Spin Foam : Modeling Quantum Space Time
Total Page:16
File Type:pdf, Size:1020Kb
Spin foam : Modeling quantum space time Laurent Freidel Perimeter Institute MG12 Paris 2009 Background independent Gravity There has been a wealth of new developments in the recent years in the covariant formulation of loop quantum gravity (spin foam formulation) Aim of this talk: •To review briefly the general principles of Loop quantum gravity •To present some of the new developments in spin foam models: The construction of a discrete path integral for non perturbative quantum gravity •To present the remarkable convergence between the two approaches The key points behind these approaches are: The Gauge principle Diffeomorphism symmetry and background independence Non perturbative dynamics Background independent Gravity One of the basic problems we want to address is: How can we describe the elementary degrees of freedom of quantum gravity in a context where there is no background spacetime? One of the basic element is that the UV divergences that one encounters in quantizing GR are of a different nature : perturbation theory breaks down at the place where we do not know how to define spacetime In quantum gravity the nature of short distance quantum spacetime geometry cannot be postulated, it should be determined dynamically What is needed is a radical change of our concept of space and time These problems can be addressed in the context of Loop quantum Gravity and Spin foams: No transplanckian dof. The key is the symmetry: Diffeomorphism invariance plays a key role. •Redundancy of the description no obs. def. of spacetime points •It determines the dynamics of the gravitational field and coupling to matter 7 153F903957A7C27ED077364961 γab Ψ(Quantumγ) Gravity 7 7 7 7 ˆ Canonical approach 7 153F903957A7C27ED077364961At the quantumH levelΨ153F903957A7C27ED077364961( γthe) = description 0 of gravity is in term of states and γab operators and the153F903957A7C27ED077364961 dynamics is encoded in constraint equations qab 153F903957A7C27ED077364961153F903957A7C27ED077364961Hˆ ΨM (γ) = 0 Ψ(γ) 5 In usual description states are functional of a spacelike metric qab γγab Ψ(q) ab a b Hˆ Ψab(γ) = 0 The dynamics γ= Symmetry= ηijE i=E operatorialj constraints : Ψ(qˆ) ˆΨΨ((IγγJ)) IJ HΨ(q) = 0 5 55 Space diffeo constraints and timeHB reparametrisation:ΨM (γ) = 0X Wheeler de Witt eq. i f Hˆ Ψ(q) = 0 Aa ab →a b Hˆ Ψ (q) = 0 HHˆˆγΨΨ((γ=q))η =ij =E 0i 0Ej M 77 ˆ Operators are neededIJ toa extractIJ physicaliXf information fromHIIΨ JtheseJM (abq) states =II 0JJ a b B Ei Xˆ Aa BB q X=XfηfijEi Ej 153F903957A7C27ED077364961Hf ΨM (q) = 0 ab →→ a b → Covariant153F903957A7C27ED077364961 approacha q = ηijEi Eji 2 M E∂i M = Σ ab a b XXff γγababAa The dynamicsA(S )=is encodedγ#PXf inj γTransition(j += 1)ηijE amplitudesE i 2 i j A A(S)=γ#P j(j + 1) a ΨΨ((γγ))a One wish to rigously define the pathΨiM integral(γ) = Given M ∂M =EiΣ γ < 1 A M ∂Ma = Σ M ∂M! = Σ γa<!1 Eˆˆi A(S)=HHΨΨ(γ(qγ#))2 = = 0 0j(j + 1) a iS (g) Ψ (2γ) =P EΨM (q) M ΨMMˆ(ˆγ) = ΨΨMM((γq) = iDg e A(S)=γH#HPΨΨMMj((q(γ)j) =+ = 0 1)0 γ <!1 Boundary state g Σ2=γq ab a b γγ <!=iSiS1MηMij((Egg))E A(S)=! γ|#P j(j + 1) DDggee i j iSM (g) Ψ (q) Dg e iM The perturbative expansion around asymptoticaly flat configuration:gg ΣΣΨM (q)A agraviton propagator and scatteringg amplitude.γ <!1 !! || |Σ aq ! q Ei Ψ (q) No definition is yet available in WdWM theory: Spin foam, AdS/CFTHˆ Ψ?2 (Γ,j)? AHˆ(SΨ)=(Γ,jγ#)?P j(j + 1) q =?0 ? =?0γ ?<!1 S∆ = Ψ (Aq)f (#)Θf ∆ S∆ = Af (M#)Θf ∆ f f q " " S = S A Θ ∆ S∆ = ∆ S4S 4AS f Θf ∆f f f " ""f " IJ IJ g gYMB BB BIJ YM ∗ ∧∗ IJ ∧ # # k k f + f + i i− i i− Z∆ =Z∆ =djf dAjfv(jf ,iAev)(jf ,ie) jf ,ie j ,iv v " "f $e $ + + + ++ + + +ie i Av(jf ,ie)= 15j(j ,i )15j(j ,i ) f + e Av(jf ,ie)= f15j(e j ,i f)15j(e j ,i i)i− f + f e f e i i− i+i e − i+i e " "− $ $ ie ie γ γ eiSregge + c.c eiSregge + c.c LQG and spin foam In order to resolve the difficulty with the usual metric formulation one uses new variables (gauge fields) The expression of the gauge principe and diffeomorphism symmetry leads to the construction of new type of boundary states: spin network states LQG. A fundamental geometrical cutoff is incorporated in these states. The challenge is to formulate the dynamics in terms of these states and give a definition of the transition amplitude with these boundary states Spin foam model Loop Quantum gravity Spin Foam Canonical Dynamics Covariant 7 7 7 153F903957A7C27ED077364961 153F903957A7C27ED077364961 qab 153F903957A7C27ED077364961 Loop Quantum Gravity qab Ψ(q) γab Ψ(q) ˆ Ψ(γ) HTheΨ(q) gauge = 0 principle: 7 Hˆ Ψ(q) = 0 ˆ Geometryˆ has two functions:HΨM (q) = 0 Hˆ ΨM (q) = 0 153F903957A7C27ED077364961 HΨ(γ) = 0 ab a b ab a b A metric q ab or a frameq field= ηij E i Etoj give us rods and clocks q = ηijEi Ej • Hˆ ΨM (γ) = 0 Ψ(q) i Ai ab a b Aa a γ = ηijEi Ej A mediumHˆ Ψ(q ) which = 0 allows parallela transport from one point to anothera a • E Ei connection Ai i Hˆ ΨM (q) =a 0 2 A(S)=γ#2 j(j + 1) A(S)=γ#P j(j + 1) qab = η EaEb P ij i j γ <!1 γ <!1 We canAi use the unifying language of gauge theory that appears in a ΨM (q) the descriptionEa of Electromagnetism,ΨM (q) the strong and weak interaction + principle ofi general covariance q 2 q A(S)=γ#P j(j + 1) ˆ These principles leads to a unique proposal for a set of variablesH thatΨ(Γ ,jdescribe)? γ <!1 Hˆ Ψ(Γ,j)? the geometry of space at the quantum level =?0 ? Ψ (q) =?0 ? M S∆ = Af (#)Θf ∆ S = A (#)Θ ∆ f q ∆ f f " ˆ f HΨ(Γ,j)? " S∆ = S4S Af Θf ∆ =?0 ? f S∆ = S4S Af Θf ∆ " " S∆ = Af (#)Θf ∆ f IJ " " gYM B BIJ f ∗ ∧ " IJ # gYM B BIJ k S∆ = S4S Af Θf ∆ f + ∗ ∧ i i− f # " " k f + Z = d A (j ,i ) i i− ∆ jf v f e IJ g B B jf ,ie v YM ∗ ∧ IJ " $ Z∆ = djf Av(jf ,ie) # + + + + i k A (j ,i )= 15j(j ,i )15j(j ,i ) f e f + jf ,ie v v f e f e f e i+i i i− " $ − i+i e − + + + + ie " $ Z∆ = Avd(jjff ,ie)=Av(jf ,ie)15j(j ,i )15j(j ,i ) f + f e f e i i− jf ,ie v i i+i e e " $ "− $ + + + + ie γ Av(jf ,ie)= 15j(jf ,ie )15j(jf ,ie ) fi+i ie − i+i e iSregge "− $ e + c.c γ ie iSregge γ e + c.c eiSregge + c.c 2 (je,Zv) ze = je + iθe z1 z2 z3 z4 T ∗G = GC 2 Sj z Φ =2j ln(1 + z 2) j | | j, ω j, z = (1 +ω ¯z)2j = eΦj (z,w¯) ! | " SL(2, C) # ,Z | " 2 Xi = jiNi N =1 Hv = jiNi =0 i ! 1 N a,Nb = %ab N c { } j c ZZ" Ψ(z)= Ψ z ω z ! | " | " Φ(z,z¯) ω = ∂∂¯Φ , ∂¯Ψ(z) = 0 7 2 1 Φ(z,z¯) Ψ = dzd¯z√ωe− ! Ψ z z Ψ || || ! | "! | " "P 153F903957A7C27ED077364961 ∆(Re(z))∆(Im(z)) γab j1 j2 j3 j4 Ψ(γ) i 1 i jk Γa % jkωa Hˆ Ψ≡(γ2) = 0 1 1 g kvg k− ge kvgek− e =(vv") (vv!) (vv!) v! v! The →gaugeHˆ Ψ Mprinciple(γ)→ = 0 i i0 ab Ka ωaa b γ = ηij≡E E At the canonical level one chose a spacelikei i slicej i jkS of spacetime and de % jkΓ e =0 we can formulate the hamiltonian dynamics− i of ∧gravity as an SU(2) gauge theory Aa 1 i Ω = a A E Electric field: pull back of the frame fieldκγ E on S∧ i i"Σ 1 Magnetic Field: Connection allowingE aparallel= % transportej ek%abc i 2 ijk a b i i i Ashtekar-Barbero connection: Aa = Γa + γKa Extrinsic curvature 3 σ Spin connection Immirzi parameter ab a bi i det(γ)γ = EKiabE= Kaieb a j a j (3) Conjugate variables: SU(2) Ei (x1),Ab(jy) =k κγ δb δi δ (x y) E{i = %ijke }e − 2 ∧ SU(2) index ∼ γ =1 Wave functions are gauge invariant functional of A σ =1 F (A)=F (A) ∗ tµ = Nn+ N µ S = dt Ea Ai H(A, E, N) i Lt a − ! !Σ a i H(A, E, N)=N Ca + NC + AtGi i b Ca = FabEi κ C = − F ijEaEb √γ ab i j G = Ea i −∇a i A a Ψ(ya)= dXAeiS(X ,y ) A ! " ∂ S P (X, y) a ≡ a P A ∃ a A ab δS = P ∂ a S + P ∂ A S = η P P V (y) y X a b − A ∂XA P =0 ( + V (y)) Ψ(y) = 0 −!y Ai = Γi Ki a a − a γ, σ [Ea(x),Aj(y)] = iκγ δbδjδ3(x y) i b a i − ψ(A) 1 h (A)=exp A(t)dt SU(2) e ←− ∈ #!0 $ A(t) iσ Aa e˙µ ≡ a µ ∂th(t)=A(t)h(t) h(0) = 0 g 1 1 A A = gAg− +dgg− → 1 h g(1)h g− (0) e → e a Ei The gauge principle Wilson Line: Given a loop in a SU(2) representation one can integrate the connection along the loop (holonomy) and construct a simple gauge invariant functional.