Lecture 4 Inner Product Spaces
Lecture 4 Inner product spaces Of course, you are familiar with the idea of inner product spaces – at least finite-dimensional ones. Let X be an abstract vector space with an inner product, denoted as “ , ”, a mapping from X X h i × to R (or perhaps C). The inner product satisfies the following conditions, 1. x + y, z = x, z + y, z , x,y,z X , h i h i h i ∀ ∈ 2. αx,y = α x,y , x,y X, α R, h i h i ∀ ∈ ∈ 3. x,y = y,x , x,y X, h i h i ∀ ∈ 4. x,x 0, x X, x,x = 0 if and only if x = 0. h i≥ ∀ ∈ h i We then say that (X, , ) is an inner product space. h i In the case that the field of scalars is C, then Property 3 above becomes 3. x,y = y,x , x,y X, h i h i ∀ ∈ where the bar indicates complex conjugation. Note that this implies that, from Property 2, x,αy = α x,y , x,y X, α C. h i h i ∀ ∈ ∈ Note: For anyone who has taken courses in Mathematical Physics, the above properties may be slightly different than what you have seen, as regards the complex conjugations. In Physics, the usual convention is to complex conjugate the first entry, i.e. αx,y = α x,y . h i h i The inner product defines a norm as follows, x,x = x 2 or x = x,x . (1) h i k k k k h i p (Note: An inner product always generates a norm.
[Show full text]