On the Stability of Quasi-Satellite Orbits in the Elliptic Restricted Three-Body Problem Dissertação Para a Obtenção De Grau

Total Page:16

File Type:pdf, Size:1020Kb

On the Stability of Quasi-Satellite Orbits in the Elliptic Restricted Three-Body Problem Dissertação Para a Obtenção De Grau On the Stability of Quasi-Satellite Orbits in the Elliptic Restricted Three-Body Problem Application to the Mars-Phobos System Francisco da Silva Pais Cabral Dissertação para a obtenção de Grau de Mestre em Engenharia Aeroespacial Júri Presidente: Prof. Doutor Fernando José Parracho Lau Orientador: Prof. Doutor Paulo Jorge Soares Gil Vogal: Prof. Doutor João Manuel Gonçalves de Sousa Oliveira Dezembro de 2011 Acknowledgments The author wishes to acknowledge His thesis coordinator, Prof. Paulo Gil, for, one, presenting this thesis opportunity in the author’s field of interest and, second, for the essential orientation provided to the author that made this very same thesis possible, His professors, both in IST and TU Delft, for the acquired knowledge and transmitted passion in the most diverse fields, His university, IST, for providing the means to pursue the author’s academic and professional goals, His colleagues for their support and availability to discuss each others’ works, His friends for keeping the author sane. iii Abstract In this thesis, the design of quasi-satellites orbits in the elliptic restricted three-body problem is ad- dressed from a preliminary space mission design perspective. The stability of these orbits is studied by an analytical and a numerical approach and findings are applied in the study of the Mars-Phobos system. In the analytical approach, perturbation theories are applied to the solution of the unperturbed Hill’s equations, obtaining the first-order approximate averaged differential equations on the osculating elements. The stability of quasi-satellite orbits is analyzed from these equations and withdrawn conclu- sions are confirmed numerically. We also use the fast Lyapunov indicator, a chaos detection technique, to analyze the stability of the system. The study of fast Lyapunov indicator maps for scenarios of par- ticular interest provides a better understanding on the characteristics of quasi-satellite orbits and their stability. Both approaches are proven to be powerful tools for space mission design. Keywords: Quasi-Satellite Orbits, Elliptic Restricted Three-Body Problem, Stability, Perturbation The- ory, Fast Lyapunov Indicator, Mars-Phobos System. v Resumo Nesta tese, o planeamento de quase-orbitas´ no contexto do problema restrito dos tresˆ corpos el´ıptico e´ estudado de uma perspectiva do planeamento preliminar de missoes˜ espaciais. A estabilidade destas orbitas´ e´ estudada atraves´ de uma aboradagem anal´ıtica e de uma abordagem numerica´ e as descober- tas sao˜ aplicadas ao caso do sistema Marte-Fobos. Na abordagem anal´ıtica, teorias de perturbac¸ao˜ sao˜ aplicadas a` soluc¸ao˜ das equac¸oes˜ de Hill nao˜ perturbadas, obtendo-se as equac¸oes˜ diferenciais medias´ aproximadas de primeira ordem nos elementos osculadores. A estabilidade de quase-orbitas´ e´ analisada atraves´ destas equac¸oes˜ e as conclusoes˜ retiradas sao˜ confirmadas numericamente. Us- amos tambem´ o indicador rapido´ de Lyapunov, uma tecnica´ de detecc¸ao˜ de caos, para analisar a estabilidade do sistema. O estudo dos mapas do indicador rapido´ de Lyapunov para cenarios´ de par- ticular interesse vai-nos providenciar uma melhor compreensao˜ das caracter´ısticas de quase-orbitas´ e da sua estabilidade. Ambas as abordagens demonstram ser ferramentas poderosas no planeamento de missoes˜ espaciais. Palavras Chave: Quase-Orbitas,´ Problema Restrito dos Tresˆ Corpos El´ıptico, Estabilidade, Teoria de Perturbac¸ao,˜ Indicador Rapido´ de Lyapunov, Sistema Marte-Fobos. vii Contents Acknowledgments........................................... iii Abstract.................................................v Resumo................................................. vii List of Tables.............................................. xi List of Figures............................................. xiii List of Acronyms............................................ xv List of Symbols............................................. xix 1. Introduction 1 1.1. Motivation.............................................1 1.2. Problem Statement........................................2 1.3. Quasi-Satellite Orbits......................................3 1.4. Stability..............................................4 1.5. Bibliographic Review.......................................4 1.5.1. Orbits In The Three-Body Problem...........................5 1.5.2. Chaos Indicators.....................................6 1.6. Thesis Overview.........................................7 2. Dynamics 9 2.1. Classical Mechanics.......................................9 2.1.1. Lagrangian Mechanics.................................. 10 2.1.2. Hamiltonian Mechanics................................. 11 2.1.3. The Variational Equations................................ 12 2.2. The N-Body Problem....................................... 13 2.3. The Restricted Three-Body Problem.............................. 14 2.4. Modifications of the Restricted Three-Body Problem..................... 17 2.4.1. The Spatial Restricted Three-Body Problem...................... 17 2.4.2. The Elliptic Restricted Three-Body Problem...................... 17 2.4.3. Change Of Origin.................................... 19 2.5. Equations of Motion....................................... 20 2.5.1. Hamilton’s Equations of Motion............................. 20 2.5.2. An Invariant Relation................................... 20 ix 2.6. Chaos Indicators......................................... 22 2.6.1. Lyapunov Characteristic Exponents.......................... 23 2.6.2. Fast Lyapunov Indicator................................. 24 3. QSO Solutions and Stability 27 3.1. Linearization of the Equations of Motion............................ 27 3.2. Unperturbed Hill’s Equations.................................. 29 3.2.1. Homogeneous Solution................................. 30 3.2.2. General Solution..................................... 32 3.2.3. Stability Considerations................................. 33 3.2.4. Constants of Integration................................. 35 3.2.5. Constant Transformation................................. 35 3.3. Influence of the Second Primary................................ 37 3.3.1. Region of Stability.................................... 37 3.3.2. Approximate Solutions in the Osculating Elements.................. 41 3.4. Application to the Mars-Phobos System............................ 47 4. Numerical Exploration of QSOs 49 4.1. Numerical Integration...................................... 49 4.2. Implementation Validation.................................... 49 4.2.1. Validation Test...................................... 50 4.2.2. Implementation Language................................ 50 4.3. Computational Parameters & Methodology.......................... 53 4.3.1. Integration Method and Time-Step........................... 53 4.3.2. Orbit Escape....................................... 56 4.4. FLI Maps............................................. 56 4.4.1. Planar QSOs....................................... 57 4.4.2. Three-Dimensional QSOs................................ 65 4.4.3. Velocity Maps....................................... 73 5. Conclusions 77 A. Programming Code 79 Bibliography 92 x List of Tables 1.1. Mars & Phobos Parameters...................................3 3.1. Amplitudes for Values of the Mean Motion Ratio........................ 48 4.1. Validation Test Results...................................... 51 4.2. MatLab & C Performance Comparison I............................ 51 4.3. MatLab & C Performance Comparison II............................ 52 4.4. Reference Values......................................... 53 4.5. Parameter Computation With Chosen Time-Step....................... 55 4.6. Orbits - Mean Orbital Motion Ratio............................... 60 xi List of Figures 1.1. Hill Sphere and Region of Influence of Phobos........................2 3.1. Analysis of the behavior of xnp(f) and ynp(f) ......................... 33 3.2. Analysis of the behavior of xnp(f) and ynp(f) with C3 = −e C2 ............... 33 3.3. Parametric plot of the stable solutions............................. 34 3.4. Osculating Elements....................................... 37 3.5. Orbital Resonance........................................ 48 4.1. FLI Behavior........................................... 52 4.2. Performance Comparison.................................... 54 4.3. Position and Velocity Error Analysis.............................. 55 4.4. FLI Map - x0 Vs. y_0 ........................................ 58 4.5. FLI Map - y0 Vs. x_ 0 ........................................ 59 4.6. Planar QSOs - Tangential Entry................................. 59 4.7. 2:1 Mean Motion Orbit...................................... 60 4.8. FLI Map - y0 Vs. y_0 ........................................ 62 4.9. FLI Map & QSO - y0 Vs. y_0 ................................... 63 4.10.FLI Map - Initial True Anomaly.................................. 64 4.11.FLI Map - Vertical Velocity.................................... 66 4.12.3D QSO.............................................. 67 4.13.FLI Map - z0 Vs. y_0 ........................................ 69 4.14.FLI Map - z0 Vs. z_0 ........................................ 71 4.15.3D QSOs - Amplitude Ratio................................... 72 4.16.3D QSOs - Large Amplitude Orbits............................... 72 4.17.FLI Map - Velocities I....................................... 74 4.18.FLI Map - Velocities II...................................... 75 xiii List of Acronyms 3BP Three-Body
Recommended publications
  • Astrodynamics
    Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities
    [Show full text]
  • Analysis and Control of Displaced Periodic Orbits in the Earth-Moon System
    IAC-09.C1.2.4 ANALYSIS AND CONTROL OF DISPLACED PERIODIC ORBITS IN THE EARTH-MOON SYSTEM Jules Simo⋆ and Colin R. McInnest Department of Mechanical Engineering, University of Strathclyde Glasgow, G1 1XJ, United Kingdom ⋆E-mail: [email protected] tE-mail: [email protected] ABSTRACT be displaced above the orbital plane of the Earth, so that We consider displaced periodic orbits at linear order in the sail can stay fixed above the Earth at some distance, if the circular restricted Earth-Moon system, where the third the orbital periods are equal. Orbits around the collinear massless body is a solar sail. These highly non-Keplerian points of the Earth-Moon system are also of great interest orbits are achieved using an extremely small sail accel- because their unique positions are advantageous for sev- eration. In this paper we will use solar sail propulsion eral important applications in space mission design (see e.g. Szebehely [3], Roy [4], Vonbun [5], Gomez´ et al. to provide station-keeping at periodic orbits above the L2 point. We start by generating a reference trajectory about [6]). the libration points. By introducing a first-order approx- In the recent years several authors have tried to determine imation, periodic orbits are derived analytically at linear more accurate approximations (quasi-Halo orbits) of such order. These approximate analytical solutions are utilized equilibrium orbits [7]. The orbits were first studied by Far- in a numerical search to determine displaced periodic or- quhar [8], Farquhar and Kamel [7], Breakwell and Brown bits in the full nonlinear model.
    [Show full text]
  • Readingsample
    The Frontiers Collection The Nonlinear Universe Chaos, Emergence, Life Bearbeitet von Alwyn C Scott 1. Auflage 2007. Buch. xiv, 364 S. Hardcover ISBN 978 3 540 34152 9 Format (B x L): 15,5 x 23,5 cm Gewicht: 764 g Weitere Fachgebiete > Mathematik > Numerik und Wissenschaftliches Rechnen > Angewandte Mathematik, Mathematische Modelle Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Index Abbott, E. 104 artificial life 291–292, 298 Ablowitz, M. 15, 16, 51 Ashby, W.R. 87 acoustics, nonlinear 50 Aspect, A. 118 actin 191 associative cortex 266, 267 action spectra 183 Asteroid Belt 41 action–angle variable 30 astrology 2 Adler, F.R. 216 Atmanspacher, H. 273 ADP 183, 193 atmospheric dynamics 162–164 Adrian, E.D. 64, 139 ATP hydrolysis 129, 183, 189–191, 193 Agassiz, L. 14 attention 262 Ahlborn, B. 91, 210, 229 switching 273 AIGO 169 Aubry, S. 136 Airy, G. 45, 59, 61 Austin, R. 189 Alexander, D. 188, 190 autopoiesis 95, 292 Alfv´en, H. 156 axiomatization 288 Alfv´en wave 156 axon 144, 192, 245, 253 all-or-nothing principle 64, 139, 253, excitor motor 218 256 giant 64–66, 88, 144, 218, 241, 243, Allee effect 233 248, 249, 256 Allee, W. 232 HH 68 allopoiesis 292 Hodgkin–Huxley 68, 243–244 amide-I mode 129, 130, 184, 188, 189 motor 248 amino acid 131, 185 axonal tree 252, 258 Anderson localization 190 Anderson, C.
    [Show full text]
  • ORBITAL RENDEZVOUS and SPACECRAFT LOITERING in the EARTH-MOON SYSTEM a Thesis Submitted to the Faculty of Purdue University by F
    ORBITAL RENDEZVOUS AND SPACECRAFT LOITERING IN THE EARTH-MOON SYSTEM A Thesis Submitted to the Faculty of Purdue University by Fouad Khoury In Partial Fulfillment of the Requirements for the Degree of Master of Science in Aeronautics and Astronautics December 2020 Purdue University West Lafayette, Indiana ii THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF THESIS APPROVAL Dr. Kathleen Howell, Chair School of Aeronautics and Astronautics Dr. Carolin Frueh School of Aeronautics and Astronautics Dr. David Spencer School of Aeronautics and Astronautics Approved by: Dr. Gregory Blaisdell Associate Head of the Graduate School of Aeronautics & Astronautics iii To my parents, Saeb & Lama, and my siblings, Omar & Karmah iv ACKNOWLEDGMENTS "The known is finite, the unknown infinite; intellectually we stand on an islet in the midst of an illimitable ocean of inexplicability. Our business in every generation is to reclaim a little more land." - T. H. Huxley This work would not be possible without the support of many of my colleagues and mentors. I am grateful for the experiences and interactions I have had (and hopefully continue to have) with each of them. First, I would like to express my gratitude to my adviser Professor Kathleen Howell for her guidance, patience, and encouragement. It has been my honor to serve as her student, teaching assistant, and researcher. I fur- thermore express my gratitude to my fellow researchers in the Multibody Dynamics Research Group, both past and present. Thank you to Andrew C, Robert, Collin, Brian, Emily, RJ, David, Beom, Ricardo, Rohith, Vivek, Juan, Maaninee, Andrew M, Stephen, Kenza, Bonnie, Nick, Paige, Yuki, and Kenji for your technical advice and feedback.
    [Show full text]
  • Spacecraft Trajectories in a Sun, Earth, and Moon Ephemeris Model
    SPACECRAFT TRAJECTORIES IN A SUN, EARTH, AND MOON EPHEMERIS MODEL A Project Presented to The Faculty of the Department of Aerospace Engineering San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Aerospace Engineering by Romalyn Mirador i ABSTRACT SPACECRAFT TRAJECTORIES IN A SUN, EARTH, AND MOON EPHEMERIS MODEL by Romalyn Mirador This project details the process of building, testing, and comparing a tool to simulate spacecraft trajectories using an ephemeris N-Body model. Different trajectory models and methods of solving are reviewed. Using the Ephemeris positions of the Earth, Moon and Sun, a code for higher-fidelity numerical modeling is built and tested using MATLAB. Resulting trajectories are compared to NASA’s GMAT for accuracy. Results reveal that the N-Body model can be used to find complex trajectories but would need to include other perturbations like gravity harmonics to model more accurate trajectories. i ACKNOWLEDGEMENTS I would like to thank my family and friends for their continuous encouragement and support throughout all these years. A special thank you to my advisor, Dr. Capdevila, and my friend, Dhathri, for mentoring me as I work on this project. The knowledge and guidance from the both of you has helped me tremendously and I appreciate everything you both have done to help me get here. ii Table of Contents List of Symbols ............................................................................................................................... v 1.0 INTRODUCTION
    [Show full text]
  • Tethers in Space Handbook - Second Edition
    Tethers In Space Handbook - Second Edition - (NASA-- - I SECOND LU IT luN (Spectr Rsdrci ystLSw) 259 P C'C1 ? n: 1 National Aeronautics and Space Administration Office of Space Flight Advanced Program Development NASA Headquarters Code MD Washington, DC 20546 This document is the product of support from many organizations and individuals. SRS Technologies, under contract to NASA Headquarters, compiled, updated, and prepared the final document. Sponsored by: National Aeronautics and Space Administration NASA Headquarters, Code MD Washington, DC 20546 Contract Monitor: Edward J. Brazil!, NASA Headquarters Contract Number: NASW-4341 Contractor: SRS Technologies Washington Operations Division 1500 Wilson Boulevard, Suite 800 Arlington, Virginia 22209 Project Manager: Dr. Rodney W. Johnson, SRS Technologies Handbook Editors: Dr. Paul A. Penzo, Jet Propulsion Laboratory Paul W. Ammann, SRS Technologies Tethers In Space Handbook - Second Edition - May 1989 Prepared For: National Aeronautics and Space Administration Office of Space Flight Advanced Program Development NASA National Aeronautics and Space Administration FOREWORD The Tethers in Space Handbook Second Edition represents an update to the initial volume issued in September 1986. As originally intended, this handbook is designed to serve as a reference manual for policy makers, program managers, educators, engineers, and scientists alike. It contains information for the uninitiated, providing insight into the fundamental behavior of tethers in space. For those familiar with space tethers, it summarizes past and ongoing studies and programs, a complete bibliography of tether publications, and names, addresses, and phone numbers of workers in the field. Perhaps its most valuable asset is the brief description of nearly 50 tether applications which have been proposed and analyzed over the past 10 years.
    [Show full text]
  • AIAA Houston Horizons Online Magazine for Winter 2006/7
    Volume 32, Issue 1 AIAA Houston Section www.aiaa-houston.org Winter 2006/7 Advanced Propulsion Concepts Rendering by Adrian Mann AIAA Houston Horizons Winter 2006/7 Page 1 Winter 2006/7 T A B L E O F C O N T E N T S From the Editor 3 HOUSTON Chair’s Corner 4 Horizons is a bi-monthly publication of the Houston section The Future of Space Propulsion: VASIMR 5 of the American Institute of Aeronautics and Astronautics. Rockets, Mach Effects, and Mach Lorentz Thrusters 7 Jon S. Berndt Lunch –n– Learn: Constellation Program Overview and Challenges 10 Editor Lunch –n– Learn: Today’s Unfolding Relationships: Earth,Space,Life 12 AIAA Houston Section Executive Council Staying Informed 13 Dr. Jayant Ramakrishnan Lunch –n– Learn: Earth, Moon, and Spacecraft 14 Chair Membership Page 15 Douglas Yazell Calendar 16 Chair-Elect Cranium Cruncher 15 Steven R. King Past Chair Odds and Ends 18 Tim Propp Conference Presentations/Articles by Houston Section Members 20 Secretary DoD Experiments Launch Aboard Space Shuttle Discovery 21 Dr. Brad Files Treasurer AIAA Local Section News 23 JJ Johnson Ellen Gillespie Vice-Chair, Operations Vice-Chair, Technical Operations Technical Dr. Syri Koelfgen Dr. Al Jackson John McCann Padraig Moloney Dr. Rakesh Bhargava Dr. Zafar Taqvi Nicole Smith Bill Atwell Albert Meza Dr. Ilia Rosenberg Horizons and AIAA Dr. Douglas Schwaab Andy Petro Houston Web Site Svetlana Hanson William West AIAA National Laura Slovey Paul Nielsen Communications Award Michael Begley Prerit Shah Winner Jon Berndt, Editor Dr. Michael Lembeck Steve King Dr. Kamlesh Lulla Gary Cowan Gary Brown Councilors 2005 2006 Mike Oelke JR Reyna Brett Anderson This newsletter is created by members of the Houston section.
    [Show full text]
  • Orbital Mechanics of Gravitational Slingshots 1 Introduction 2 Approach
    Orbital Mechanics of Gravitational Slingshots Final Paper 15-424: Foundations of Cyber-Physical Systems Adam Moran, [email protected] John Mann, [email protected] May 1, 2016 Abstract A gravitational slingshot is a maneuver to save fuel by using the gravity of a planet to accelerate or decelerate a spacecraft. Due to the large distances and high speeds involved, slingshots require precise accuracy to accomplish | the slightest mistake could cause the whole mission to fail. Therefore, we have developed a cyber-physical system to model the physics and prove the safety and efficiency of powered and unpowered gravitational slingshots. We present our findings and proof in this paper. 1 Introduction A gravitational slingshot is a maneuver performed to increase or decrease the speed of a spacecraft by simply approaching planetary bodies. A spacecraft's usefulness and maneuverability is basically tied to the amount of fuel it can carry, and the more fuel a spacecraft holds, the more fuel it needs to carry that fuel into orbit. Therefore, gravitational slingshots are a very appealing way to save mass, and therefore money, on deep-space missions since these maneuvers do not require any fuel. As missions conducted by national and private space programs become more frequent and ambitious, the need for these precise maneuvers will increase. Therefore, we have created a cyber-physical system that models the physics of a gravitational slingshot for a spacecraft approaching a planet. In the "Approach" section of this paper, we give a brief overview of the physics involved with orbits and gravitational slingshots. In the "Models and Properties" section of this paper, we describe what assumptions and simplifications we made to model these astrophysics in a way for us to prove our desired properties with KeYmaeraX.
    [Show full text]
  • P.Roceedings
    Source of Acquisiti on NASA Contractor/Grantee .P .ROCEEDINGS , . -. -. fi.t.... ~ I I I -- -_ .. - T & D [] 0 FIFTH 0 0 S T A T IISPACEI E S CONGRESS COCOA BEACH, FLORIDA I - , , ',- MARCH 11,12,13,14,1968 ~ / 5i: .3 1/, ! ..?t~b , .~ I - , I FOREWORD Each' spring the Canaveral Council of Technical Societies sponsors a symposium devoted to the' accomplishments of oU,r space programs and plans for future activities. These pro­ ceedings provide a permanent record of the papers presented at our Fifth Space Congress held in Cocoa Beach, Florida, March 11 - 14, 1968. The Fifth Space Congress theme, "Our Goals in Space Operations ~ ', was, chosen to provide a forum for engineers and scientists to express individual and corporate views on where our nation should be heading in space operation. The papers presented herein depict the broad and varied views of the industrial organizations and government agencies involved in space activities. We believe that these proceedings will provide technical stimulation and serve as a valuable reference for the scientists and engineers working in our space program. On behalf of the Canaveral Council of Teclmical SOCieties, I wish to express our appreciation to the authors who prepared and presented papers at the Fifth Space Congress. M~/?~~~- EDWARDP. W~ General Chairman Fifth Space Congress • I I TABLE OF CONTENTS (Continued) Session Pages Elliptic Capture Orbits for Missions to the Near Planets by F . G. Casal/B. L. Swenson/ A. C. Mascy of Moffett Field, Calif . .............................................................................. 25.3.1-8 A Venus Lander Probe for Manned Fly-By Missions by P.
    [Show full text]
  • 1 CHAPTER 10 COMPUTATION of an EPHEMERIS 10.1 Introduction
    1 CHAPTER 10 COMPUTATION OF AN EPHEMERIS 10.1 Introduction The entire enterprise of determining the orbits of planets, asteroids and comets is quite a large one, involving several stages. New asteroids and comets have to be searched for and discovered. Known bodies have to be found, which may be relatively easy if they have been frequently observed, or rather more difficult if they have not been observed for several years. Once located, images have to be obtained, and these have to be measured and the measurements converted to usable data, namely right ascension and declination. From the available observations, the orbit of the body has to be determined; in particular we have to determine the orbital elements , a set of parameters that describe the orbit. For a new body, one determines preliminary elements from the initial few observations that have been obtained. As more observations are accumulated, so will the calculated preliminary elements. After all observations (at least for a single opposition) have been obtained and no further observations are expected at that opposition, a definitive orbit can be computed. Whether one uses the preliminary orbit or the definitive orbit, one then has to compute an ephemeris (plural: ephemerides ); that is to say a day-to-day prediction of its position (right ascension and declination) in the sky. Calculating an ephemeris from the orbital elements is the subject of this chapter. Determining the orbital elements from the observations is a rather more difficult calculation, and will be the subject of a later chapter. 10.2 Elements of an Elliptic Orbit Six numbers are necessary and sufficient to describe an elliptic orbit in three dimensions.
    [Show full text]
  • Physics 584 Computational Methods the Lorenz Equations and Numerical Simulations of Chaos
    Physics 584 Computational Methods The Lorenz Equations and Numerical Simulations of Chaos Ryan Ogliore April 25th, 2016 Lecture Outline Homework Review Chaotic Dynamics Lyapunov Exponent Lyapunov Exponent of Lorenz Equations Chaotic motion in the Solar System Lecture Outline Homework Review Chaotic Dynamics Lyapunov Exponent Lyapunov Exponent of Lorenz Equations Chaotic motion in the Solar System Homework (continued) Edward Lorenz, a meterologist, created a simplified mathematical model for nonlinear atmospheric thermal convection in 1962. Lorenz’s model frequently arises in other types of systems, e.g. dynamos and electrical circuits. Now known as the Lorenz equations, this model is a system of three ordinary differential equations: dx = σ(y − x); dt dy = x(ρ − z) − y; dt dz = xy − βz: dt Note the last two equations involve quadratic nonlinearities. The intensity of the fluid motion is parameterized by the variable x; y and z are related to temperature variations in the horizontal and vertical directions. Homework (continued) Use Matlab’s RK4 solver ode45 to solve this system of ODEs with the following starting points and parameters. 1. With σ = 1, β = 1, and ρ = 1, solve the system of Lorenz Equations for x(t = 0) = 1, y(t = 0) = 1, and z(t = 0) = 1. Plot the orbit of the solution as a three-dimensional plot for times 0–100. 2. For the Earth’s atmosphere reasonable values are σ = 10 and β = 8/3. Also set ρ = 28; and using starting values: x(t = 0) = 5, y(t = 0) = 5, and z(t = 0) = 5; solve the system of Lorenz Equations for t = [0; 20].
    [Show full text]
  • Space Mathematics Part 1
    Volume 5 Lectures in Applied Mathematics SPACE MATHEMATICS PART 1 J. Barkley Rosser, EDITOR MATHEMATICS RESEARCH CENTER THE UNIVERSITY OF WISCONSIN 1966 AMERICAN MATHEMATICAL SOCIETY, PROVIDENCE, RHODE ISLAND Supported by the National Aeronautics and Space Administration under Research Grant NsG 358 Air Force Office of Scientific Research under Grant AF-AFOSR 258-63 Army Research Office (Durham) under Contract DA-3 I- 12 4-ARO(D)-82 Atomic Energy Commission under Contract AT(30-I)-3164 Office of Naval Research under Contract Nonr(G)O0025-63 National Science Foundation under NSF Grant GE-2234 All rights reserved except those granted to the United States Government, otherwise, this book, or parts thereof, may not be reproduced in any form without permission of the publishers. Library of Congress Catalog Card Number 66-20435 Copyright © 1966 by the American Mathematical Society Printed in the United States of America Contents Part 1 FOREWORD ix ELLIPTIC MOTION J. M. A. Danby MATRIX METHODS 32 _-'/ J. M. A. Danby THE LAGRANGE-HAMILTON-JACOBI MECHANICS 40 Boris Garfinkel STABILITY AND SMALL OSCILLATIONS ABOUT EQUILIBRIUM .,,J AND PERIODIC MOTIONS 77 P. J. Message LECTURES ON REGULARIZATION 100 j,- Paul B. Richards THE SPHEROIDAL METHOD IN SATELLITE ASTRONOMY 119 J John P. Vinti PRECESSION AND NUTATION 130 u/" Alan Fletcher ON AN IRREVERSIBLE DYNAMICAL SYSTEM WITH TWO DEGREES J OF FREEDOM: THE RESTRICTED PROBLEM OF THREE BODIES 150 Victor Szebehely PROBLEMS OF STELLAR DYNAMICS 169 j George Contopoulos //,- QUALITATIVE METHODS IN THE n-BODY PROBLEM 259 Harry Pollard INDEX 293 vi CONTENTS Part2 MOTION IN THE VICINITY OF THE TRIANGULAR LIBRATION CENTERS Andr_ Deprit MOTION OF A PARTICLE IN THE VICINITY OF'A TRIANGULAR LIBRATION POINT IN THE EARTH-MOON SYSTEM 31 J.
    [Show full text]