The Growing Complexity of Alzheimer Amyloid Precursor Protein Proteolysis

Total Page:16

File Type:pdf, Size:1020Kb

The Growing Complexity of Alzheimer Amyloid Precursor Protein Proteolysis The University of Manchester Research A Greek Tragedy: the Growing Complexity of Alzheimer Amyloid Precursor Protein Proteolysis DOI: 10.1074/jbc.R116.746032 Document Version Accepted author manuscript Link to publication record in Manchester Research Explorer Citation for published version (APA): Andrew, R. J., Kellett, K., Thinakaran, G., & Hooper, N. (2016). A Greek Tragedy: the Growing Complexity of Alzheimer Amyloid Precursor Protein Proteolysis. Journal of Biological Chemistry, 291, 19235-19244. https://doi.org/10.1074/jbc.R116.746032 Published in: Journal of Biological Chemistry Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:03. Oct. 2021 A Greek Tragedy: the Growing Complexity of Alzheimer Amyloid Precursor Protein Proteolysis Robert J. Andrew1*, Katherine A. B. Kellett2, Gopal Thinakaran1 & Nigel M. Hooper2* 1Departments of Neurobiology, Neurology, and Pathology, The University of Chicago, Chicago, IL 60637, USA 2Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK Running title: Amyloid precursor protein proteolysis *To whom correspondence should be addressed: [email protected] tel. +1 773 834 3771 or [email protected] tel. +44 161 306 5765. Keywords: Alzheimer disease, amyloid, proteolysis, secretase, BACE1, ADAM10, presenilin. Abbreviations: Aβ, amyloid-β; AD, Alzheimer disease; ADAM, a disintegrin and metalloprotease; AEP, asparagine endopeptidase; AICD, APP intracellular domain; APP, amyloid precursor protein; APLP, amyloid precursor-like protein; BACE1, β-site APP cleaving enzyme 1; CSF, cerebrospinal fluid; CTF, C-terminal fragment; PS, presenilin; sAPP, soluble amyloid precursor protein. __________________________________________________________________________________ Abstract identification of the Aβ peptide 25 years ago Proteolysis of the amyloid precursor protein has not yet led to the advent of a viable (APP) liberates various fragments including therapeutic strategy which can slow or halt the the proposed initiator of Alzheimer disease progression of AD. Recent studies have associated dysfunctions, amyloid-β. However, revealed new complexities in the proteolytic recent evidence suggests the accepted view of processing of APP, including the identification APP proteolysis by the canonical α-, β- and γ- of novel secretases which generate APP secretases is simplistic, with the discovery of a metabolites that accumulate in the brains of number of novel APP secretases (including δ- AD patients and may contribute to the synaptic and η-secretases, alternative β-secretases) and dysfunction observed in the disease. In additional metabolites, some of which may addition, numerous proteins are being also cause synaptic dysfunction. Furthermore, identified that interact with APP, modulating various proteins have been identified that its proteolysis and Aβ production. These new interact with APP and modulate its cleavage APP secretases and metabolites, along with the by the secretases. Here, we give an overview APP interactors, may present novel therapeutic of the increasingly complex picture of APP targets, that are independent of direct proteolysis. modulation of the canonical secretases, and _____________________________________ which will need to be considered when evaluating the results from current Aβ-directed Currently over 46 million people worldwide therapies. In this minireview, we summarise are living with dementia (www.alz.co.uk) with the recent developments in APP proteolysis Alzheimer disease (AD) representing the most focusing on the novel secretases, APP common form of dementia. In AD, the interactors and APP metabolites that are amyloid cascade hypothesis posits that impacting on our understanding of both APP amyloid-β (Aβ), produced through the biology and the neurodegenerative disease sequential proteolytic cleavage of the amyloid process. precursor protein (APP) by the β- and γ- secretases, is a key molecule in initiating and The canonical α-, β- and γ-secretases and propagating disease pathology including APP fragments neurofibrillary tangle formation, neuronal cell The generally accepted model of APP loss, aberrant synaptic activity, and brain proteolysis is that APP is processed by one of atrophy that lead to the clinically recognised two distinct proteolytic pathways (Fig. 1A). In symptoms of dementia (1). However, the amyloidogenic pathway, β-secretase, the β- 1 site APP cleaving enzyme 1 (BACE1), cleaves superresolution microscopy. The complex APP within the ectodomain and liberates a between the two secretases was stabilised by soluble proteolytic fragment, termed soluble members of the tetraspanin family of scaffold APPβ (sAPPβ), primarily in the endosomal proteins (namely tetraspanin 12 and 17). system from the transmembrane APP Limited data also indicated a physical holoprotein (2). The remaining C-terminal interaction between BACE1 and γ-secretase, membrane-bound APP fragment, CTFβ, is albeit in a complex distinct from the subsequently cleaved by the presenilin (PS)- ADAM10-γ-secretase complex (9). This containing γ-secretase multi-subunit complex comprehensive biochemical study suggests to liberate the Aβ peptide and the APP that cells possess large multiprotease intracellular domain (AICD) (Fig. 1A). γ- complexes capable of sequentially and secretase cleaves CTFβ at several sites in the efficiently processing transmembrane transmembrane domain, ‘trimming’ the Aβ substrates such as APP through a spatially peptide from the initial ε-cleavage sites to coordinated regulated proteolytic mechanism produce shorter, and relatively benign, Aβ (9). This raises the interesting question as to species (Fig. 2) (3). However, inefficient whether these multiprotease complexes could trimming of the Aβ peptide at its C-terminus be targeted to modulate selectively APP results in the release of longer aggregation- processing in the amyloidogenic pathway. prone Aβ species such as Aβ42, which are Whether there is a reciprocal relationship central to the production of the neurotoxic between the amyloidogenic and non- oligomeric Aβ assemblies (4,5). In the non- amyloidogenic APP processing pathways has amyloidogenic pathway, α-secretase, members remained a contentious issue, possibly as a of the “a disintegrin and metalloprotease” result of differences in the model systems (ADAM) family, mainly ADAM10, cleaves being examined (10). In monkeys, BACE1 APP at the cell surface within the Aβ domain inhibition decreased sAPPβ and Aβ in liberating soluble APPα (sAPPα) and leaving cerebrospinal fluid (CSF) and increased an alternative membrane-bound C-terminal sAPPα as measured by ELISA but there was fragment, CTFα. CTFα can also be no change in labelled sAPPα kinetics, subsequently proteolytically processed by γ- suggesting BACE1 inhibition may not boost α- secretase to liberate an N-terminally truncated secretase processing of APP to the same version of the Aβ peptide referred to as p3 and degree (11). In human induced pluripotent the AICD (Fig. 1A). The AICD has a role as a stem cell-derived neurons inhibition of nuclear transcription factor regulating the BACE1 reduced sAPPβ and Aβ and expression of various genes, including that of reciprocally increased sAPPα (12), while the Aβ-degrading neprilysin (6-8). Although inhibition of γ-secretase resulted in an increase the AICD produced via either the in sAPPα and a decrease in sAPPβ (9). This amyloidogenic or non-amyloidogenic latter result suggests a level of feedback within pathways have the same peptide sequence, the ADAM10-γ-secretase complex (9). they appear to be functionally distinct. The Activating α-secretase has been suggested as a AICD produced following β-secretase potential therapeutic approach for reducing Aβ cleavage is transported to the nucleus and production although the evidence for this from binds to the neprilysin gene promoter, whereas in vivo studies is somewhat mixed (13,14). For that produced following α-secretase cleavage example, moderate neuronal overexpression of is rapidly degraded in the cytosol by insulin- ADAM10 in APPV717I transgenic mice degrading enzyme (6). increased the secretion of sAPPα, reduced the The established view is that these formation of Aβ peptides, and prevented their sequential cleavages of APP occur through deposition in plaques (15). While in APP/PS-1 separate enzyme-substrate interactions which transgenic mice the intracerebral injection of are temporally and spatially separated. the vitamin A analogue acitretin, which However, recent evidence indicates that stimulates ADAM10 promoter activity, led to ADAM10 and γ-secretase physically interact a reduction of Aβ40 and Aβ42 (16). However, and
Recommended publications
  • Processing of Progranulin Into Granulins Involves Multiple Lysosomal Proteases and Is Affected in Frontotemporal Lobar Degeneration
    Processing of progranulin into granulins involves multiple lysosomal proteases and is affected in frontotemporal lobar degeneration Swetha Mohan University of California San Francisco Paul J. Sampognaro University of California San Francisco Andrea R. Argouarch University of California San Francisco Jason C. Maynard University of California San Francisco Anand Patwardhan University of California San Francisco Emma C. Courtney University of California San Francisco Amanda Mason University of California San Francisco Kathy H. Li University of California San Francisco William W. Seeley University of California San Francisco Bruce L. Miller University of California San Francisco Alma Burlingame University of California San Francisco Mathew P. Jacobson University of California San Francisco Aimee Kao ( [email protected] ) University of California San Francisco https://orcid.org/0000-0002-7686-7968 Research article Keywords: Progranulin, granulin, frontotemporal lobar degeneration, lysosome, protease, pH, asparagine endopeptidase Page 1/31 Posted Date: July 29th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-44128/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Molecular Neurodegeneration on August 3rd, 2021. See the published version at https://doi.org/10.1186/s13024-021-00472-1. Page 2/31 Abstract Background - Progranulin loss-of-function mutations are linked to frontotemporal lobar degeneration with TDP-43 positive inclusions (FTLD-TDP-Pgrn). Progranulin (PGRN) is an intracellular and secreted pro- protein that is proteolytically cleaved into individual granulin peptides, which are increasingly thought to contribute to FTLD-TDP-Pgrn disease pathophysiology. Intracellular PGRN is processed into granulins in the endo-lysosomal compartments.
    [Show full text]
  • Esomeprazole Inhibits the Lysosomal Cysteine Protease Legumain to Prevent Cancer Metastasis
    Investigational New Drugs https://doi.org/10.1007/s10637-020-01011-3 PRECLINICAL STUDIES Esomeprazole inhibits the lysosomal cysteine protease legumain to prevent cancer metastasis Tian Zhao1 & Yujie Liu1 & Yanfei Hao1 & Wei Zhang1 & Li Tao1 & Dong Wang1 & Yuyin Li1 & Zhenxing Liu1 & Edward A McKenzie2 & Qing Zhao1 & Aipo Diao1 Received: 17 August 2020 /Accepted: 21 September 2020 # Springer Science+Business Media, LLC, part of Springer Nature 2020 Summary Legumain is a newly discovered lysosomal cysteine protease that can cleave asparagine bonds and plays crucial roles in regulating immunity and cancer metastasis. Legumain has been shown to be highly expressed in various solid tumors, within the tumor microenvironment and its levels are directly related to tumor metastasis and poor prognosis. Therefore, legumain presents as a potential cancer therapeutic drug target. In this study, we have identified esomeprazole and omeprazole as novel legumain small molecule inhibitors by screening an FDA approved-drug library. These compounds inhibited enzyme activity of both recombinant and endog- enous legumain proteins with esomeprazole displaying the highest inhibitory effect. Further molecular docking analysis also indicated that esomeprazole, the S- form of omeprazole had the most stable binding to legumain protein compared to R-omeprazole. Transwell assay data showed that esomeprazole and omeprazole reduced MDA-MB-231 breast cancer cell invasion without effecting cell viability. Moreover, an in vivo orthotopic transplantation nude mouse model study showed that esomeprazole reduced lung metastasis of MDA-MB-231 breast cancer cells. These results indicated that esomeprazole has the exciting potential to be used in anti-cancer therapy by preventing cancer metastasis via the inhibition of legumain enzyme activity.
    [Show full text]
  • Hypoxic-Induced Truncation of Voltage-Dependent Anion Channel 1 Is Mediated by Both Asparagine Endopeptidase and Calpain 1 Activities
    www.impactjournals.com/oncotarget/ Oncotarget, 2018, Vol. 9, (No. 16), pp: 12825-12841 Research Paper Hypoxic-induced truncation of voltage-dependent anion channel 1 is mediated by both asparagine endopeptidase and calpain 1 activities Hadas Pahima1,*, Simona Reina2,3,*, Noa Tadmor1,*, Daniella Dadon-Klein1,*, Anna Shteinfer-Kuzmine1, Nathalie M. Mazure4,5, Vito De Pinto2 and Varda Shoshan- Barmatz1 1Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel 2Department of Biomedicine and Biotechnology, University of Catania and National Institute for Biomembranes and Biosystems, Section of Catania, Catania 95125, Italy 3Department of Biological, Geological and Environmental Sciences, University of Catania, Catania 95125, Italy 4Institute for Research on Cancer and Aging of Nice, University of Nice Sophia-Antipolis, Centre Antoine Lacassagne, Nice 06189, France 5Present address: INSERM U1065, C3M, Nice 06204, France *These authors contributed equally to this work Correspondence to: Varda Shoshan-Barmatz, email: [email protected] Keywords: asparagine endopeptidase; calpain; hypoxia; VDAC1 Abbreviations: AEP: asparagine endopeptidase; VDAC1: voltage-dependent anion channel 1 Received: October 09, 2017 Accepted: January 25, 2018 Published: January 31, 2018 Copyright: Pahima et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT The voltage-dependent anion channel 1 (VDAC1), an outer mitochondria membrane (OMM) protein, serves as a mitochondrial gatekeeper, mediating the transport of nucleotides, Ca2+ and other metabolites across the OMM.
    [Show full text]
  • Families and Clans of Cysteine Peptidases
    Families and clans of eysteine peptidases Alan J. Barrett* and Neil D. Rawlings Peptidase Laboratory. Department of Immunology, The Babraham Institute, Cambridge CB2 4AT,, UK. Summary The known cysteine peptidases have been classified into 35 sequence families. We argue that these have arisen from at least five separate evolutionary origins, each of which is represented by a set of one or more modern-day families, termed a clan. Clan CA is the largest, containing the papain family, C1, and others with the Cys/His catalytic dyad. Clan CB (His/Cys dyad) contains enzymes from RNA viruses that are distantly related to chymotrypsin. The peptidases of clan CC are also from RNA viruses, but have papain-like Cys/His catalytic sites. Clans CD and CE contain only one family each, those of interleukin-ll3-converting enz3wne and adenovirus L3 proteinase, respectively. A few families cannot yet be assigned to clans. In view of the number of separate origins of enzymes of this type, one should be cautious in generalising about the catalytic mechanisms and other properties of cysteine peptidases as a whole. In contrast, it may be safer to gener- alise for enzymes within a single family or clan. Introduction Peptidases in which the thiol group of a cysteine residue serves as the nucleophile in catalysis are defined as cysteine peptidases. In all the cysteine peptidases discovered so far, the activity depends upon a catalytic dyad, the second member of which is a histidine residue acting as a general base. The majority of cysteine peptidases are endopeptidases, but some act additionally or exclusively as exopeptidases.
    [Show full text]
  • The First Part of This Inventory Deals About the State of the Research In
    Directory Institute Pathophysiology Circulatory system, Hemostasis, Metabolism & Pneumology, Dermatology, Nutrition Diabetes, Metabolism/Nutrition, Endocrinology Gastroenterology, Hepatology, Uro-Nephrology, Osteoarticular system - July 2018 - 1 Table of contents Introduction p 3 Research Teams Circulatory system p 12 Hemostasis p 74 Pneumology p 79 Dermatology p 100 Diabetes p 105 Metabolism/Nutrition p 123 Endocrinology p 197 Gastro-enterology p 216 Hepatology p 229 Uro-Nephrology p 237 Osteo-articular system p 250 2 Introduction 3 1 – Fields covered The life science Institute Pathophysiology, Metabolism & Nutrition (PMN) covers a wide spectrum of research in physiology, experimental medicine and human diseases. The fields covered include heart and vessels, lungs, endocrine organs, liver, kidney, skin, joints and bones, and organs involved in nutrient processing, from all aspects of nutrition, from the control of food intake and nutritional behavior to digestive processing, control of substrate use and storage. The diseases in question frequently show common biological mechanisms and often lack of suitable treatments designed on a pathophysiological basis. 2 – Major scientific challenges in biology and medicine Public health care challenges Among diseases within the PMN scope, cardiovascular, respiratory, metabolic and nutritional diseases with their devastating complications represent a major public health care challenge. Diabetes, hyperlipidemia, obesity, renal insufficiency lead to cardiovascular disease, the major cause of mortality in industrialized countries and usually develop in relation with atherosclerosis. Coronary artery disease, stroke and chronic heart failure are responsible for 75% of cardiovascular-related deaths. They represent 29% of deaths in France, almost equaling deaths due to cancer. Thrombotic diseases are very prevalent, arterial thrombosis (ischaemic diseases) and venous thrombosis (thrombo-embolic disease) are the world's leading cause of death.
    [Show full text]
  • The Role of P66shca-TLR9 Signaling in Myocardial Remodeling and Innate Immune Responses
    The role of p66ShcA-TLR9 signaling in myocardial remodeling and innate immune responses Thesis for the degree of Philosophiae Doctor (Ph.D.) Anton Baysa, M.D. Division of Physiology Department of Molecular Medicine Institute of Basic Medical Science Faculty of Medicine University of Oslo 2020 © Anton Baysa, 2020 Series of dissertations submitted to the Faculty of Medicine, University of Oslo ISBN 978-82-8377-746-8 All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. Cover: Hanne Baadsgaard Utigard. Print production: Reprosentralen, University of Oslo. Table of Contents Acknowledgements ............................................................................................... 1 List of included papers .......................................................................................... 3 Selected abbreviations........................................................................................... 4 General introduction ............................................................................................. 6 Clinical perspectives .............................................................................................................. 6 Ischemic heart disease: Global and national status ........................................................... 6 Ischemic heart disease: Emerging trends and therapy limitations .................................... 6 Ischemic heart disease: Anti-inflammatory treatment .......................................................
    [Show full text]
  • Delta-Secretase Cleaves Amyloid Precursor Protein and Regulates the Pathogenesis in Alzheimer’S Disease
    ARTICLE Received 11 Mar 2015 | Accepted 25 Sep 2015 | Published 9 Nov 2015 DOI: 10.1038/ncomms9762 OPEN Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer’s disease Zhentao Zhang1,2, Mingke Song3, Xia Liu1, Seong Su Kang1, Duc M. Duong4,5, Nicholas T. Seyfried4,5, Xuebing Cao6, Liming Cheng7, Yi E. Sun7,8, Shan Ping Yu3, Jianping Jia9, Allan I. Levey4 & Keqiang Ye1 The age-dependent deposition of amyloid-b peptides, derived from amyloid precursor protein (APP), is a neuropathological hallmark of Alzheimer’s disease (AD). Despite age being the greatest risk factor for AD, the molecular mechanisms linking ageing to APP processing are unknown. Here we show that asparagine endopeptidase (AEP), a pH-controlled cysteine proteinase, is activated during ageing and mediates APP proteolytic processing. AEP cleaves APP at N373 and N585 residues, selectively influencing the amyloidogenic fragmentation of APP. AEP is activated in normal mice in an age-dependent manner, and is strongly activated in 5XFAD transgenic mouse model and human AD brains. Deletion of AEP from 5XFAD or APP/PS1 mice decreases senile plaque formation, ameliorates synapse loss, elevates long-term potentiation and protects memory. Blockade of APP cleavage by AEP in mice alleviates pathological and behavioural deficits. Thus, AEP acts as a d-secretase, contributing to the age-dependent pathogenic mechanisms in AD. 1 Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA. 2 Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China. 3 Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
    [Show full text]
  • 7,8-Dihydroxyflavone Ameliorates Cognitive Impairment by Inhibiting
    fnagi-08-00287 November 25, 2016 Time: 13:17 # 1 ORIGINAL RESEARCH published: 29 November 2016 doi: 10.3389/fnagi.2016.00287 7,8-Dihydroxyflavone Ameliorates Cognitive Impairment by Inhibiting Expression of Tau Pathology in ApoE-Knockout Mice Yang Tan1†, Shuke Nie2†, Wende Zhu3, Fang Liu4, Hailong Guo5, Jiewen Chu5, Xue B. Cao1, Xingjun Jiang1, Yunjian Zhang1* and Yuzhen Li5* 1 Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 2 Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China, 3 Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 4 Department of Medicine, LuoHu Chronic Disease Control and Cure Hospital, Shenzhen, China, 5 Department of Pharmacy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China 7,8-Dihydroxyflavone (7,8-DHF), a tyrosine kinase B agonist that mimics the neuroprotective properties of brain-derived neurotrophic factor, which can not efficiently deliver into the brain, has been reported to be useful in ameliorating cognitive impairment Edited by: in many diseases. Researches have indicated that apolipoprotein E-knockout (ApoE- Aurel Popa-Wagner, University of Rostock, Germany KO) mouse was associated with cognitive alteration via various mechanisms. Our Reviewed by: present study investigated the possible mechanisms of cognitive impairment of ApoE- Magda Tsolaki, KO mouse fed with western type diet and the protective effects of 7,8-DHF in improving Aristotle University of Thessaloniki, Greece spatial learning and memory in ApoE-KO mouse. Five-weeks-old ApoE-KO mice and Elena Tamagno, C57BL/6 mice were chronically treated with 7,8-DHF (with a dosage of 5 mg/kg) or University of Turin, Italy vehicles orally for 25 weeks, and then subjected to Morris water maze at the age of *Correspondence: 30 weeks to evaluate the cognitive performances.
    [Show full text]
  • Structure and Function of Legumain in Health and Disease
    Biochimie xxx (2015) 1e25 Contents lists available at ScienceDirect Biochimie journal homepage: www.elsevier.com/locate/biochi Review Structure and function of legumain in health and disease * Elfriede Dall, Hans Brandstetter Dept. of Molecular Biology, University of Salzburg, A-5020 Salzburg, Austria article info abstract Article history: The last years have seen a steady increase in our understanding of legumain biology that is driven from Received 14 August 2015 two largely uncoupled research arenas, the mammalian and the plant legumain field. Research on Accepted 18 September 2015 legumain, which is also referred to as asparaginyl endopeptidase (AEP) or vacuolar processing enzyme Available online xxx (VPE), is slivered, however. Here we summarise recent important findings and put them into a common perspective. Legumain is usually associated with its cysteine endopeptidase activity in lysosomes where Keywords: it contributes to antigen processing for class II MHC presentation. However, newly recognized functions Electrostatic stabilization disperse previously assumed boundaries with respect to their cellular compartmentalisation and enzy- Cellular localization Allostery matic activities. Legumain is also found extracellularly and even translocates to the cytosol and the Caspase nucleus, with seemingly incompatible pH and redox potential. These different milieus translate into Death domain changes of legumain's molecular properties, including its (auto-)activation, conformational stability and Context-dependent activities enzymatic functions. Contrasting its endopeptidase activity, legumain can develop a carboxypeptidase activity which remains stable at neutral pH. Moreover, legumain features a peptide ligase activity, with intriguing mechanistic peculiarities in plant and human isoforms. In pathological settings, such as cancer or Alzheimer's disease, the proper association of legumain activities with the corresponding cellular compartments is breached.
    [Show full text]
  • Mechanistic and Structural Studies on Legumain Explain Its Zymogenicity, Distinct Activation Pathways, and Regulation
    Mechanistic and structural studies on legumain explain its zymogenicity, distinct activation pathways, and regulation Elfriede Dall and Hans Brandstetter1 Department of Molecular Biology, University of Salzburg, A-5020 Salzburg, Austria Edited by Robert Huber, Max Planck Institute of Biochemistry, Planegg-Martinsried, Germany, and approved May 20, 2013 (received for review January 11, 2013) The cysteine protease legumain plays important functions in immu- rigidity of the substrate specificity loops following strand β5(“c341- nity and cancer at different cellular locations, some of which loop” in caspase-1 numbering) and preceding strand β6(“c381- appeared conflicting with its proteolytic activity and stability. Here, loop”; Fig. S1 B and C); and, most strikingly, the monomeric state we report crystal structures of legumain in the zymogenic and fully of active legumain, contrasting the situation in caspases where activated form in complex with different substrate analogs. We show active forms are dimers (14). Although an analogous sheet ex- that the eponymous asparagine-specific endopeptidase activity is tension would be sterically possible in legumain, there is no bi- electrostatically generated by pH shift. Completely unexpectedly, the ological need for dimerization, which affects the substrate structure points toward a hidden carboxypeptidase activity that specificity loops c341 and c381 (15, 16); the equivalent loops are develops upon proteolytic activation with the release of an activa- rigid in legumain, with the active site fully accessible as described tion peptide. These activation routes reconcile the enigmatic pH below. Additionally, whereas the termini of the cleaved intersubunit stability of legumain, e.g., lysosomal, nuclear, and extracellular ac- linker strengthen the dimer interface in most caspases (14), the tivities with relevance in immunology and cancer.
    [Show full text]
  • Structure Elucidation and Biosynthetic Enzyme Characterization of Bacteriocins by Jeella Zara Acedo a Thesis Submitted in Partia
    Structure Elucidation and Biosynthetic Enzyme Characterization of Bacteriocins by Jeella Zara Acedo A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Chemistry University of Alberta © Jeella Zara Acedo, 2017 Abstract Acidocin B (AcdB), a bacteriocin from Lactobacillus acidophilus M46 that was initially reported to be a linear peptide, was purified and shown to be circular based on MALDI-TOF MS and MS/MS sequencing. MS analysis further revealed that AcdB is comprised of 58 amino acid residues, instead of 59 residues as initially reported. The NMR solution structure of AcdB in sodium dodecyl sulfate micelles was solved, revealing that AcdB consists of four !-helices that are folded to form a globular bundle with a central pore. This is the first reported three-dimensional structure (3D) for a subgroup II circular bacteriocin. Comparison of the structure of AcdB to that of carnocyclin A, a subgroup I circular bacteriocin, highlighted the differences between the two subgroups. At least seven putative subgroup II circular bacteriocins were identified using BLAST, and sequence analysis revealed a highly conserved asparagine residue at the leader peptide cleavage sites, suggesting that an asparagine endopeptidase might be involved in their biosynthesis. Lastly, the biosynthetic gene cluster of AcdB was sequenced and characterized. Lacticin Q (LnqQ) and aureocin A53 (AucA) are leaderless bacteriocins (class IIc) from Lactococcus lactis QU 5 and Staphylococcus aureus A53, respectively. Their 3D NMR solution structures were determined, revealing that both peptides are composed of four !-helices that assume a saposin-like fold with a highly cationic surface and a hydrophobic core.
    [Show full text]
  • Δ-Secretase in Neurodegenerative Diseases: Mechanisms, Regulators and Therapeutic Opportunities Zhentao Zhang1*, Ye Tian1 and Keqiang Ye2*
    Zhang et al. Translational Neurodegeneration (2020) 9:1 https://doi.org/10.1186/s40035-019-0179-3 REVIEW Open Access δ-secretase in neurodegenerative diseases: mechanisms, regulators and therapeutic opportunities Zhentao Zhang1*, Ye Tian1 and Keqiang Ye2* Abstract Mammalian asparagine endopeptidase (AEP) is a cysteine protease that cleaves its protein substrates on the C- terminal side of asparagine residues. Converging lines of evidence indicate that AEP may be involved in the pathogenesis of several neurological diseases, including Alzheimer’s disease, Parkinson’s disease, and frontotemporal dementia. AEP is activated in the aging brain, cleaves amyloid precursor protein (APP) and promotes the production of amyloid-β (Aβ). We renamed AEP to δ-secretase to emphasize its role in APP fragmentation and Aβ production. AEP also cleaves other substrates, such as tau, α-synuclein, SET, and TAR DNA-binding protein 43, generating neurotoxic fragments and disturbing their physiological functions. The activity of δ-secretase is tightly regulated at both the transcriptional and posttranslational levels. Here, we review the recent advances in the role of δ-secretase in neurodegenerative diseases, with a focus on its biochemical properties and the transcriptional and posttranslational regulation of its activity, and discuss the clinical implications of δ-secretase as a diagnostic biomarker and therapeutic target for neurodegenerative diseases. Keywords: AEP, Alzheimer’s disease, Parkinson’s disease, C/EBPβ, TrkB, TDP-43 Background participates in the aggregation of pathological proteins and Neurodegenerative diseases are a group of disorders that are neuronal damage. It has been suggested that AEP may play a characterized by the progressive degeneration of neurons in role in the onset and progression of AD, PD, FTD and ALS.
    [Show full text]