Influence of the Nature of Fibrinogen on the Structure and Mechanics of Fibrin Clots Xabel Garcia Gonzalez

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Influence of the nature of fibrinogen on the structure and mechanics of fibrin clots Xabel Garcia Gonzalez To cite this version: Xabel Garcia Gonzalez. Influence of the nature of fibrinogen on the structure and mechanics of fibrin clots. Fluid mechanics [physics.class-ph]. Université Grenoble Alpes, 2016. English. NNT: 2016GREAI076. tel-01693034 HAL Id: tel-01693034 https://tel.archives-ouvertes.fr/tel-01693034 Submitted on 25 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE LA COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES Spécialité : Mécanique des Fluides, Procédés, Energétique Arrêté ministériel : 25 mai 2016 Présentée par Xabel GARCÍA GONZÁLEZ Thèse dirigée par Benoît POLACK et codirigée par François CATON préparée au sein du Laboratoire Rhéologie et Procédés UMR 5520 dans l'École Doctorale Ingénierie - Matériaux, Mécanique, Environnement, Energétique, Procédés, Production Influence de la nature du fibrinogène sur la structure et la mécanique du caillot de fibrine Thèse soutenue publiquement le 14 décembre 2016, devant le jury composé de : M. Robert PEYROUX CR, Université de Grenoble Alpes, Président M. Philippe de MAZANCOURT PUPH, Université de Versailles Saint Quentin, Rapporteur M. Xiong WANG PU, Université de Lorraine, Rapporteur M. Jean-François PALIERNE CR1, ENS-Lyon, Membre M. François CATON CR1, Université de Grenoble Alpes, Co-Directeur M. Benoît POLACK PU, Université de Grenoble Alpes, Directeur Index Index ..................................................................................................................................................... 3 Introduction ....................................................................................................................................... 1 Chapter 1 State of the Art ................................................................................................................................... 3 1 Introduction .......................................................................................................................... 5 2 Various phases of coagulation ........................................................................................ 5 3 Polymerization conditions ............................................................................................... 6 4 First discoveries: from antiquity until 1943 .............................................................. 7 5 Fibrinogen structure .......................................................................................................... 9 6 Fibrin structure ................................................................................................................. 13 6.1 Protofibrils formation and structure ....................................................................... 13 6.2 Protofibrils association .................................................................................................. 17 6.3 Cross-linking ...................................................................................................................... 20 6.4 Fibrin fibres structure .................................................................................................... 21 6.5 Conclusions ........................................................................................................................ 26 7 Fibres growth and structure. ........................................................................................ 27 7.1 State of the art ................................................................................................................... 27 7.2 Conclusions ........................................................................................................................ 33 8 Clot lysis ............................................................................................................................... 34 9 Mechanical properties of fibrin ................................................................................... 36 9.1 State of the art ................................................................................................................... 36 9.2 Conclusions ........................................................................................................................ 41 10 General Conclusion and outstanding questions .................................................... 42 References ........................................................................................................................................ 44 Chapter 2 Materials and Methods ................................................................................................................ 51 1 Introduction ....................................................................................................................... 53 2 Sample preparation ......................................................................................................... 53 3 Physicochemical characterization of fibrinogens ................................................. 54 3.1 Gel filtration chromatography .................................................................................... 54 3.1.1 Method ................................................................................................................... 54 3.1.2 Experimental setup ........................................................................................... 54 3.2 Mass spectrometry .......................................................................................................... 55 3.2.1 Method ................................................................................................................... 55 3.2.2 Experimental setup ........................................................................................... 56 3.3 Experimental measurements ...................................................................................... 57 4 Microscopy .......................................................................................................................... 58 4.1 Principles ............................................................................................................................ 58 4.2 Types of microscopy ....................................................................................................... 59 4.2.1 Fluorescent Microscopy 3D: classic, confocal and deconvolution .. 59 4.2.2 Experimental setup ........................................................................................... 60 4.2.3 Electron microscopy ......................................................................................... 61 4.2.4 Atomic Force Microscopy ............................................................................... 62 5 Scattering methods .......................................................................................................... 64 5.1 Light scattering ................................................................................................................. 64 5.1.1 Light scattering theory .................................................................................... 64 5.2 Static light scattering ...................................................................................................... 67 5.3 Dynamic light scattering ............................................................................................... 67 5.3.1 Method ................................................................................................................... 67 5.3.2 Experimental setup ........................................................................................... 69 5.4 Turbidimetry ..................................................................................................................... 70 5.4.1 Method ................................................................................................................... 70 5.4.2 Experimental setup ........................................................................................... 72 5.5 Small angle x-ray scattering ......................................................................................... 73 5.5.1 Synchrotron functioning ................................................................................. 73 5.5.2 Method ................................................................................................................... 74 5.5.3 Experimental setup ........................................................................................... 76 5.6 Small angle neutron scattering ................................................................................... 77 6 Mechanical properties. Rheology................................................................................ 80 6.1 Introduction ....................................................................................................................... 80 6.2 Basic notions in Rheology ............................................................................................
Recommended publications
  • M.Sc. [Botany] 346 13

    M.Sc. [Botany] 346 13

    cover page as mentioned below: below: mentioned Youas arepage instructedcover the to updateupdate to the coverinstructed pageare asYou mentioned below: Increase the font size of the Course Name. Name. 1. IncreaseCourse the theof fontsize sizefont ofthe the CourseIncrease 1. Name. use the following as a header in the Cover Page. Page. Cover 2. the usein the followingheader a as as a headerfollowing the inuse the 2. Cover Page. ALAGAPPAUNIVERSITY UNIVERSITYALAGAPPA [Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle Cycle Third the in (CGPA:3.64) [AccreditedNAAC by withGrade ’A+’’A+’ Gradewith by NAAC[Accredited (CGPA:3.64) in the Third Cycle and Graded as Category–I University by MHRD-UGC] MHRD-UGC] by University and Category–I Graded as as Graded Category–I and University by MHRD-UGC] M.Sc. [Botany] 003 630 – KARAIKUDIKARAIKUDI – 630 003 346 13 EDUCATION DIRECTORATEDISTANCE OF OF DISTANCEDIRECTORATE EDUCATION BIOLOGICAL TECHNIQUES IN BOTANY I - Semester BOTANY IN TECHNIQUES BIOLOGICAL M.Sc. [Botany] 346 13 cover page as mentioned below: below: mentioned Youas arepage instructedcover the to updateupdate to the coverinstructed pageare asYou mentioned below: Increase the font size of the Course Name. Name. 1. IncreaseCourse the theof fontsize sizefont ofthe the CourseIncrease 1. Name. use the following as a header in the Cover Page. Page. Cover 2. the usein the followingheader a as as a headerfollowing the inuse the 2. Cover Page. ALAGAPPAUNIVERSITY UNIVERSITYALAGAPPA [Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle Cycle Third the in (CGPA:3.64) [AccreditedNAAC by withGrade ’A+’’A+’ Gradewith by NAAC[Accredited (CGPA:3.64) in the Third Cycle and Graded as Category–I University by MHRD-UGC] MHRD-UGC] by University and Category–I Graded as as Graded Category–I and University by MHRD-UGC] M.Sc.
  • Protein Fibrillization: Preparation, Mechanism And

    Protein Fibrillization: Preparation, Mechanism And

    Protein fibrillization: preparation, mechanism and application Promotoren: Prof. dr. ir. R.M. Boom Hoogleraar Levensmiddelenproceskunde, Wageningen Universiteit Prof. dr. E. Van der Linden Hoogleraar Fysica en Fysische Chemie van Levensmiddelen, Wageningen Universiteit Co-promotoren: Dr. ir. A.J. Van der Goot Universitair docent, leerstoelgroep Levensmiddelenproceskunde, Wageningen Universiteit Dr. P. Venema Universitair docent, leerstoelgroep Fysica en Fysische Chemie van Levensmiddelen, Wageningen Universiteit Promotiecommissie: Prof. dr. A.C.M. Van Hooijdonk (Wageningen Universiteit, Nederland) Prof. dr. A.M. Hermansson (Swedish Institute for Food and Biotechnology, SIK, Göteborg, Zweden) Prof. dr. P. Dejmek (Food Engineering, Lund University, Zweden) Dr. T. Jongsma (Friesland Foods Corporate Research, Deventer, Nederland) Dit onderzoek is uitgevoerd binnen de onderzoeksschool VLAG. C. Akkermans Protein fibrillization: preparation, mechanism and application Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. M.J. Kropff, in het openbaar te verdedigen op vrijdag 6 juni 2008 des namiddags te vier uur in de Aula Cynthia Akkermans Protein fibrillization: preparation, mechanism and application Thesis Wageningen University, The Netherlands, 2008 – with Dutch summary ISBN 978-90-8504-879-4 Contents Chapter 1 Introduction 1 Chapter 2 Shear pulses nucleate fibril aggregation 11 Chapter 3 Formation of fibrillar whey protein aggregates: influence 29 of heat- and shear treatment
  • Birefringence of Macromolecules. Wiener's Theory Revisited, With

    Birefringence of Macromolecules. Wiener's Theory Revisited, With

    Birefringence of macromolecules Wiener's theory revisited, with applications to DNA and tobacco mosaic virus Rudolf Oldenbourg and Teresa Ruiz Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02254 ABSTRACT We summarize Wiener's solvent. We retain a simple geometrical bacco Mosaic Virus (TMV) particle and theory of the dielectric constant of het- shape for the particles and account of DNA and find excellent agreement erogeneous systems and extend its specifically for the solvent associated between our numerical results and application to suspensions of particles with the particles. We calculate the experimental values from the literature. with corrugated surfaces and interstitial birefringence of the rodshaped To- INTRODUCTION The theory of birefringence of partially aligned particles tant results on the dielectric properties of heterogeneous in suspension is closely related to the theory of dielectrics systems. We consider the electric field distribution in which was first developed in the beginning of the 19th polarized suspensions of rotational ellipsoids leading to an century (Landauer, 1978). A general theory of the dielec- exact expression of the dielectric constant for spherical, tric constant of mixed systems was published in 1912 by planar, and rodshaped particles, special cases of the 0. Wiener, who obtained expressions for the birefrin- mixture formula for ellipsoids proposed by Bragg and gence of lamellar sheets and suspensions of parallel Pippard (1953) on grounds of a less rigorous derivation. cylinders. The birefringence of partially aligned ellipsoids We then introduce the concept of corrugated particle in dilute solution under shear flow was examined by surfaces and interstitial solvent. We show that increasing Peterlin and Stuart (1939).
  • List Publications

    List Publications

    1 August 28, 2006 Publications of Harold A. Scheraga 1948 1. H. A. Scheraga and M. E. Hobbs - Kinetics of the thermal chlorination of benzal chloride, J. Am. Chem. Soc., 70, 3015-3019 (1948). 1949 2. M. Manes and H. A. Scheraga - Degassing low-boiling liquids by liquid-phase condensation, J. Am. Chem. Soc., 71, 2261 (1949). 3. H. A. Scheraga, M. E. Hobbs and P. M. Gross - On the relative measurement of Kerr constants, J. Opt. Soc. Am., 39, 410-411 (1949). 4. H. A. Scheraga and M. Manes - Apparatus for fractional crystallization in vacuum, Anal. Chem., 21, 1581-1582 (1949). 1951 5. E. W. Swegler, H. A. Scheraga and E. R. VanArtsdalen - Bromination of hydrocarbons. III. Photobromination of toluene, J. Chem. Phys., 19, 135-136 (1951). 6. J. T. Edsall, H. A. Scheraga and A. Rich - Double refraction of flow:-General relations and their application to nucleic acid solutions, ACS meeting abstracts p. 5J, April 1951. 7. H. A. Scheraga - Effect of a Gaussian distribution on flow birefringence, J. Chem. Phys., 19, 983-984 (1951). 8. H. A. Scheraga, J. T. Edsall and J. O. Gadd, Jr. - Double refraction of flow: Numerical evaluation of extinction angle and birefringence as a function of velocity gradient, J. Chem. Phys., 19, 1101-1108 (1951). Issued as AEC report, HUX-4, Sept. 1949, Contract No. AT(30-1)497 under title: Double refraction of flow and the dimensions of large asymmetrical molecules. See also Ann. Comp. Lab. Harv. Univ., 26, 219 (1951). 9. H. A. Scheraga - Relation between extinction angle and molecular size, Arch.
  • Electron Tomography of Muscle Cross‑ Bridge by Regulatory Light Chain Labelling with APEX2

    Electron Tomography of Muscle Cross‑ Bridge by Regulatory Light Chain Labelling with APEX2

    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Electron tomography of muscle cross‑ bridge by regulatory light chain labelling with APEX2 Mufeeda, Changaramvally Madathummal 2019 Mufeeda, C. M. (2019). Electron tomography of muscle cross‑ bridge by regulatory light chain labelling with APEX2. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/85724 https://doi.org/10.32657/10356/85724 Downloaded on 09 Oct 2021 08:25:28 SGT ELECTRON TOMOGRAPHY OF MUSCLE CROSS- BRIDGE BY REGULATORY LIGHT CHAIN LABELLING WITH APEX2 MUFEEDA CHANGARAMVALLY MADATHUMMAL SCHOOL OF BIOLOGICAL SCIENCES 2019 ELECTRON TOMOGRAPHY OF MUSCLE CROSS- BRIDGE BY REGULATORY LIGHT CHAIN LABELLING WITH APEX2 MUFEEDA CHANGARAMVALLY MADATHUMMAL SCHOOL OF BIOLOGICAL SCIENCES A thesis submitted to the Nanyang Technological University in partial fulfilment of the requirement for the degree of Doctor of Philosophy 2019 2 4 ACKNOWLEDGMENTS First and foremost, I wish to express my sincere gratitude to my advisor, Professor Michael Alan Ferenczi for his expert guidance and warm encouragement. I have always adored his passion for science and expert knowledge about the Muscle biology field. Without Mike extensive knowledge in muscle biology, I could not have learned as much as I have. I wish to express my sincere thanks to my mentor Assistant Professor Alexander Ludwig for his mentoring, encouragement, support and guidance. I am deeply grateful to him for the long discussions that helped me sort out the technical details of my work. My sincere thanks for his great help, guidance throughout my work and for giving me a wonderful opportunity.