::) where X1 cn = ajbn−j j=0 with the same convention that ai = bi = 0 if i < 0.
    [Show full text]
  • Fourier Series of Functions of A-Bounded Variation
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 74, Number 1, April 1979 FOURIER SERIES OF FUNCTIONS OF A-BOUNDED VARIATION DANIEL WATERMAN1 Abstract. It is shown that the Fourier coefficients of functions of A- bounded variation, A = {A„}, are 0(Kn/n). This was known for \, = n&+l, — 1 < ß < 0. The classes L and HBV are shown to be complementary, but L and ABV are not complementary if ABV is not contained in HBV. The partial sums of the Fourier series of a function of harmonic bounded variation are shown to be uniformly bounded and a theorem analogous to that of Dirichlet is shown for this class of functions without recourse to the Lebesgue test. We have shown elsewhere that functions of harmonic bounded variation (HBV) satisfy the Lebesgue test for convergence of their Fourier series, but if a class of functions of A-bounded variation (ABV) is not properly contained in HBV, it contains functions whose Fourier series diverge [1]. We have also shown that Fourier series of functions of class {nB+x} — BV, -1 < ß < 0, are (C, ß) bounded, implying that the Fourier coefficients are 0(nB) [2]. Here we shall estimate the Fourier coefficients of functions in ABV. Without recourse to the Lebesgue test, we shall prove a theorem for functions of HBV analogous to that of Dirichlet and also show that the partial sums of the Fourier series of an HBV function are uniformly bounded. From this one can conclude that L and HBV are complementary classes, i.e., Parseval's formula holds (with ordinary convergence) for/ G L and g G HBV.
    [Show full text]
  • Convergence of Fourier Series
    CONVERGENCE OF FOURIER SERIES KEVIN STEPHEN STOTTER CUDDY Abstract. This paper sets out to explore and explain some of the basic con- cepts of Fourier analysis and its applications. Convolution and questions of convergence will be central. An application to the isoperimetric inequality will conclude the paper. Contents 1. Introduction to Fourier Series 1 2. Convolution and Kernels 2 3. Criteria for Convergence 8 4. Isoperimetric Inequality 18 Acknowledgments 19 References 19 1. Introduction to Fourier Series It will be important for the reader to recall Euler's Formula: ix (1.1) e = cos(x) + i sin(x); 8x 2 R Throughout this paper, an \integrable" function should be interpreted as integrable in the Riemann sense as well as bounded. Definition 1.2. For an integrable, bounded function f :[a; b] ! C we can define, for any integer n, the nth Fourier coefficient 1 Z b f^(n) = f(x)e−2πinx=(b−a)dx: b − a a When there is no question about the function we are referring to we may write ^ P1 ^ 2πinx f(n) = an. From these coefficients we get the Fourier series S(x) = n=−∞ f(n)e (note that this sum may or may not converge). To denote that a Fourier series is associated to a function f we write 1 X f ∼ f^(n)e2πinx n=−∞ Definition 1.3. The N th partial sum of the Fourier series for f, where N is a PN ^ 2πinx=L positive integer, is given by SN (f)(x) = n=−N f(n)e . Date: DEADLINE AUGUST 26, 2012.
    [Show full text]
  • On Evaluation of Riemann Zeta Function Ζ(S)
    On Evaluation of Riemann Zeta function ζ(s) This is the Published version of the following publication Luo, Qiu-Ming, Guo, Bai-Ni and Qi, Feng (2002) On Evaluation of Riemann Zeta function ζ(s). RGMIA research report collection, 6 (1). The publisher’s official version can be found at Note that access to this version may require subscription. Downloaded from VU Research Repository https://vuir.vu.edu.au/17803/ ON EVALUATION OF RIEMANN ZETA FUNCTION ζ(s) QIU-MING LUO, BAI-NI GUO, AND FENG QI Abstract. In this paper, by using Fourier series theory, several summing formulae for Riemann Zeta function ζ(s) and Dirichlet series are deduced. 1. Introduction It is well-known that the Riemann Zeta function defined by ∞ X 1 ζ(s) = , <(s) > 1 (1) ns n=1 and Dirichlet series ∞ X (−1)n−1 D(s) = , <(s) > 1 (2) ns n=1 are related to the gamma functions and have important applications in mathemat- ics, especially in Analytic Number Theory. In 1734, Euler gave some remarkably elementary proofs of the following Bernoulli series ∞ X 1 π2 ζ(2) = = . (3) n2 6 n=1 The formula (3) has been studied by many mathematicians and many proofs have been provided, for example, see [2]. In 1748, Euler further gave the following general formula ∞ X 1 (−1)k−122k−1π2k ζ(2k) = = B , (4) n2k (2k)! 2k n=1 where B2k denotes Bernoulli numbers for k ∈ N. 2000 Mathematics Subject Classification. 11R40, 42A16. Key words and phrases. Riemann Zeta function, Fourier series, recursion formula. The authors were supported in part by NNSF (#10001016) of China, SF for the Prominent Youth of Henan Province (#0112000200), SF of Henan Innovation Talents at Universities, NSF of Henan Province (#004051800), Doctor Fund of Jiaozuo Institute of Technology, CHINA.
    [Show full text]
  • Fourier Analysis Notes, Spring 2020
    Fourier Analysis Notes, Spring 2020 Peter Woit Department of Mathematics, Columbia University [email protected] September 3, 2020 2 Contents 1 Introduction 5 1.1 Fourier series . .5 1.2 The Fourier transform . .7 2 The Poisson Summation Formula, Theta Functions, and the Zeta Function 9 2.1 The Poisson summation formula and some applications . .9 2.1.1 The heat kernel . 10 2.1.2 The Poisson kernel . 11 2.2 Theta functions . 12 2.2.1 The Jacobi theta function . 13 2.3 The Riemann zeta function . 15 2.3.1 The Mellin transform . 16 2.3.2 The zeta function and the Mellin transform of the theta function . 18 2.3.3 The functional equation for the zeta function . 19 3 Distributions 23 3.1 Introduction . 23 3.2 Distributions: definition . 24 3.3 Distributions: examples . 25 3.4 The derivative of a distribution . 28 3.4.1 The transpose of a linear transformation . 29 3.4.2 Translations . 29 3.4.3 The derivative . 30 3.5 The Fourier transform of a distribution . 33 3.6 Convolution of a function and a distribution . 38 3.7 Distributional solutions of differential equations . 41 4 Higher dimensions 43 4.1 Introduction . 43 4.2 Fourier series and the Fourier transform for d > 1 . 43 4.2.1 Fourier series for d > 1.................... 43 4.2.2 The Fourier transform for d > 1............... 44 3 4.3 Rotations and the Fourier transform . 45 4.3.1 Two dimensions . 47 4.3.2 Three dimensions . 48 5 Wave Equations 53 5.1 Introduction .
    [Show full text]
  • Fourier Series
    LECTURE 11 Fourier Series A fundamental idea introduced in Math 2233 is that the solution set of a linear differential equation is a vector space. In fact, it is a vector subspace of a vector space of functions. The idea that functions can be thought of as vectors in a vector space is also crucial in what will transpire in the rest of this court. However, it is important that when you think of functions as elements of a vector space V , you are thinking primarily of an abstract vector space - rather than a geometric rendition in terms of directed line segments. In the former, abstract point of view, you work with vectors by first adopting a basis {v1,..., vn} for V and then expressing the elements of V in terms of their coordinates with respect to that basis. For example, you can think about a polynomial p = 1 + 2x + 3x2 − 4x3 as a vector, by using the monomials 1, x, x2, x3,... as a basis and then thinking of the above expression for p as “an expression of p” in terms of the basis 1, x, x2, x3,... But you can express p in terms of its Taylor series about x = 1: 3 4 p = 2 − 8 (x − 1) − 21(x − 1)2 − 16 (x − 1) − 4 (x − 1) 2 3 and think of the polynomials 1, x − 1, (x − 1) , (x − 1) ,... as providing another basis for the vector space of polynomials. Granted the second expression for p is uglier than the first, abstractly the two expressions are on an equal footing and moveover, in some situations the second expression might be more useful - for example, in understanding the behavior of p near x = 1.
    [Show full text]
  • Chapter 1 Fourier Series
    Chapter 1 Fourier Series ßb 7W<ïtt|d³ ¯öóÍ ]y÷HÕ_ &tt d³Äó*× *y ÿ|1Òr÷bpÒr¸Þ ÷ßi;?÷ß×2 7W×ôT| T¹yd³JXà²ô :K» In this chapter we study Fourier series. Basic definitions and examples are given in Section 1. In Section 2 we prove the fundamental Riemann-Lebesgue lemma and discuss the Fourier series from the mapping point of view. Pointwise and uniform convergence of the Fourier series of a function to the function itself under various regularity assumptions are studied in Section 3. In Section 1.5 we establish the L2-convergence of the Fourier series without any additional regularity assumption. There are two applications. In Section 1.4 it is shown that every continuous function can be approximated by polynomials in a uniform manner. In Section 1.6 a proof of the classical isoperimetric problem for plane curves is presented. 1.1 Definition and Examples The concept of series of functions and their pointwise and uniform convergence were discussed in Mathematical Analysis II. Power series and trigonometric series are the most important classes of series of functions. We learned power series in Mathematical Analysis II and now we discuss Fourier series. First of all, a trigonometric series on [−π; π] is a series of functions of the form 1 X (an cos nx + bn sin nx); an; bn 2 R: n=0 1 2 CHAPTER 1. FOURIER SERIES As cos 0x = 1 and sin 0x = 0, we always set b0 = 0 and express the series as 1 X a0 + (an cos nx + bn sin nx): n=1 It is called a cosine series if all bn vanish and sine series if all an vanish.
    [Show full text]