Mosaicism of Activating FGFR3 Mutations in Human Skin Causes Epidermal Nevi

Total Page:16

File Type:pdf, Size:1020Kb

Mosaicism of Activating FGFR3 Mutations in Human Skin Causes Epidermal Nevi Mosaicism of activating FGFR3 mutations in human skin causes epidermal nevi Christian Hafner, … , Ellen C. Zwarthoff, Arndt Hartmann J Clin Invest. 2006;116(8):2201-2207. https://doi.org/10.1172/JCI28163. Research Article Dermatology Epidermal nevi are common congenital skin lesions with an incidence of 1 in 1,000 people; however, their genetic basis remains elusive. Germline mutations of the FGF receptor 3 (FGFR3) cause autosomal dominant skeletal disorders such as achondroplasia and thanatophoric dysplasia, which can be associated with acanthosis nigricans of the skin. Acanthosis nigricans and common epidermal nevi of the nonorganoid, nonepidermolytic type share some clinical and histological features. We used a SNaPshot multiplex assay to screen 39 epidermal nevi of this type of 33 patients for 11 activating FGFR3 point mutations. In addition, exon 19 of FGFR3 was directly sequenced. We identified activating FGFR3 mutations, almost exclusively at codon 248 (R248C), in 11 of 33 (33%) patients with nonorganoid, nonepidermolytic epidermal nevi. In 4 of these cases, samples from adjacent histologically normal skin could be analyzed, and FGFR3 mutations were found to be absent. Our results suggest that a large proportion of epidermal nevi are caused by a mosaicism of activating FGFR3 mutations in the human epidermis, secondary to a postzygotic mutation in early embryonic development. The R248C mutation appears to be a hot spot for FGFR3 mutations in epidermal nevi. Find the latest version: https://jci.me/28163/pdf Research article Mosaicism of activating FGFR3 mutations in human skin causes epidermal nevi Christian Hafner,1 Johanna M.M. van Oers,2 Thomas Vogt,1 Michael Landthaler,1 Robert Stoehr,3 Hagen Blaszyk,4 Ferdinand Hofstaedter,5 Ellen C. Zwarthoff,2 and Arndt Hartmann5 1Department of Dermatology, University of Regensburg, Regensburg, Germany. 2Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands. 3Department of Urology, University of Regensburg, Regensburg, Germany. 4Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont, USA. 5Institute of Pathology, University of Regensburg, Regensburg, Germany. Epidermal nevi are common congenital skin lesions with an incidence of 1 in 1,000 people; however, their genetic basis remains elusive. Germline mutations of the FGF receptor 3 (FGFR3) cause autosomal dominant skeletal disorders such as achondroplasia and thanatophoric dysplasia, which can be associated with acan- thosis nigricans of the skin. Acanthosis nigricans and common epidermal nevi of the nonorganoid, nonepi- dermolytic type share some clinical and histological features. We used a SNaPshot multiplex assay to screen 39 epidermal nevi of this type of 33 patients for 11 activating FGFR3 point mutations. In addition, exon 19 of FGFR3 was directly sequenced. We identified activating FGFR3 mutations, almost exclusively at codon 248 (R248C), in 11 of 33 (33%) patients with nonorganoid, nonepidermolytic epidermal nevi. In 4 of these cases, samples from adjacent histologically normal skin could be analyzed, and FGFR3 mutations were found to be absent. Our results suggest that a large proportion of epidermal nevi are caused by a mosaicism of activating FGFR3 mutations in the human epidermis, secondary to a postzygotic mutation in early embryonic develop- ment. The R248C mutation appears to be a hot spot for FGFR3 mutations in epidermal nevi. Introduction domains (Figure 2). Alternative splicing of the second half of the Epidermal nevi show a prevalence of about 1 in 1,000 people and IgIII-like domain (exon 8 versus exon 9) results in the isoforms can be divided into either nonorganoid (keratinocytic) types or IIIb and IIIc. The isoforms show different ligand specificity and organoid types characterized by hyperplasia of adnexal structures tissue expression. FGFR3 IIIb is mainly expressed in epithelial cells such as sebaceous glands, sweat glands, and hair follicles. Epider- while FGFR3 IIIc is predominantly found in mesenchymal cells (5). mal nevi of the common, nonorganoid and nonepidermolytic type This paper assigns all codon numbers to the open reading frame of are benign skin lesions and may vary in their extent from a single the FGFR3 IIIb isoform. More than 20 FGFs are known as ligands (usually linear) lesion to widespread and systematized involvement now (4). The interaction of the ligand with the receptor requires (Figure 1). They may be present at birth or develop early during the presence of sulfated glycosaminoglycans such as heparin and childhood as localized epidermal thickening with hyperpigmenta- leads to the dimerization of the receptor with consecutive phos- tion, frequently following the lines of Blaschko. This suggests that phorylation of intracellular tyrosine residues in the kinase domain epidermal nevi may be due to mosaicism resulting from postzygot- and activation of intracellular signaling pathways. The autophos- ic mutations in keratinocytes. Mutations of keratins 1 and 10 were phorylation sites of FGFR3 represent potential binding sites for shown to be responsible for a rare subgroup of epidermal nevi, signaling proteins, for example, with phosphotyrosine binding the linear epidermolytic hyperkeratosis (1, 2). Another variant of (PTB) and Src homology 2 (SH2) domains. Activation of the cyto- epidermal nevi, the congenital hemidysplasia with ichthyosiform plasmic region causes phosphorylation of Shp2, PLCg, ERK1/2, nevus and limb defects (CHILD) nevus, is caused by NADPH ste- and STAT3 and also PI3K activation (4). FGFRs can also be acti- roid dehydrogenase-like protein (NSDHL) mutations (Xq28) and vated by interaction with EphA4, another receptor tyrosine kinase, represents a functional X chromosomal mosaicism (3). However, which demonstrates the complexity of FGFR signaling (6). the genetic basis of the much more common nonorganoid, non- Activating germline mutations of the FGFR3 gene result in dwarf- epidermolytic keratinocytic epidermal nevi remains elusive. ism, severe skeletal dysplasia, and craniosynostosis syndromes such The FGF receptor (FGFR) family comprises 4 major trans- as achondroplasia (ACH), hypochondroplasia (HCH), thanato- membrane receptor tyrosine kinases (FGFR1–4) and is involved phoric dysplasia (TD), Crouzon syndrome (CS), Muenke syndrome in embryogenesis, angiogenesis, and tissue homeostasis (4). The (MS), and SADDAN (severe achondroplasia with developmental FGFR3 gene contains 19 exons encoding an extracellular region delay and acanthosis nigricans) syndrome (7–10). These activating for ligand binding composed of 3 Ig-like domains, a hydropho- mutations result in negative chondrocytic growth regulation of bic transmembrane domain and 2 cytoplasmic tyrosine kinase the epiphyseal plates of long bones, causing dwarfism (11). Identi- cal mutations are found in different cancer entities and probably provide proliferative signals (4). FGFR3 signaling in mutated cells Nonstandard abbreviations used: ACH, achondroplasia; CS, Crouzon syndrome; is poorly understood, but previous studies provide some insights. FGFR3, fibroblast growth factor receptor 3; HCH, hypochondroplasia; SADDAN, severe achondroplasia with developmental delay and acanthosis nigricans; All known missense mutations causing TD I create an unpaired TD, thanatophoric dysplasia. cysteine residue (12–14), such as the R248C and S249C mutations. Conflict of interest: The authors have declared that no conflict of interest exists. These mutations are localized in the extracellular domain at the Citation for this article: J. Clin. Invest. 116:2201–2207 (2006). doi:10.1172/JCI28163. linker region between the Ig-like domains II and III while other The Journal of Clinical Investigation http://www.jci.org Volume 116 Number 8 August 2006 2201 research article Figure 1 Patient 29 displayed a systematized epidermal nevus of the common soft type with involvement of the face (bilateral), the right scapular region, the right arm, the right hip, and the right thigh. Abnormalities of the skel- etal or nervous system were not present. A biopsy was taken from the epidermal nevus of the right forearm. This epidermal nevus revealed an R248C FGFR3 gene mutation. DNA isolated from the blood of this patient revealed WT status at codon 248, excluding a germline mutation. to the formation of hydrogen bonds between 2 FGFRs, resulting in constitutive receptor activation (20). The A393E mutation in CS also affects the transmembrane domain and results in FGFR3 dimer stabilization, measured by the change in the free energy of the dimerization, thus largely increasing the fraction of dimers (21). A third class of mutations affect the tyrosine kinase domain, such as the K652E mutation in TD II or the N542K mutation in HCH (11). These mutations likely cause conformational changes in the activation loop that activate the receptor tyrosine kinase activity and downstream ERK1/2 (22). Other studies suggest that FGFR3 mutations may delay the downregulation and ligand-medi- ated internalization of the receptor (23). The phosphorylated immature form of the mutant receptor accumulates in the endo- plasmic reticulum and fails to be degraded (24). The different degree of receptor activation seems to correlate with the severity of the phenotype. Stronger activation of the receptor by ligand-inde- pendent dimerization via disulfide bonds in TD patients deter- mines the more severe phenotype compared with other skeletal dysplasia syndromes such as ACH and HCH (15, 25). Somatic activating FGFR3
Recommended publications
  • Characterization of Genomic Copy Number Variation in Mus Musculus Associated with the Germline of Inbred and Wild Mouse Populations, Normal Development, and Cancer
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 4-18-2019 2:00 PM Characterization of genomic copy number variation in Mus musculus associated with the germline of inbred and wild mouse populations, normal development, and cancer Maja Milojevic The University of Western Ontario Supervisor Hill, Kathleen A. The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Maja Milojevic 2019 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Genetics and Genomics Commons Recommended Citation Milojevic, Maja, "Characterization of genomic copy number variation in Mus musculus associated with the germline of inbred and wild mouse populations, normal development, and cancer" (2019). Electronic Thesis and Dissertation Repository. 6146. https://ir.lib.uwo.ca/etd/6146 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Mus musculus is a human commensal species and an important model of human development and disease with a need for approaches to determine the contribution of copy number variants (CNVs) to genetic variation in laboratory and wild mice, and arising with normal mouse development and disease. Here, the Mouse Diversity Genotyping array (MDGA)-approach to CNV detection is developed to characterize CNV differences between laboratory and wild mice, between multiple normal tissues of the same mouse, and between primary mammary gland tumours and metastatic lung tissue.
    [Show full text]
  • Review Article PTEN Gene: a Model for Genetic Diseases in Dermatology
    The Scientific World Journal Volume 2012, Article ID 252457, 8 pages The cientificWorldJOURNAL doi:10.1100/2012/252457 Review Article PTEN Gene: A Model for Genetic Diseases in Dermatology Corrado Romano1 and Carmelo Schepis2 1 Unit of Pediatrics and Medical Genetics, I.R.C.C.S. Associazione Oasi Maria Santissima, 94018 Troina, Italy 2 Unit of Dermatology, I.R.C.C.S. Associazione Oasi Maria Santissima, 94018 Troina, Italy Correspondence should be addressed to Carmelo Schepis, [email protected] Received 19 October 2011; Accepted 4 January 2012 Academic Editors: G. Vecchio and H. Zitzelsberger Copyright © 2012 C. Romano and C. Schepis. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. PTEN gene is considered one of the most mutated tumor suppressor genes in human cancer, and it’s likely to become the first one in the near future. Since 1997, its involvement in tumor suppression has smoothly increased, up to the current importance. Germline mutations of PTEN cause the PTEN hamartoma tumor syndrome (PHTS), which include the past-called Cowden, Bannayan- Riley-Ruvalcaba, Proteus, Proteus-like, and Lhermitte-Duclos syndromes. Somatic mutations of PTEN have been observed in glioblastoma, prostate cancer, and brest cancer cell lines, quoting only the first tissues where the involvement has been proven. The negative regulation of cell interactions with the extracellular matrix could be the way PTEN phosphatase acts as a tumor suppressor. PTEN gene plays an essential role in human development. A recent model sees PTEN function as a stepwise gradation, which can be impaired not only by heterozygous mutations and homozygous losses, but also by other molecular mechanisms, such as transcriptional regression, epigenetic silencing, regulation by microRNAs, posttranslational modification, and aberrant localization.
    [Show full text]
  • 10Th Anniversary of the Human Genome Project
    Grand Celebration: 10th Anniversary of the Human Genome Project Volume 3 Edited by John Burn, James R. Lupski, Karen E. Nelson and Pabulo H. Rampelotto Printed Edition of the Special Issue Published in Genes www.mdpi.com/journal/genes John Burn, James R. Lupski, Karen E. Nelson and Pabulo H. Rampelotto (Eds.) Grand Celebration: 10th Anniversary of the Human Genome Project Volume 3 This book is a reprint of the special issue that appeared in the online open access journal Genes (ISSN 2073-4425) in 2014 (available at: http://www.mdpi.com/journal/genes/special_issues/Human_Genome). Guest Editors John Burn University of Newcastle UK James R. Lupski Baylor College of Medicine USA Karen E. Nelson J. Craig Venter Institute (JCVI) USA Pabulo H. Rampelotto Federal University of Rio Grande do Sul Brazil Editorial Office Publisher Assistant Editor MDPI AG Shu-Kun Lin Rongrong Leng Klybeckstrasse 64 Basel, Switzerland 1. Edition 2016 MDPI • Basel • Beijing • Wuhan ISBN 978-3-03842-123-8 complete edition (Hbk) ISBN 978-3-03842-169-6 complete edition (PDF) ISBN 978-3-03842-124-5 Volume 1 (Hbk) ISBN 978-3-03842-170-2 Volume 1 (PDF) ISBN 978-3-03842-125-2 Volume 2 (Hbk) ISBN 978-3-03842-171-9 Volume 2 (PDF) ISBN 978-3-03842-126-9 Volume 3 (Hbk) ISBN 978-3-03842-172-6 Volume 3 (PDF) © 2016 by the authors; licensee MDPI, Basel, Switzerland. All articles in this volume are Open Access distributed under the Creative Commons License (CC-BY), which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications.
    [Show full text]
  • Postzygotic Mosaicism in Cerebral Cavernous Malformation Matthias Rath ‍ ,1,2 Axel Pagenstecher,3 Alexander Hoischen,4 Ute Felbor1,2
    Somatic mosaicism J Med Genet: first published as 10.1136/jmedgenet-2019-106182 on 24 August 2019. Downloaded from SHORT REPORT Postzygotic mosaicism in cerebral cavernous malformation Matthias Rath ,1,2 Axel Pagenstecher,3 Alexander Hoischen,4 Ute Felbor1,2 ► Additional material is ABSTRact sporadic CCM cases, variable expressivity based on published online only. To view Background Cerebral cavernous malformations multifocality and incomplete penetrance. please visit the journal online Neither the genetic nor the fundamental bio- (http:// dx. doi. org/ 10. 1136/ (CCMs) can cause severe neurological morbidity but jmedgenet- 2019- 106182). our understanding of the mechanisms that drive logical mechanisms that drive CCM development CCM formation and growth is still incomplete. Recent and disease progression have thus far been fully 1Department of Human experimental data suggest that dysfunctional CCM3- clarified. Decades ago, Rudolf Happle anticipated Genetics, University Medicine deficient endothelial cell clones form cavernous lesions in that mutational events - genetic or epigenetic - could Greifswald, Greifswald, Germany conjunction with normal endothelial cells. generate new aberrant cell clones that - in case of a 2Interfaculty Institute of Objective In this study, we addressed the question lethal mutation - would survive only in close prox- Genetics and Functional whether endothelial cell mosaicism can be found in human imity to normal cells, thereby creating characteristic Genomics, University of cavernous tissue of CCM1 germline
    [Show full text]
  • Overlooked Roles of DNA Damage and Maternal Age in Generating Human Germline Mutations
    Overlooked roles of DNA damage and maternal age in generating human germline mutations Ziyue Gaoa,b,1, Priya Moorjanic,d, Thomas A. Sasanie, Brent S. Pedersene, Aaron R. Quinlane,f, Lynn B. Jordee, Guy Amsterg,2, and Molly Przeworskig,h,1,2 aHoward Hughes Medical Institute, Stanford University, Stanford, CA 94305; bDepartment of Genetics, Stanford University, Stanford, CA 94305; cDepartment of Molecular and Cell Biology, University of California, Berkeley, CA 94720; dCenter for Computational Biology, University of California, Berkeley, CA 94720; eDepartment of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112; fDepartment of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT 84108; gDepartment of Biological Sciences, Columbia University, New York, NY 10027; and hDepartment of Systems Biology, Columbia University, New York, NY 10027 Edited by James A. Birchler, University of Missouri, Columbia, MO, and approved April 2, 2019 (received for review January 23, 2019) The textbook view that most germline mutations in mammals Insight into the genesis of germline mutations can also be arise from replication errors is indirectly supported by the fact that gained by contrasting male and female mutation patterns, which there are both more mutations and more cell divisions in the male reflect distinct developmental trajectories and epigenetic dy- than in the female germline. When analyzing large de novo namics. In mammals, fathers contribute more de novo mutations mutation datasets in humans,
    [Show full text]
  • Overlooked Roles of DNA Damage and Maternal Age in Generating Human Germline Mutations
    Overlooked roles of DNA damage and maternal age in generating human germline mutations Ziyue Gaoa,b,1, Priya Moorjanic,d, Thomas A. Sasanie, Brent S. Pedersene, Aaron R. Quinlane,f, Lynn B. Jordee, Guy Amsterg,2, and Molly Przeworskig,h,1,2 aHoward Hughes Medical Institute, Stanford University, Stanford, CA 94305; bDepartment of Genetics, Stanford University, Stanford, CA 94305; cDepartment of Molecular and Cell Biology, University of California, Berkeley, CA 94720; dCenter for Computational Biology, University of California, Berkeley, CA 94720; eDepartment of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112; fDepartment of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT 84108; gDepartment of Biological Sciences, Columbia University, New York, NY 10027; and hDepartment of Systems Biology, Columbia University, New York, NY 10027 Edited by James A. Birchler, University of Missouri, Columbia, MO, and approved April 2, 2019 (received for review January 23, 2019) The textbook view that most germline mutations in mammals Insight into the genesis of germline mutations can also be arise from replication errors is indirectly supported by the fact that gained by contrasting male and female mutation patterns, which there are both more mutations and more cell divisions in the male reflect distinct developmental trajectories and epigenetic dy- than in the female germline. When analyzing large de novo namics. In mammals, fathers contribute more de novo mutations mutation datasets in humans,
    [Show full text]
  • Common Postzygotic Mutational Signature in Multiple Healthy Adult Tissues Related To
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.17.952473; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Common postzygotic mutational signature in multiple healthy adult tissues related to 2 embryonic hypoxia 3 Yaqiang Hong1,3,14, Dake Zhang1,2,14, Xiangtian Zhou4,5,14, Aili Chen1,14, Amir Abliz6,14, Jian Bai1, Liang 4 Wang7,8, Qingtao Hu1, Kenan Gong1, Xiaonan Guan1,13, Mengfei Liu6, Xinchang Zheng1,13, Shujuan Lai1, 5 Hongzhu Qu9, Fuxin Zhao4,5, Shuang Hao1, Zhen Wu7,8, Hong Cai6, Shaoyan Hu10, Yue Ma11, Junting 6 Zhang7,8, Yang Ke6, Qianfei Wang1, Wei Chen1,2, *, Changqing Zeng1,12, 13,* 7 1 Key Laboratory of Genomic and Precision Medicine of Chinese Academy of Sciences, Beijing Institute of 8 Genomics, Beijing, China 9 2 Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical 10 Engineering, Beihang University, Beijing, China 11 3 Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China 12 4 School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 13 China 14 5 State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health P. R. China 15 and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
    [Show full text]
  • Early Somatic Mosaicism Is a Rare Cause of Long-QT Syndrome
    Early somatic mosaicism is a rare cause of long-QT syndrome James Rush Priesta,b,c, Charles Gawadb,d,1, Kristopher M. Kahlige, Joseph K. Yuf,g, Thomas O’Haraf, Patrick M. Boylef,g, Sridharan Rajamanie,2, Michael J. Clarkh, Sarah T. K. Garciah,3, Scott Ceresnaka,b,c, Jason Harrish, Sean Boyleh, Frederick E. Deweya,i,4, Lindsey Malloy-Waltona,b,c,5, Kyla Dunna,j, Megan Grovea,i, Marco V. Pereza,i, Norma F. Neffk, Richard Chenh, Katsuhide Maedaa,l, Anne Dubina,b,c, Luiz Belardinellie, John Westh, Christian Antolikm, Daniela Macayam, Thomas Quertermousa,i, Natalia A. Trayanovaf,g, Stephen R. Quakek,n,o,6, and Euan A. Ashleya,b,i,6 aStanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Stanford, CA 94305; bChild Health Research Institute, Stanford University School of Medicine, Stanford, CA 94305; cDivision of Pediatric Cardiology, Stanford University School of Medicine, Stanford, CA 94305; dDivision of Pediatric Hematology-Oncology, Stanford University School of Medicine, Stanford, CA 94305; eDepartment of Biology, Cardiovascular Therapeutic Area, Gilead Sciences, Fremont, CA 94555; fDepartment of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218; gInstitute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218; hPersonalis, Inc., Menlo Park, CA 94025; iDivision of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305; jLucile Packard Children’s Hospital Heart Center, Palo Alto, CA 94304; kDepartment of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305; lDivision of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305; mCardiogenetic Testing Services, GeneDx, Gaithersburg, MD 20877; nDepartment of Applied Physics, Stanford University, Stanford, CA 94305; and oHoward Hughes Medical Research Institute, Stanford University School of Medicine, Stanford, CA 94305 Contributed by Stephen R.
    [Show full text]
  • Non-Autonomous Effects of CCM Genes Loss
    Finetti et al. Vessel Plus 2021;5:29 Vessel Plus DOI: 10.20517/2574-1209.2021.49 Minireview Open Access Non-autonomous effects of CCM genes loss Federica Finetti, Lorenza Trabalzini Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 253100, Siena, Italy. Correspondence to: Prof. Lorenza Trabalzini, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 253100, Siena, Italy. E-mail: [email protected] How to cite this article: Finetti F, Trabalzini L. Non-autonomous effects of CCM genes loss. Vessel Plus 2021;5:29. https://dx.doi.org/10.20517/2574-1209.2021.49 Received: 26 Mar 2021 First Decision: 15 Apr 2021 Revised: 23 Apr 2021 Accepted: 18 May 2021 Published: 11 Jun 2021 Academic Editor: Jun Zhang Copy Editor: Yue-Yue Zhang Production Editor: Yue-Yue Zhang Abstract Cerebral cavernous malformation (CCM) is a rare disease of proven genetic origin characterized by vascular lesions affecting capillaries and small vessels of the central nervous system. CCM lesions occur in a range of different phenotypes, including wide differences in lesion number, size, and susceptibility to intracerebral hemorrhage. CCM lesion genesis requires loss of function of any of three genes, namely KRIT1 (CCM1), MGC4607 (CCM2), and PDCD10 (CCM3). These genes exert pleiotropic effects regulating multiple mechanisms involved in angiogenesis, cellular response, cell-cell and cell-matrix adhesion, cytoskeleton dynamics, and oxidative damage protection. Familial CCM is an autosomal-dominantly inherited disease in which the loss of any of the three CCM genes follows a two-hit mechanism. The heterozygous loss-of-function germline variants in one of the involved genes seems to be associated with a second postzygotic mutation, according to Knudson’s two-hit model of tumor suppressor genes.
    [Show full text]
  • Genetic Disease, Gene Expression and Gene Therapy | ABSTRACTS
    Genetic Disease, Gene Expression and Gene Therapy | ABSTRACTS 301 302 Peeling skin, leukonychia, acral punctate keratoses, cheilitis and knuckle pads with milia The Cylindromatosis gene product, CYLD, interacts with MIB2 to regulate Notch signalling caused by loss-of-function mutations in calpastatin N Rajan,1 R Elliott,2 A Smith,2 N Sinclair,1 S Swift,2 C Lord2 and A Ashworth2 1 Newcastle Z Lin,2 D Nitoiu,1 C Scott,1 J Zhao,2 V Plagnol,3 E O’toole,1 D Kelsell1 and Y Yang2 1 Centre University, Newcastle upon Tyne, United Kingdom and 2 The Breakthrough Breast Cancer for Cutaneous Research, Queen Mary University of London, London, United Kingdom, 2 Research Centre, The Institute of Cancer Research, London, United Kingdom Department of Dermatology, Peking University First Hospital, Beijing, China and 3 Genetics, CYLD, an ubiquitin hydrolase, has an expanding repertoire of regulatory roles in cell signalling and Evolution & Environment, UCL Genetics Institute, London, United Kingdom is dysregulated in a number of cancers. To dissect CYLD function we used a proteomics approach, We have identified loss-of-function mutations in the protease inhibitor calpastatin (CAST) gene as and identified MIB2, an ubiquitin ligase enzyme involved in Notch signalling, as a protein which the genetic cause of an autosomal recessive skin disease characterised by peeling skin, leukony- interacts with CYLD. Coexpression of CYLD and MIB2 resulted in stabilisation of MIB2 associated chia, acral punctate keratoses, cheilitis and knuckle pads with milia (PLACK syndrome). Patient with reduced levels of JAG2, a ligand implicated in Notch signalling. Conversely, silencing of one from a Chinese consanguineous family, presented as an adult with generalised skin peeling CYLD using siRNA, resulted in increased JAG2 expression and upregulation of Notch signalling.
    [Show full text]
  • Large, Three-Generation CEPH Families Reveal Post-Zygotic Mosaicism and Variability in Germline Mutation Accumulation
    bioRxiv preprint doi: https://doi.org/10.1101/552117; this version posted February 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Large, three-generation CEPH families reveal post-zygotic mosaicism and variability in germline mutation accumulation Thomas A. Sasani1, Brent S. Pedersen1, Ziyue Gao4, Lisa Baird1, Molly Przeworski5,6, Lynn B. Jorde1,3*, Aaron R. Quinlan1,2,3* 1 Department of Human Genetics, University of Utah. Salt Lake City, UT 2 Department of Biomedical Informatics, University of Utah. Salt Lake City, UT 3 USTAR Center for Genetic Discovery, University of Utah. Salt Lake City, UT 4 Howard Hughes Medical Institute & Department of Genetics, Stanford University, Stanford, CA 5 Department of Biological Sciences, Columbia University, New York City, NY 6 Department of Systems Biology, Columbia University, New York City, NY * to whom correspondence should be addressed Keywords: De novo mutation, germline mutation, germline mosaicism, postzygotic mutation, gonosomal mutation, human pedigrees Abstract The number of de novo mutations (DNMs) found in an offspring's genome is known to increase with both paternal and maternal age. But does the rate of mutation accumulation in parental gametes differ across families? To answer this question, we analyzed DNMs in 33 large, three- generation families collected in Utah by the Centre d'Etude du Polymorphisme Humain (CEPH) consortium. We observed significant variability in parental age effects on DNM counts across families, ranging from 0.24 to 3.33 additional DNMs per year.
    [Show full text]
  • Genetics for the Practicing Dermatologist Jamison D
    Genetics for the Practicing Dermatologist Jamison D. Feramisco, MD, PhD, Hensin Tsao, MD, PhD, and Dawn H. Siegel, MD In the era of robust genome sequencing, a working understanding of genetics has become important for the clinician. For the dermatologist, understanding the flow of genetic information from genotype to phenotype can aid in the delivery of effective patient care. In this article, we will review concepts in genetics and the human genome and how they contribute to clinical dermatology. Semin Cutan Med Surg 29:127-136 © 2010 Published by Elsevier Inc. The “Gene” Redefined Phenotype Deconvolution The concept of the “gene” has been an ever evolving notion and Genetic Skin Disease 1 since its conception by Mendel in 1866. Initial work identi- The practice of medicine is focused upon linking a set of fying the basic structure of the gene was synthesized by Crick clinical phenotypes to specify and describe a single disease and presented as the central dogma of molecular biology, entity. In the past, blunt tools available for this task have outlining the linear flow of genetic information from DNA to made differentiating clinical disease difficult at times. In 2 RNA to protein. With the recent completion of the Human the era of advancing technology, molecular tools have become Genome Project, the Encyclopedia of DNA Elements (EN- more precise, and thus the ability to link basic science and clin- 3-9 CODE), and the International HapMap Project, the mean- ical medicine to define disease states has also sharpened. This ing of a genetic unit has undergone stark transformation and trend is particularly applicable to dermatology, where subtle is now defined by the set of functional products produced by differences in cutaneous phenotypes can partially discrimi- 10 a genomic sequence.
    [Show full text]