Field Tensor Version of Kaluza-Klein Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MITOCW | 14. Linearized Gravity I: Principles and Static Limit
MITOCW | 14. Linearized gravity I: Principles and static limit. [SQUEAKING] [RUSTLING] [CLICKING] SCOTT All right, so in today's recorded lecture, I would like to pick up where we started-- HUGHES: excuse me. I'd like to pick up where we stopped last time. So I discussed the Einstein field equations in the previous two lectures. I derived them first from the method that was used by Einstein in his original work on the subject. And then I laid out the way of coming to the Einstein field equations using an action principle, using what we call the Einstein Hilbert action. Both of them lead us to this remarkably simple equation, if you think about it in terms simply of the curvature tensor. This is saying that a particular version of the curvature. You start with the Riemann tensor. You trace over two indices. You reverse the trace such that this whole thing has zero divergence. And you simply equate that to the stress energy tensor with a coupling factor with a complex constant proportionality that ensures that this recovers the Newtonian limit. The Einstein Hilbert exercise demonstrated that this is in a very quantifiable way, the simplest possible way of developing a theory of gravity in this framework. The remainder of this course is going to be dedicated to solving this equation, and exploring the properties of the solutions that arise from this. And so let me continue the discussion I began at the end of the previous lecture. We are going to find it very useful to regard this as a set of differential equations for the spacetime metric given a source. -
Linearized Einstein Field Equations
General Relativity Fall 2019 Lecture 15: Linearized Einstein field equations Yacine Ali-Ha¨ımoud October 17th 2019 SUMMARY FROM PREVIOUS LECTURE We are considering nearly flat spacetimes with nearly globally Minkowski coordinates: gµν = ηµν + hµν , with jhµν j 1. Such coordinates are not unique. First, we can make Lorentz transformations and keep a µ ν globally-Minkowski coordinate system, with hµ0ν0 = Λ µ0 Λ ν0 hµν , so that hµν can be seen as a Lorentz tensor µ µ µ ν field on flat spacetime. Second, if we make small changes of coordinates, x ! x − ξ , with j@µξ j 1, the metric perturbation remains small and changes as hµν ! hµν + 2ξ(µ,ν). By analogy with electromagnetism, we can see these small coordinate changes as gauge transformations, leaving the Riemann tensor unchanged at linear order. Since we will linearize the relevant equations, we may work in Fourier space: each Fourier mode satisfies an independent equation. We denote by ~k the wavenumber and by k^ its direction and k its norm. We have decomposed the 10 independent components of the metric perturbation according to their transformation properties under spatial rotations: there are 4 independent \scalar" components, which can be taken, for instance, ^i ^i^j to be h00; k h0i; hii, and k k hij { or any 4 linearly independent combinations thereof. There are 2 independent ilm^ ilm^ ^j transverse \vector" components, each with 2 independent components: klh0m and klhmjk { these are proportional to the curl of h0i and to the curl of the divergence of hij, and are divergenceless (transverse to the ~ TT Fourier wavenumber k). -
Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects
Advances in High Energy Physics Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects Guest Editors: Emil T. Akhmedov, Stephen Minter, Piero Nicolini, and Douglas Singleton Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects Advances in High Energy Physics Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects Guest Editors: Emil T. Akhmedov, Stephen Minter, Piero Nicolini, and Douglas Singleton Copyright © 2014 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Advances in High Energy Physics.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Botio Betev, Switzerland Ian Jack, UK Neil Spooner, UK Duncan L. Carlsmith, USA Filipe R. Joaquim, Portugal Luca Stanco, Italy Kingman Cheung, Taiwan Piero Nicolini, Germany EliasC.Vagenas,Kuwait Shi-Hai Dong, Mexico Seog H. Oh, USA Nikos Varelas, USA Edmond C. Dukes, USA Sandip Pakvasa, USA Kadayam S. Viswanathan, Canada Amir H. Fatollahi, Iran Anastasios Petkou, Greece Yau W. Wah, USA Frank Filthaut, The Netherlands Alexey A. Petrov, USA Moran Wang, China Joseph Formaggio, USA Frederik Scholtz, South Africa Gongnan Xie, China Chao-Qiang Geng, Taiwan George Siopsis, USA Hong-Jian He, China Terry Sloan, UK Contents Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects,EmilT.Akhmedov, -
What Is Gravity and How Is Embedded in Mater Particles Giving Them Mass (Not the Higgs Field)? Stefan Mehedinteanu
What Is Gravity and How Is Embedded in Mater Particles giving them mass (not the Higgs field)? Stefan Mehedinteanu To cite this version: Stefan Mehedinteanu. What Is Gravity and How Is Embedded in Mater Particles giving them mass (not the Higgs field)?. 2017. hal-01316929v6 HAL Id: hal-01316929 https://hal.archives-ouvertes.fr/hal-01316929v6 Preprint submitted on 23 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License What Is Gravity (Graviton) and How Is Embedded in Mater Particles Giving Them Mass (Not the Higgs Field)? Stefan Mehedinteanu1 1 (retired) Senior Researcher CITON-Romania; E-Mail: [email protected]; [email protected] “When Einstein was asked bout the discovery of new particles, the answer it was: firstly to clarify what is with the electron!” Abstract It will be shown how the Micro-black-holes particles produced at the horizon entry into a number of N 106162 by quantum fluctuation as virtual micro-black holes pairs like e+ e- creation, stay at the base of: the origin and evolution of Universe, the Black Holes (BH) nuclei of galaxies, of the free photons creation of near mass-less as by radiation decay that condensate later at Confinement in to the structure of gauge bosons (gluons) . -
Rotating Sources, Gravito-Magnetism, the Kerr Metric
Supplemental Lecture 6 Rotating Sources, Gravito-Magnetism and The Kerr Black Hole Abstract This lecture consists of several topics in general relativity dealing with rotating sources, gravito- magnetism and a rotating black hole described by the Kerr metric. We begin by studying slowly rotating sources, such as planets and stars where the gravitational fields are weak and linearized gravity applies. We find the metric for these sources which depends explicitly on their angular momentum J. We consider the motion of gyroscopes and point particles in these spaces and discover “frame dragging” and Lense-Thirring precession. Gravito-magnetism is also discovered in the context of gravity’s version of the Lorentz force law. These weak field results can also be obtained directly from special relativity and are consequences of the transformation laws of forces under boosts. However, general relativity allows us to go beyond linear, weak field physics, to strong gravity in which space time is highly curved. We turn to rotating black holes and we review the phenomenology of the Kerr metric. The physics of the “ergosphere”, the space time region between a surface of infinite redshift and an event horizon, is discussed. Two appendices consider rocket motion in the vicinity of a black hole and the exact redshift in strong but time independent fields. Appendix B illustrates the close connection between symmetries and conservation laws in general relativity. Keywords: Rotating Sources, Gravito-Magnetism, frame-dragging, Kerr Black Hole, linearized gravity, Einstein-Maxwell equations, Lense-Thirring precession, Gravity Probe B (GP-B). Introduction. Weak Field General Relativity. In addition to strong gravity, the textbook studied space times which are only slightly curved. -
Non-Abelian Gravitoelectromagnetism and Applications at Finite Temperature
Hindawi Advances in High Energy Physics Volume 2020, Article ID 5193692, 8 pages https://doi.org/10.1155/2020/5193692 Research Article Non-Abelian Gravitoelectromagnetism and Applications at Finite Temperature A. F. Santos ,1 J. Ramos,2 and Faqir C. Khanna3 1Instituto de Física, Universidade Federal de Mato Grosso, 78060-900, Cuiabá, Mato Grosso, Brazil 2Faculty of Science, Burman University, Lacombe, Alberta, Canada T4L 2E5 3Department of Physics and Astronomy, University of Victoria, BC, Canada V8P 5C2 Correspondence should be addressed to A. F. Santos; alesandroferreira@fisica.ufmt.br Received 22 January 2020; Revised 9 March 2020; Accepted 18 March 2020; Published 3 April 2020 Academic Editor: Michele Arzano Copyright © 2020 A. F. Santos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP3. Studies about a formal analogy between the gravitational and the electromagnetic fields lead to the notion of Gravitoelectromagnetism (GEM) to describe gravitation. In fact, the GEM equations correspond to the weak-field approximation of the gravitation field. Here, a non-abelian extension of the GEM theory is considered. Using the Thermo Field Dynamics (TFD) formalism to introduce temperature effects, some interesting physical phenomena are investigated. The non-abelian GEM Stefan- Boltzmann law and the Casimir effect at zero and finite temperatures for this non-abelian field are calculated. 1. Introduction between equations for the Newton and Coulomb laws and the interest has increased with the discovery of the The Standard Model (SM) is a non-abelian gauge theory with Lense-Thirring effect, where a rotating mass generates a symmetry group Uð1Þ × SUð2Þ × SUð3Þ. -
9 Linearized Gravity and Gravitational Waves
9 Linearized gravity and gravitational waves 9.1 Linearized gravity 9.1.1 Metric perturbation as tensor field 1 We are looking for small perturbations hab around the Minkowski metric ηab, gab = ηab + hab , hab 1 . (9.1) ≪ These perturbations may be caused either by the propagation of gravitational waves through a detector or by the gravitational potential of a star. In the first case, current experiments show that we should not hope for h larger than (h) 10−22. Keeping only terms linear in h O ∼ is therefore an excellent approximation. Choosing in the second case as application the final phase of the spiral-in of a neutron star binary system, deviations from Newtonian limit can become large. Hence one needs a systematic “post-Newtonian” expansion or even a numerical analysis to describe properly such cases. We choose a Cartesian coordinate system xa and ask ourselves which transformations are compatible with the splitting (9.1) of the metric. If we consider global (i.e. space-time inde- b ′a a b pendent) Lorentz transformations Λa, then x = Λb x . The metric tensor transform as ′ c d c d c d ′ c d gab = ΛaΛb gcd = ΛaΛb (ηcd + hcd)= ηab + ΛaΛb hcd = ηab + ΛaΛb hcd . (9.2) Thus Lorentz transformations respect the splitting (9.1) and the perturbation hab transforms as a rank-2 tensor on Minkowski space. We can view therefore hab as a symmetric rank-2 tensor field defined on Minkowski space that satisfies the linearized Einstein equations, similar as the photon field is a rank-1 tensor field fulfilling Maxwell’s equations. -
Extended Gravitoelectromagnetism
sid.inpe.br/mtc-m21c/2020/12.21.15.21-RPQ EXTENDED GRAVITOELECTROMAGNETISM. III. MERCURY’S PERIHELION PRECESSION Gerson Otto Ludwig URL do documento original: <http://urlib.net/8JMKD3MGP3W34R/43QQMGL> INPE São José dos Campos 2020 PUBLICADO POR: Instituto Nacional de Pesquisas Espaciais - INPE Coordenação de Ensino, Pesquisa e Extensão (COEPE) Divisão de Biblioteca (DIBIB) CEP 12.227-010 São José dos Campos - SP - Brasil Tel.:(012) 3208-6923/7348 E-mail: [email protected] CONSELHO DE EDITORAÇÃO E PRESERVAÇÃO DA PRODUÇÃO INTELECTUAL DO INPE - CEPPII (PORTARIA No 176/2018/SEI- INPE): Presidente: Dra. Marley Cavalcante de Lima Moscati - Divisão de Modelagem Numérica do Sistema Terrestre (DIMNT) Membros: Dra. Carina Barros Mello - Coordenação de Pesquisa Aplicada e Desenvolvimento Tecnológico (COPDT) Dr. Alisson Dal Lago - Divisão de Heliofísica, Ciências Planetárias e Aeronomia (DIHPA) Dr. Evandro Albiach Branco - Divisão de Impactos, Adaptação e Vulnerabilidades (DIIAV) Dr. Evandro Marconi Rocco - Divisão de Mecânica Espacial e Controle (DIMEC) Dr. Hermann Johann Heinrich Kux - Divisão de Observação da Terra e Geoinfor- mática (DIOTG) Dra. Ieda Del Arco Sanches - Divisão de Pós-Graduação - (DIPGR) Silvia Castro Marcelino - Divisão de Biblioteca (DIBIB) BIBLIOTECA DIGITAL: Dr. Gerald Jean Francis Banon Clayton Martins Pereira - Divisão de Biblioteca (DIBIB) REVISÃO E NORMALIZAÇÃO DOCUMENTÁRIA: Simone Angélica Del Ducca Barbedo - Divisão de Biblioteca (DIBIB) André Luis Dias Fernandes - Divisão de Biblioteca (DIBIB) EDITORAÇÃO ELETRÔNICA: Ivone Martins - Divisão de Biblioteca (DIBIB) Cauê Silva Fróes - Divisão de Biblioteca (DIBIB) sid.inpe.br/mtc-m21c/2020/12.21.15.21-RPQ EXTENDED GRAVITOELECTROMAGNETISM. III. MERCURY’S PERIHELION PRECESSION Gerson Otto Ludwig URL do documento original: <http://urlib.net/8JMKD3MGP3W34R/43QQMGL> INPE São José dos Campos 2020 Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial 3.0 Não Adaptada. -
Gravitoelectromagnetism, Solar System Tests, and Weak-Field Solutions in F (T, B) Gravity with Observational Constraints
universe Article Gravitoelectromagnetism, Solar System Tests, and Weak-Field Solutions in f (T, B) Gravity with Observational Constraints Gabriel Farrugia 1,2,*, Jackson Levi Said 1,2 and Andrew Finch 2 1 Institute of Space Sciences and Astronomy, University of Malta, Msida MSD 2080, Malta; [email protected] 2 Department of Physics, University of Malta, Msida MSD 2080, Malta; andrew.fi[email protected] * Correspondence: [email protected] Received: 14 December 2019; Accepted: 14 February 2020; Published: 18 February 2020 Abstract: Gravitomagnetism characterizes phenomena in the weak-field limit within the context of rotating systems. These are mainly manifested in the geodetic and Lense-Thirring effects. The geodetic effect describes the precession of the spin of a gyroscope in orbit about a massive static central object, while the Lense-Thirring effect expresses the analogous effect for the precession of the orbit about a rotating source. In this work, we explore these effects in the framework of Teleparallel Gravity and investigate how these effects may impact recent and future missions. We find that teleparallel theories of gravity may have an important impact on these effects which may constrain potential models within these theories. Keywords: gravitoelectromagnetism; geodetic; Lense-Thirring; teleparallel; f (T, B) gravity 1. Introduction General relativity (GR) has passed numerous observational tests since its inception just over a century ago, confirming its predictive power. The detection of gravitational waves in 2015 [1] agreed with the strong field predictions of GR, as does its solar system behavior [2]. However, GR requires a large portion of dark matter to explain the dynamics of galaxies [3,4] and even greater contributions from dark energy to produce current observations of cosmology [5]. -
Fundamental Geometrodynamic Justification of Gravitomagnetism
Issue 2 (October) PROGRESS IN PHYSICS Volume 16 (2020) Fundamental Geometrodynamic Justification of Gravitomagnetism (I) G. G. Nyambuya National University of Science and Technology, Faculty of Applied Sciences – Department of Applied Physics, Fundamental Theoretical and Astrophysics Group, P.O. Box 939, Ascot, Bulawayo, Republic of Zimbabwe. E-mail: [email protected] At a most fundamental level, gravitomagnetism is generally assumed to emerge from the General Theory of Relativity (GTR) as a first order approximation and not as an exact physical phenomenon. This is despite the fact that one can justify its existence from the Law of Conservation of Mass-Energy-Momentum in much the same manner one can justify Maxwell’s Theory of Electrodynamics. The major reason for this is that in the widely accepted GTR, Einstein cast gravitation as a geometric phenomenon to be understood from the vantage point of the dynamics of the metric of spacetime. In the literature, nowhere has it been demonstrated that one can harness the Maxwell Equa- tions applicable to the case of gravitation – i.e. equations that describe the gravitational phenomenon as having a magnetic-like component just as happens in Maxwellian Elec- trodynamics. Herein, we show that – under certain acceptable conditions where Weyl’s conformal scalar [1] is assumed to be a new kind of pseudo-scalar and the metric of spacetime is decomposed as gµν = AµAν so that it is a direct product of the components of a four-vector Aµ – gravitomagnetism can be given an exact description from within Weyl’s beautiful but supposedly failed geometry. My work always tried to unite the Truth with the Beautiful, consistent mathematical framework that has a direct corre- but when I had to choose one or the other, I usually chose the spondence with physical and natural reality as we know it. -
Quantum Wave Mechanics 3Rd Ed
Geometrical description of photons, electrons and composite particles. Dimensional analysis of electrical charge. Quantum gravity, gravitational frequency spectrum, mass oscillator synchronization, spectral energy density modulation and phase conjugation. Origin of charge, fine structure constant and inertia. Prospects for wave-based EM propulsion. Quantum Wave Mechanics by Larry Reed Order the complete book from the publisher Booklocker.com https://www.booklocker.com/p/books/10176.html?s=pdf or from your favorite neighborhood or online bookstore. To my parents who never knew the result of their great experiment Copyright © 2019, 2020 by Larry J. Reed All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, recording or otherwise, without the prior written permission of the author. Printed on acid-free paper. Library of Congress Control Number: 2018901065 ISBN: 978-1-63492-964-6 paperback To order additional copies of this book, contact: www.booklocker.com CONTENTS Preface ........................................................................................................................... ix SECTION 1 – LIGHT 1. Photon model ................................................................................................................. 1 2. Quantum vacuum ......................................................................................................... 13 3. Electromagnetic 4-Potential ....................................................................................... -
About Gravitomagnetism
About Gravitomagnetism Behrooz Malekolkalami∗ and Mehrdad Farhoudi† Department of Physics, Shahid Beheshti University, G. C., Evin, Tehran 19839, Iran September 2, 2008 Abstract The gravitomagnetic field is the force exerted by a moving body on the basis of the intriguing interplay between geometry and dynamics which is the analog to the magnetic field of a moving charged body in electromagnetism. The existence of such a field has been demonstrated based on special relativity approach and also by special relativity plus the gravitational time dilation for two different cases, a moving infinite line and a uniformly moving point mass, respectively. We treat these two approaches when the applied cases are switched while appropriate key points are employed. Thus, we demonstrate that the strength of the resulted gravitomagnetic field in the latter approach is twice the former. Then, we also discuss the full linearized general relativity and show that it should give the same strength for gravitomagnetic field as the latter approach. Hence, through an exact analogy with the elec- trodynamic equations, we present an argument in order to indicate the best definition amongst those considered in this issue in the literature. Finally, we investigate the gravitomagnetic effects and consequences of different definitions on the geodesic equation including the second order approximation terms. arXiv:gr-qc/0610095v2 13 Nov 2009 PACS number: 03.30. + p ; 04.20. q − Keywords: Gravitomagnetism; Special Relativity; Linearized General Relativity. 1 Introduction The analogous idea of the electric theory and the Newtonian gravita- tional theory inspiring a Maxwell–type gravitational theory is dated back to the second half of the nineteenth century [1]–[4].