CFD Study on Aerodynamic Effects of a Rear Wing/Spoiler on a Passenger Vehicle" (2012)

Total Page:16

File Type:pdf, Size:1020Kb

CFD Study on Aerodynamic Effects of a Rear Wing/Spoiler on a Passenger Vehicle Santa Clara University Scholar Commons Mechanical Engineering Masters Theses Student Scholarship 2012 CFD study on aerodynamic effects of a rear wing/ spoiler on a passenger vehicle Mustafa Cakir Santa Clara University Follow this and additional works at: http://scholarcommons.scu.edu/mech_mstr Part of the Aerodynamics and Fluid Mechanics Commons, and the Mechanical Engineering Commons Recommended Citation Cakir, Mustafa, "CFD study on aerodynamic effects of a rear wing/spoiler on a passenger vehicle" (2012). Mechanical Engineering Masters Theses. Paper 1. This Thesis is brought to you for free and open access by the Student Scholarship at Scholar Commons. It has been accepted for inclusion in Mechanical Engineering Masters Theses by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Department of Mechanical Engineering December 2012 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISOR BY Mustafa Cakir ENTITLED CFD STUDY ON AERODYNAMIC EFFECTS OF A REAR WING/SPOILER ON A PASSENGER VEHICLE BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING Thesis Advisor Chairman of Department Department of Mechanical Engineering December 2012 Department of Mechanical Engineering December 2012 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISOR BY Mustafa Cakir ENTITLED CFD STUDY ON AERODYNAMIC EFFECTS OF A REAR WING/SPOILER ON A PASSENGER VEHICLE BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING Thesis Advisor Thesis Reader Chairman of Department Department of Mechanical Engineering December 2012 CFD STUDY ON AERODYNAMIC EFFECTS OF A REAR WING/SPOILER ON A PASSENGER VEHICLE By Mustafa Cakir MASTER THESIS Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Science In Mechanical Engineering In the School of Engineering at Santa Clara University, December 2012 Santa Clara, California TABLE OF CONTENTS LIST OF FIGURES ......................................................................................................... iii LIST OF TABLES ............................................................................................................ v ABSTRACT ...................................................................................................................... vi 1 AUTOMOBILE AERODYNAMICS ........................................................................ 1 1.1 WHAT IS AERODYNAMICS? ....................................................................................... 1 1.2 SCOPE OF AERODYNAMICS ...................................................................................... 2 1.3 EXTERNAL FLOW PHENOMENA OF AUTOMOBILE .......................................... 3 1.4 FACTORS CONTRIBUTING TO FLOW FIELD AROUND VEHICLE ................. 5 1.4.1 BOUNDARY LAYER ................................................................................................ 5 1.4.2 FLOW SEPARATION ................................................................................................ 5 1.4.3 FRICTION DRAG ...................................................................................................... 7 1.4.4 PRESSURE DRAG ..................................................................................................... 7 1.5 FORCES AND MOMENT ON VEHICLE .................................................................... 8 2 CFD (COMPUTATIONAL FLUID DYNAMICS) ................................................ 10 2.1 WHAT IS CFD? .............................................................................................................. 10 2.2 ADVANTAGES OF COMPUTATIONAL FLUID DYNAMICS .............................. 12 2.3 NUMERICAL METHOD .............................................................................................. 13 2.3.1 PRE-PROCESSOR .................................................................................................... 14 2.3.2 NUMERICAL SOLVER ........................................................................................... 16 2.3.3 POST PROCESSOR .................................................................................................. 18 3 VEHICLE AND THE SPOILER ............................................................................ 18 3.1 INTRODUCTION TO SPOILER ................................................................................. 18 3.2 GENERIC MODELS ...................................................................................................... 19 3.2.1 VEHICLE GENERIC MODELS AND DIMENSIONS ........................................... 19 3.2.2 SPOILER GENERIC MODELS AND DIMENSIONS ............................................ 21 4 NUMERICAL SIMULATION ................................................................................ 22 4.1 CAD MODELS ................................................................................................................ 22 4.2 VIRTUAL WIND TUNNEL AND VEHICLE ORIENTATION ............................... 25 4.3 MESH GENERAION ..................................................................................................... 30 i 4.3.1 MESH SIZING AND INFLATION .......................................................................... 30 4.4 VALIDATION PROCEDURE ...................................................................................... 36 4.5 SOLVER SETTINGS ..................................................................................................... 37 5 SIMULATION RESULTS ....................................................................................... 40 5.1 SIMULATION RESULTS OF CASE #1, CASE #2 AND CASE #3 .......................... 40 5.2 SIMULATION RESULTS OF BENCHMARK #1, BENCHMARK #2 AND BENCHMARK #3 .................................................................................................................... 48 5.2.1 BENCMARK #1: EXAMINE GRID CONVERGENCE ......................................... 49 5.2.2 BENCMARK #2: EXAMINE GRID CONVERGENCE ......................................... 52 5.2.3 BENCMARK #3: EXAMINE MODEL UNCERTAINTIES ................................... 55 6 CONCLUSION ......................................................................................................... 58 7 FUTURE WORKS .................................................................................................... 60 LIST OF REFERENCE ................................................................................................. 61 ii LIST OF FIGURES Figure 1.1 Fuel energy usage at urban driving .............................................................. 2 Figure 1.2 Fuel energy usage at highway driving .......................................................... 3 Figure 1.3 Streamline of external flows around a stationary vehicle ........................... 4 Figure 1.4 Flow Separation at the rear of vehicle .......................................................... 6 Figure 1.5 Flow Separation at the rear of vehicle with rear spoiler ............................. 7 Figure 1.6 Forces On Vehicle Body ................................................................................. 8 Figure 2.1 The different disciplines contained within computational fluid dynamics [2] .............................................................................................................................. 11 Figure 2.2 The three basic approaches to solve problems in fluid dynamics and heat transfer. [2] .............................................................................................................. 12 Figure 2.3 The inter-connectivity functions of the three main elements within a CFD analysis framework. [2] .......................................................................................... 14 Figure 2.4 An overview of the solution procedure [2] ................................................. 17 Figure 3.1 Dimensions of the generic vehicle model [side-view] ................................. 20 Figure 3.2 Dimensions of the generic vehicle model [back-view] ............................... 20 Figure 3.3 Generic model and dimensions of first spoiler ........................................... 21 Figure 3.4 Generic model and dimensions of second spoiler ...................................... 22 Figure 4.1 Vehicle 3D CAD model ................................................................................. 23 Figure 4.2 First spoiler 3D CAD model ........................................................................ 23 Figure 4.3 Second spoiler 3D CAD model .................................................................... 24 Figure 4.4 Assembly 3D CAD model of vehicle and first spoiler ................................ 24 Figure 4.5 Assembly 3D CAD model of vehicle and second spoiler ........................... 25 Figure 4.6 Virtual wind tunnel and the vehicle orientation ........................................ 26 Figure 4.7 Virtual wind tunnel surface labeling for automatic appropriate boundary conditions. a) Velocity-inlet, b) Symmetry, c) symmetry-top, d) symmetry-side, e) pressure-outlet, f) wall ........................................................................................ 29 Figure 4.8 Mesh generation with standard settings. .................................................... 30 Figure 4.9 Mesh generation with modified sizing settings. ......................................... 31 Figure 4.10 Mesh generation
Recommended publications
  • DHC-8-402, G-FLBE No & Type of Engines
    AAIB Bulletin G-FLBE AAIB-26260 SERIOUS INCIDENT Aircraft Type and Registration: DHC-8-402, G-FLBE No & Type of Engines: 2 Pratt & Whitney Canada PW150A turboprop engines Year of Manufacture: 2009 (Serial no: 4261) Date & Time (UTC): 14 November 2019 at 1950 hrs Location: In-flight from Newquay Airport to London Heathrow Airport Type of Flight: Commercial Air Transport (Passenger) Persons on Board: Crew - 4 Passengers - 59 Injuries: Crew - None Passengers - None Nature of Damage: Aileron cable broke Commander’s Licence: Airline Transport Pilot’s Licence Commander’s Age: 51 years Commander’s Flying Experience: 8,778 hours (of which 5,257 were on type) Last 90 days - 150 hours Last 28 days - 33 hours Information Source: AAIB Field Investigation Synopsis Shortly after takeoff in a strong crosswind, the pilots noticed that both handwheels1 were offset to the right in order to maintain wings level flight. The aircraft diverted to Exeter Airport where it made an uneventful landing. The handwheel offset was the result of a break in a left aileron cable that ran along the wing rear spar. In the course of this investigation it was discovered that the right aileron on G-FLBE, and other aircraft in the operator’s fleet, would occasionally not respond to the movement of the handwheels. Non-reversible filters were also fitted to the operator’s aircraft that meant that it was not always possible to reconstruct the actual positions of the control wheel, column or rudder pedals recorded by the Flight Data Recorder. The aircraft manufacturer initiated safety actions to improve the maintenance of control cables and to determine the extent of the unresponsive ailerons across the fleet.
    [Show full text]
  • Tire Rule for Ponderosa (KY) Speedway | April 14, 2017 Hoosier Racing Tire: 1350, 1600 American Racer: 48, 56
    Tire Rules: Tire Rule for Ponderosa (KY) Speedway | April 14, 2017 Hoosier Racing Tire: 1350, 1600 American Racer: 48, 56 Tire Rule for Florence (KY) Speedway | April 15, 2017 Hoosier Racing Tire: 1350, 1600 American Racer: 48, 56 Tire Rule for Crossville (TN) Speedway | April 21, 2017 Hoosier Racing Tire: 1350, 1600 American Racer: 48, 56 Tire Rule for Volunteer (TN) Speedway | April 22, 2017 Hoosier Racing Tire: 1350, 1600 American Racer: 48, 56 Tire Rule for Smoky Mountain (TN) Speedway | May 4, 2017 Hoosier Racing Tire: 1350, 1600 American Racer: 48, 56 Tire Rule for Boyd's (GA) Speedway | May 26, 2017 Hoosier Racing Tire: 1350, 1600 American Racer: 48, 56 Tire Rule for Dixie (GA) Speedway | May 27, 2017 Hoosier Racing Tire: 1350, 1600 American Racer: 48, 56 Tire Rule for Rome (GA) Speedway | May 28, 2017 Hoosier Racing Tire: 1350, 1600 American Racer: 48, 56 *** Tires will be checked for soaking and by durometer for hardness before each car goes on the track for qualifying or any racing action. Weight Rules: 2350# - Open Motor 2300# - Steel Block/Aluminum Head - Spec Motor Only (8" spoiler allowed, 12" sides) 2250# - CT525 Motor (8" spoiler allowed) 2250# - All Steel Motor or Crate Motor (8" spoiler allowed, 12" sides) 1. 1# per lap burnoff + 5 lbs. in B-Mains and Feature 2. Use of a Hans Device = 30# Weight Break 3. Use of working Fire Extinguisher = 20# Weight Break Body Rules: 1. The rules and/or regulations set forth herein do not express or imply warranty of safety, from publication of, or, compliance with these rules and/or regulations.
    [Show full text]
  • Civic Jdm Rear Licence Plate Holder
    Civic Jdm Rear Licence Plate Holder Derek is clean consanguineous after crosswise Christian blob his dependant hypocritically. Achondroplastic Filip decree approximately. Caucasoid Munmro never outfrowns so obtusely or scramblings any grinders thankfully. We missing a huge selection of Genuine Honda Parts across the entire footprint of Honda models, Tomei, and accessories. If we can change according to block the size number plates do look like. JDM front end conversion with the license plate holder area shaved off? If you must wear a problem calculating your jdm engine bay sold secondhand to see and margins for authenticity in. In order to use this website and its services, and clickbait titles. Your jdm rear of a pair of this? Consumer Reports or Google Reviews. Your order to respectfully share your desire is too large to avoid vague, plastic that included. All the licence plate holder, and ukdm categories which can always have ordered has deliberately selected a pair of several cars is to. Availability: In Stock; Qty. Car & Truck Suspension & Steering Parts 96-00 Honda Civic. You have exceeded the Google API usage limit. Cox Motor Parts, please specify when ordering. Copyright the rear license plate off the actually stamped for honda? Actual product may vary. Copyright The Closure Library Authors. EBay Motors Parts Accessories Car Truck Parts DecalsEmblemsLicense Frames License Plate Frames. Product is it legal minimum of honda. All, those stroke, rear disc conversion and very much more. Honda civic rear disc brakes of your jdm front or register to eliminate any other similar bolts for the licence plate to the subreddit may not satisfied with intake for the reason.
    [Show full text]
  • (12) Ulllted States Patent (10) Patent N0.: US 8,083,260 B2 Haynes (45) Date of Patent: Dec
    US008083260B2 (12) Ulllted States Patent (10) Patent N0.: US 8,083,260 B2 Haynes (45) Date of Patent: Dec. 27, 2011 (54) COMBINATION TRUNK COVER WITH 4,376,546 A 3/1983 Guccione et a1. SPOILER AND SCROLLING DISPLAY 4,574,269 A * 3/1986 Miller ......................... .. 362/503 4,607,444 A * 8/1986 Foster ........................... .. 40/550 . 4,925,234 A 5/1990 Park et al. (76) Inventor: R1c¢ard0V-Haynes,Med1na,OH (US) 4,958,881 A 4 9/1990 Piros ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, H 296/98 4,966,406 A * 10/1990 Karasik et al. ................ .. 296/98 ( * ) Notice: Subject to any disclaimer, the term of this 5,016,145 A 5/ 1991 Singleton patent is extended or adjusted under 35 5,076,196 A * 12/1991 Chan ......................... .. 116/28 R U_S_C_ 154(1)) by 253 days_ 5,129,678 A * 7/1992 Gurbacki .................... .. 280/770 5,158,324 A 10/1992 Flesher _ 5,398,437 A * 3/1995 Bump et al. .................. .. 40/582 (21) APP1-NO-- 12/4201129 5,424,924 A * 6/1995 Ewing etal. 362/545 _ 5,533,287 A * 7/1996 Cole ............................. .. 40/591 (22) Flled: Apr. 8, 2009 6,056,425 A 5/2000 Appelberg 6,371,547 B1 4/2002 Halbrook (65) Prior Publication Data 7,063,375 B2 6/2006 Dringenberg et al. 7,095,334 B2 8/2006 Pederson US 2010/0019479 A1 Jan. 28, 2010 7,154,383 B2 12/2006 Berquist 7,175,229 B2 2/2007 Garcia - - 7,213,870 B1 5/2007 Williams Related US. Application Data 7,233,849 B2 6/2007 Hill et a1‘ (60) Provisional application No.
    [Show full text]
  • Delta Air Lines Flight 1086 ALPA Submission
    Submission of the Air Line Pilots Association, International to the National Transportation Safety Board Regarding the Accident Involving Delta Air Lines 1086 MD-88 DCA15FA085 New York, NY March 5, 2015 Air Line Pilots Association, International Delta Air Lines 1086 Submission Table of Contents Executive Summary ........................................................................................................................ 1 1.0 Factual Information ................................................................................................................. 3 1.1 History of Flight ............................................................................................................... 3 2.0 Operations .............................................................................................................................. 4 2.1 Weather ........................................................................................................................... 4 2.2 Regulations for Dispatching an Aircraft ........................................................................... 5 2.3 Crew Expectation of Runway Condition .......................................................................... 6 2.4 Approach ......................................................................................................................... 6 2.5 Landing Distance Assessment .......................................................................................... 7 2.6 Runway Condition on the Pier ........................................................................................
    [Show full text]
  • Aircraft Composite Spoiler Fitting Design Using the Variable Density Model
    Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 65 ( 2015 ) 99 – 106 International Conference on Communication, Management and Information Technology (ICCMIT 2015) Aircraft composite spoiler fitting design using the variable density model V.A. Komarov*, E.A. Kishov, E.I. Kurkin, R.V. Charkviani Samara State Aerospace University (SSAU), 34, Moskovskoe shosse, Samara, 443086, Russia Abstract Present paper describes a problem of a fitting unit design for transferring the high concentrated forces to thin-walled layered composite airframe structures. The using of variable density model is offered as new mathematical model for the solution of topology optimization problems. The offered technique is illustrated by the fitting brought to production and carrying out its successful static and resource tests. The resulting optimized aircraft spoiler fitting design has weight twice less than its initial design version obtained without using the variable density model. © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (©http://creativecommons.org/licenses/by-nc-nd/4.0/ 2015 The Authors. Published by Elsevier B.V. ). PeerPeer-review-review under under responsibility responsibility of Universal of Universal Society Society for Applied for AppliedResearch. Research Keywords: load trasferring path; topology optimization; design;spoiler fitting; airframe structures; variable density model. 1. Introduction The using of vacuum infusion or RTM technology is applied for elements of mechanization of aircraft structures1. Thus it is possible to get the finished structure ”in-one-shot”. The experience of the long-range passenger aircraft spoiler design showed that it can be made by the one integral detail using composite materials.
    [Show full text]
  • Numerical Simulation Around Wing Control Surfaces
    24TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES NUMERICAL SIMULATIONS AROUND WING CONTROL SURFACES Guillaume Fillola AIRBUS, Toulouse, Fr Marie-Claire Le Pape Marc Montagnac ONERA, Châtillon, Fr CERFACS, Toulouse, Fr Keywords: Aileron, Spoiler, Chimera Mesh, Patched Grid, Wall Law ABSTRACT ych Adimensioned coordinate y by half span, A study of wing control surface effectiveness =(y-yroot)/b was carried out using numerical simulations chz Local load in z direction with the advanced Reynolds Averaged Navier- Stokes solver elsA. Non-coincident meshing 1 INTRODUCTION techniques were used as to make the mesh generation process more flexible. The first The correct prediction of handling qualities application attempts to predict an aileron and hinge moments induced by the deployment effectiveness using the patched grid meshing of wing control surfaces (spoilers and ailerons) technique combined with a mesh deformation is a crucial point in the general aircraft sizing tool in order to operate the aileron deflection. process with a strong impact on the final aircraft The second one deals with spoiler deployment weight. The complexity of the aerodynamic and involves the Chimera technique, which flows around deployed control surfaces and the allows separating the spoiler meshing from the importance of the flight envelope to be covered wing meshing and so avoiding a complete mesh made difficult the use of CFD in the elaboration re-generation for each spoiler deflection. of Aerodynamic Data. Until now, only very time-consuming and costly wind tunnel tests and not very accurate semi-empirical methods NOMENCLATURE were used. For a long time, CFD has been intensively a Angle of attack used at Airbus for shape design and Sideslip angle b optimization.
    [Show full text]
  • Trailing Vortex Attenuation Devices
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1985 Trailing vortex attenuation devices. Heffernan, Kenneth G. http://hdl.handle.net/10945/21590 DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93^43 NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS TRAILING VORTEX ATTENUATION DEVICES by Kenneth G. Heffernan June 1985 Thesis Advisor: T. Sarpkaya Approved for public release; distribution is unlimited, T223063 Unclassified SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entered) REPORT READ INSTRUCTIONS DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER 4. TITLE (and Subtitle) 5. TYPE OF REPORT A PERIOD COVERED Dual Master's Thesis; Trailing Vortex Attenuation Devices June 1985 S. PERFORMING ORG. REPORT NUMBER 7. AUTHORC»> 8. CONTRACT OR GRANT NUMBERC*.) Kenneth G. Heffernan 9. PERFORMING ORGANIZATION NAME AND AODRESS 10. PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS Naval Postgraduate School Monterey, California 93943 I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE June 1985 Naval Postgraduate Schodl 13. NUMBER OF PAGES Monterey, California 93943 109 U. MONITORING AGENCY NAME 4 ADDRESSf/f different from Controlling OHicm) 15. SECURITY CLASS, (ol (his report) Unclassified 15a. DECLASSIFICATION/ DOWNGRADING SCHEDULE 16. DISTRIBUTION ST ATEMEN T (of this Report) Approved for public release; distribution is unlimited. 17. DISTRIBUTION STATEMENT (ol the abstract entered In Block 20, If different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse aide It necessary and Identify by block number) Trailing Vortices 20. ABSTRACT fConl/nu» on reverse side It necessary and Identity by block number) Trailing vortices generated by large aircraft pose a serious hazard to other planes.
    [Show full text]
  • Saab 9-3 M03- Fog Lights
    900SCdefault Installation instructions MONTERINGSANVISNING · INSTALLATION INSTRUCTIONS MONTAGEANLEITUNG · INSTRUCTIONS DE MONTAGE SITdefault Saab 9-3 M03- Fog lights Accessories Part No. Group Date Instruction Part No. Replaces 12 787 092 9:35-05 May 03 12 789 095 12 789 095 Oct 02 F980A110 Saab 9-3 M03- 2 12 789 095 2 3 1 F930A248 1 Fog light L 2 Fog light R 3 Nuts (x4) The following part is also required (ordered separately) Light Switch Position Saab 9-3 M03- 12 789 095 3 2 2 2 2 2 2 3 2 F980A112 1 Raise the car. 2 Remove the spoiler shield, unplug the bumper connector and remove it from the holder on the spoiler shield. Cars with headlamp washers: Unhook the hose from the spoiler shield. 3 Clip the cable ties securing the connectors. Saab 9-3 M03- 4 12 789 095 4 4 5 4 6 6 4 7 F930A249 4 Remove the lower grille by bending in the locking tabs. Remove the temperature sensor from the grille. 5 Remove the covers. 6 Insert the fog light into the casing and fit the nuts. 7 Attach the connectors. Saab 9-3 M03- 12 789 095 5 9 8 8 9 9 F980A114 8 Fit the temperature sensor and the lower grille. 14 Adjust the fog lights and check their function Make sure the locking tabs fasten properly. according to car specifications. 9 Lift up the spoiler shield, fit the bumper connector Example: In Europe, as per vehicle testing into the holder and plug in the connector. requirements, fog lights may be used if the park- Cars with headlamp washers: Hook the hose ing lights, dipped or main beams have been to the spoiler shield.
    [Show full text]
  • C. Yeh – Airbus Fly-By-Wire Computers: A320-A350
    Airbus Fly-By-Wire Computers A320 – A350 Ying Chin (Bob) Yeh, Ph. D., IEEE Fellow Technical Fellow Flight Controls Systems Boeing Commercial Airplanes IEEE ComSoc Technical Committee on Communication Quality & Reliability Emerging Technology Reliability Roundtable Stevenson, WA, USA, May 9, 2016 Non-technical / Administrative Data Only. Not subject to EAR or ITAR Export Regulations Airbus (and French) Organizations for Airbus FBW Computers ° Research In 1970, French government modeled SRI International and MIT DraperLabs to create LAAS CNRS research institute for Computing System Technology, with a work force of 750. A sub-group, Informatique crtique (dependable computing), has been the main research arm for Airbus FC, consisting of ~20 Ph.D researchers. This group is the computer architect for A320 FBW Computers. ° Platform Design After A320, Airbus creates EYY group to MAKE FBW Computers and being responsible for FBW Computers, Warning Electronics, and Maintenance. 2 Airbus Fly-By-Wire Computers Design Philosophy • Active-Standby control of an actuator for a control surface with multiple actuators, other actuators in By-Pass Mode • Active-Passive control of an actuator among Flight Control Computer channels: upon detecting loss of an active computer channel commands, the passive computer will become active • Self Monitor computer channel, with Command Lane and Monitor Lane 3 An example of Airbus FBW COM/MON-based Monitoring 4 Evolution of Airbus FBW Computers • A320 (Architect: LAAS, Platforms: Thompson CSF and Sfena, now Thales) Dual-Dual
    [Show full text]
  • Approaches to Assure Safety in Fly-By-Wire Systems: Airbus Vs
    APPROACHES TO ASSURE SAFETY IN FLY-BY-WIRE SYSTEMS: AIRBUS VS. BOEING Andrew J. Kornecki, Kimberley Hall Embry Riddle Aeronautical University Daytona Beach, FL USA <[email protected]> ABSTRACT The aircraft manufacturers examined for this paper are Fly-by-wire (FBW) is a flight control system using Airbus Industries and The Boeing Company. The entire computers and relatively light electrical wires to replace Airbus production line starting with A320 and the Boeing conventional direct mechanical linkage between a pilot’s 777 utilize fly-by-wire technology. cockpit controls and moving surfaces. FBW systems have been in use in guided missiles and subsequently in The first section of the paper presents an overview of military aircraft. The delay in commercial aircraft FBW technology highlighting the issues associated with implementation was due to the time required to develop its use. The second and third sections address the appropriate failure survival technologies providing an approaches used by Airbus and Boeing, respectively. In adequate level of safety, reliability and availability. each section, the nature of the FBW implementation and Software generation contributes significantly to the total the human-computer interaction issues that result from engineering development cost of the high integrity digital these implementations for specific aircraft are addressed. FBW systems. Issues related to software and redundancy Specific examples of software-related safety features, techniques are discussed. The leading commercial aircraft such as flight envelope limits, are discussed. The final manufacturers, such as Airbus and Boeing, exploit FBW section compares the approaches and general conclusions controls in their civil airliners. The paper presents their regarding the use of FBW technology.
    [Show full text]
  • Wingtip Vortex Alleviation Using a Reverse Delta Type Add-On Device
    International Journal of Aviation, Aeronautics, and Aerospace Volume 4 Issue 3 Article 7 9-2-2017 Wingtip Vortex Alleviation Using a Reverse Delta Type Add-on Device Afaq Altaf New York Institute of Technology, [email protected] Follow this and additional works at: https://commons.erau.edu/ijaaa Part of the Aerodynamics and Fluid Mechanics Commons Scholarly Commons Citation Altaf, A. (2017). Wingtip Vortex Alleviation Using a Reverse Delta Type Add-on Device. International Journal of Aviation, Aeronautics, and Aerospace, 4(3). https://doi.org/10.15394/ijaaa.2017.1178 This Article is brought to you for free and open access by the Journals at Scholarly Commons. It has been accepted for inclusion in International Journal of Aviation, Aeronautics, and Aerospace by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Wingtip Vortex Alleviation Using a Reverse Delta Type Add-on Device Cover Page Footnote The author is indebted to International Islamic University Malaysia and Monash University Malaysia for supporting this work. This article is available in International Journal of Aviation, Aeronautics, and Aerospace: https://commons.erau.edu/ ijaaa/vol4/iss3/7 Altaf: Wingtip Vortex Alleviation Using a Reverse Delta Type Add-on Device Due to continuous air traffic growth, existing separation rules are becoming extremely insufficient at coping with future air traffic requirements. This study is driven by the objective of reducing the present air traffic spacing, while sustaining the same level of safety. All aircraft create wake vortices, an unavoidable result of the creation of lift. Vortices from wingtips have been observed to persist for many miles.
    [Show full text]