Pro-P Groups Acting on Trees with Finitely Many Maximal Vertex

Total Page:16

File Type:pdf, Size:1020Kb

Pro-P Groups Acting on Trees with Finitely Many Maximal Vertex Pro-p groups acting on trees with finitely many maximal vertex stabilizers up to conjugation Zo´eChatzidakis and Pavel Zalesskii ∗ November 18, 2020 Abstract We prove that a finitely generated pro-p group G acting on a pro-p tree T splits as a free amalgamated pro-p product or a pro-p HNN-extension over an edge stabilizer. If G acts with finitely many vertex stabilizers up to conjugation we show that it is the fundamental pro-p group of a finite graph of pro-p groups (G; Γ) with edge and vertex groups being stabilizers of certain vertices and edges of T respectively. If edge stabilizers are procyclic, we give a bound on Γ in terms of the minimal number of generators of G. We also give a criterion for a pro-p group G to be accessible in terms of the first 1 cohomology H (G; Fp[[G]]). 1 Introduction The dramatic advance of classical combinatorial group theory happened in the 1970's, when Bass-Serre theory of groups acting on trees changed completely the face of the theory. The profinite version of Bass-Serre theory was developed by Luis Ribes, Oleg Melnikov and the second author because of the absence of the classical methods of combinatorial group theory for profinite groups. However it does not work in full strength even in the pro-p case. The reason is that if a pro-p group G acts on a pro-p tree T then a maximal subtree of the quotient graph GnT does not always exist and even if it exists it does not always lift to T . As a consequence the pro-p version of Bass-Serre theory does not give subgroup structure theorems the way it does in the classical Bass-Serre theory. In fact, for infinitely generated pro-p subgroups there are counter examples. The objective of this paper is to study the situation when G has only finitely many vertex stabilizers up to conjugation and in this case we can prove the main Bass-Serre theory structure theorem. Theorem 5.1. Let G be a finitely generated pro-p group acting on a pro-p tree T with finitely many maximal vertex stabilisers up to conjugation. Then G is the fundamental group of a ∗The second author partially supported by CNPq and FAPDF. 1 reduced finite graph of finitely generated pro-p groups (G; Γ), where each vertex group G(v) and each edge group G(e) is a maximal vertex stabilizer Gv~ and an edge stabilizer Ge~ respectively (for some v;~ e~ 2 T ). In the abstract situation, a finitely generated (abstract) group G acting on a tree has a G-invariant subtree D such that GnD is finite and so has automatically finitely many maximal vertex stabilizers up to conjugation. In the pro-p situation such an invariant subtree does not exist in general and the existence of it in the case of only finitely many stabilizers up to conjugation is not clear even if vertex stabilizers are finite. Nevertheless, for a finitely generated pro-p group acting on a pro-p tree we can prove a splitting theorem into an amalgamated product or an HNN-extension. Theorem 4.2. Let G be a finitely generated pro-p group acting on a pro-p tree T without global fixed points. Then G splits non-trivially as a free amalgamated pro-p product or pro-p HNN-extension over some stabiliser of an edge of T . This in turn allows us to prove that a non virtually cyclic pro-p group acting on a pro-p tree with finite edge stabilizers has more than one end. Theorem 4.5. Let G be a finitely generated pro-p group acting on a pro-p tree with finite edge 1 ∼ stabilizers and without global fixed points. Then either G is virtually cyclic and H (G; Fp[[G]]) = 1 Fp (i.e. G has two ends) or H (G; Fp[[G]]) is infinite (i.e. G has infinitely many ends). Theorem 4.2 raises naturally the question of accessibility; namely whether we can continue to split G into an amalgamated free product or HNN-extension forever, or do we reach the situation after finitely many steps where we can not split it anymore. The importance of this is underlined also by the following observation: if a pro-p group G acting on a pro-p tree T is accessible with respect to splitting over edge stabilizers, then by Theorem 4.2 this implies finiteness of the maximal vertex stabilizers up to conjugation and so Theorem 5.1 provides the structure theorem for G. In the abstract situation, accessibility was studied by Dunwoody ([3], [4]) for splitting over finite groups, and by Bestvina and Feighn ([1]) over an arbitrary family of groups. In the pro-p case accessibility was studied by Wilkes ([24]) where a finitely generated not accessible pro-p group was constructed. For a finitely generated pro-p group acting faithfully and irreducibly on a pro-p tree (see Section 2 for definitions) no such example is known. The next theorem gives a sufficient condition of accessibility for a pro-p group; we do not know whether the converse also holds (it holds in the abstract case). 1 Theorem 6.10. Let G be a finitely generated pro-p group. If H (G; Fp[[G]]) is a finitely gen- 1 erated Fp[[G]]-module, then G is accessible. We show here that finitely generated pro-p groups are accessible with respect to cyclic subgroups and in fact give precise bounds. 1proved by G. Wilkes independently in [25]. 2 Theorem 6.6. Let G = π1(Γ; G) be the fundamental group of a finite graph of pro-p-groups, with procyclic edge groups, and assume that d(G) = d ≥ 2. Then (assuming that the graph is reduced), the vertex groups are finitely generated, the number of vertices of Γ is ≤ 2d − 1, and the number of edges of Γ is ≤ 3d − 2. Observe that Theorem 6.6 contrasts with the abstract groups situation where for finitely generated groups the result does not hold (see [5]). As a corollary we deduce the bound for pro-p limit groups (pro-p analogs of limit groups introduced in [10], see Section 6 for a precise definition). Corollary 6.7. Let G be a pro-p limit group. Then G is the fundamental group of a finite graph of finitely generated pro-p groups (G; Γ), where each edge group G(e) is infinite procyclic. Moreover, jV (Γ)j ≤ 2d − 1, and jE(Γ)j ≤ 3d − 2, where d is the minimal number of generators of G. It is worth mentioning that for abstract limit groups the best known estimate for jV (Γ)j is 1 + 4(d(G) − 1), proved by Richard Weidmann in [22, Theorem 1]. In Section 7 we investigate Howson's property for free products with procyclic amalgamation and HNN-extensions with procyclic associated subgroups. In Section 8.1 we apply the results of Section 7 to normalizers of procyclic subgroups. Theorem 8.3. Let C be a procyclic pro-p group and G = G1 qC G2 be a free amalgamated pro-p product or a pro-p HNN-extension G = HNN(G1; C; t) of Howson groups. Let U be a procyclic g g subgroup of G and N = NG(U). Assume that NGi (U ) is finitely generated whenever U ≤ Gi. If K ≤ G is finitely generated, then so is K \ N. Section 2 contains basic notions and facts of the theory of pro-p groups acting on trees used in the paper. The following sections are devoted to the proofs of the results mentioned above. Aknowledgement. This research was started while the second author was visiting the ENS as an invited professor, and the authors thank the ENS for this hospitality. 2 Notation, definitions and basic results 2.1. Notation. If a pro-p group G continuously acts on a profinite space X we call X a G- space. H1(G) denotes the first homology H1(G; Fp) and is canonically isomorphic to G=Φ(G). −1 g −1 If x 2 T and g 2 G, then Ggx = gGxg . We shall use the notation h = g hg for conjugation. If H a subgroup of G, HG will stand for the (topological) normal closure of H in G. If G is an abstract group Gb will mean the pro-p completion of G. 2.2. Conventions. Throughout the paper, unless otherwise stated, groups are pro-p, sub- groups will be closed and morphisms will be continuous. Finite graphs of groups will be proper and reduced (see Definitions 2.12 and 2.15). Actions of a pro-p group G on a profinite graph 3 Γ will a priori be supposed to be faithful (i.e., the action has no kernel), unless we consider actions on subgraphs of Γ. Next we collect basic definitions, following [17]. 2.1 Profinite graphs Definition 2.3. A profinite graph is a triple (Γ; d0; d1), where Γ is a profinite (i.e. boolean) space and d0; d1 :Γ ! Γ are continuous maps such that didj = dj for i; j 2 f0; 1g. The elements of V (Γ) := d0(G) [ d1(G) are called the vertices of Γ and the elements of E(Γ) := Γ n V (Γ) are called the edges of Γ. If e 2 E(Γ), then d0(e) and d1(e) are called the initial and terminal vertices of e. A vertex with only one incident edge is called pending.
Recommended publications
  • Combinatorial Group Theory
    Combinatorial Group Theory Charles F. Miller III March 5, 2002 Abstract These notes were prepared for use by the participants in the Workshop on Algebra, Geometry and Topology held at the Australian National University, 22 January to 9 February, 1996. They have subsequently been updated for use by students in the subject 620-421 Combinatorial Group Theory at the University of Melbourne. Copyright 1996-2002 by C. F. Miller. Contents 1 Free groups and presentations 3 1.1 Free groups . 3 1.2 Presentations by generators and relations . 7 1.3 Dehn’s fundamental problems . 9 1.4 Homomorphisms . 10 1.5 Presentations and fundamental groups . 12 1.6 Tietze transformations . 14 1.7 Extraction principles . 15 2 Construction of new groups 17 2.1 Direct products . 17 2.2 Free products . 19 2.3 Free products with amalgamation . 21 2.4 HNN extensions . 24 3 Properties, embeddings and examples 27 3.1 Countable groups embed in 2-generator groups . 27 3.2 Non-finite presentability of subgroups . 29 3.3 Hopfian and residually finite groups . 31 4 Subgroup Theory 35 4.1 Subgroups of Free Groups . 35 4.1.1 The general case . 35 4.1.2 Finitely generated subgroups of free groups . 35 4.2 Subgroups of presented groups . 41 4.3 Subgroups of free products . 43 4.4 Groups acting on trees . 44 5 Decision Problems 45 5.1 The word and conjugacy problems . 45 5.2 Higman’s embedding theorem . 51 1 5.3 The isomorphism problem and recognizing properties . 52 2 Chapter 1 Free groups and presentations In introductory courses on abstract algebra one is likely to encounter the dihedral group D3 consisting of the rigid motions of an equilateral triangle onto itself.
    [Show full text]
  • Classification and Statistics of Finite Index Subgroups in Free Products
    CLASSIFICATION AND STATISTICS OF FINITE INDEX SUBGROUPS IN FREE PRODUCTS Thomas W. Muller¨ and Jan-Christoph Schlage-Puchta 1. introduction ∗e For positive integers e and m denote by Cm the free product of e copies of the cyclic group of order m, and let Fr be the free group of rank r. Given integers r, t ≥ 0, distinct primes p1, . , pt, and positive integers e1, . , et, let ∗e1 ∗et Γ = Cp1 ∗ · · · ∗ Cpt ∗ Fr. (1) By the Kurosh subgroup theorem, a finite index subgroup ∆ ≤ Γ is again of the same ∼ ∗λ1 ∗λt form, that is, ∆ = Cp1 ∗ · · · ∗ Cpt ∗ Fµ with non-negative integers λ1, . , λt, µ. An Euler characteristic computation shows that the latter parameters are related to the index (Γ : ∆) via the relation X 1 X 1 λ 1 − + µ − 1 = (Γ : ∆) 1 − + r − 1 . (2) j p p j j j j The tuple τ(∆) := (λ1, . , λt; µ) is called the (isomorphism) type of ∆. The principal theme of the present paper is the enumeration of finite index subgroups ∆ in Γ under restrictions on τ(∆). In particular, we shall discuss, for Γ as above, the following three basic problems. (I) (Realization) Which abstract groups admitted by the Kurosh subgroup theorem are realized as finite index subgroups of Γ? (II) (Asymptotics) Find natural deformation conditions on τ ∈ Rt+1 implying an interesting asymptotic behaviour of the function sτ (Γ) counting the number of finite index subgroups in Γ of type τ. (III) (Distribution) What can we say about the distribution of isomorphism types for subgroups of index n in Γ (with respect to various weight distributions) as n tends to infinity? The motivation for these questions comes from three main sources: number theory, geometric function theory, and the theory of subgroup growth.
    [Show full text]
  • 3-Manifolds with Subgroups Z Z Z in Their Fundamental Groups
    Pacific Journal of Mathematics 3-MANIFOLDS WITH SUBGROUPS Z ⊕ Z ⊕ Z IN THEIR FUNDAMENTAL GROUPS ERHARD LUFT AND DENIS KARMEN SJERVE Vol. 114, No. 1 May 1984 PACIFIC JOURNAL OF MATHEMATICS Vol 114, No. 1, 1984 3-MANIFOLDS WITH SUBGROUPS ZΦZΦZ IN THEIR FUNDAMENTAL GROUPS E. LUFT AND D. SJERVE In this paper we characterize those 3-manifolds M3 satisfying ZΘZΘZC ^i(Λf). All such manifolds M arise in one of the following ways: (I) M = Mo # R, (II) M= Mo # R*, (III) M = Mo Uθ R*. Here 2 Λf0 is any 3-manifold in (I), (II) and any 3-manifold having P compo- nents in its boundary in (III). R is a flat space form and R* is obtained from R and some involution t: R -> R with fixed points, but only finitely many, as follows: if C,,..., Cn are disjoint 3-cells around the fixed points then R* is the 3-manifold obtained from (R - int(C, U UQ))/ί by identifying some pairs of projective planes in the boundary. 1. Introduction. In [1] it was shown that the only possible finitely generated abelian subgroups of the fundamental groups of 3-manifolds are Zn9 Z θ Z2, Z, Z θ Z and Z θ Z θ Z. The purpose of this paper is to 3 characterize all M satisfying ZΘZΘZC πx(M). To explain this characterization recall that the Bieberbach theorem (see Chapter 3 of [8]) implies that if M is a closed 3-dimensional flat space form then ZΘZΘZC πx(M). We let M,,... 9M6 denote the 6 compact connected orientable flat space forms in the order given on p.
    [Show full text]
  • [Math.GR] 2 Mar 2002 ∆ Missing”
    COXETER GROUPS, 2-COMPLETION, PERIMETER REDUCTION AND SUBGROUP SEPARABILITY Paul E. Schupp Abstract. We show that all groups in a very large class of Coxeter groups are locally quasiconvex and have uniform membership problem solvable in quadratic time. If a group in the class satisfies a further hypothesis it is subgroup separable and relevant homomorphisms are also calculable in quadratic time. The algorithm also decides if a finitely generated subgroup has finite index. §1. Introduction. Several years ago the author [S2] raised the question of whether or not small cancellation methods could be used to investigate questions about finitely gener- ated subgroups of “sufficiently nice” groups— in particular the solvability of the membership problem and the Howson property. Rips [R] replied “No” by con- ′ 1 structing, for every metric small cancellation condition C n , finitely presented groups which satisfy the condition but which have unsolvable membership prob- lem and are neither Howson nor coherent. However, recent work of McCammond and Wise [M-W] and of Arzhantseva and Olshanskii[A-O] shows that the answer is actually “Yes” in many cases. McCammond and Wise introduced the use of “distributive” small cancellation hypotheses where the condition involves how the generators are distributed among all the defining relators and the ingenious idea of “perimeter reduction” where one counts “what is missing”. In this paper we introduce the idea that if one has a “suitable” subgroup graph, ∆1(H), of a subgroup H, one can construct from it a “complete” subgroup graph, arXiv:math/0203020v1 [math.GR] 2 Mar 2002 ∆2(H) which has most of the properties of subgroup graphs in the case of free groups and which directly reveals desired information about H.
    [Show full text]
  • Surface Subgroups of Graph Groups
    Surface Subgroups of Graph Groups Herman Servatius Carl Droms College of the Holy Cross James Madison University Worcester, MA 01610 Harrisonburg, Va. 22807 Brigitte Servatius Worcester Polytechnic Institute Worcester, Ma. 01609 Abstract Let Γ = (V; E) be a graph with vertex set V and edge set E. The graph group based on Γ, FΓ, is the group generated by V , with defining relations xy = yx, one for each pair (x; y) of adjacent vertices in Γ. For n 3, the n-gon is the graph with n vertices, v ; : : : ; v , and n ≥ 1 n edges (vi; vi+1), indices modulo n. In this article we will show that if Γ has a full subgraph which is isomorphic to an n-gon, then the commutator subgroup of FΓ, FΓ0 , has a subgroup which is isomorphic to the fundamental group of the orientable surface of genus 1 + (n n 3 − 4)2 − . So, in particular, the graph group of the pentagon contains a sub- group which is isomorphic to the group of the five-holed torus. As an application, we note that this implies that many artin groups contain surface groups, see [4]. We also use this result to study the com- mutator subgroups of certain graph groups, continuing the study of subgroups of graph groups begun in [2] and [6]. We show that FΓ0 is free if and only if Γ contains no full subgraph isomorphic to any n-gon with n 4, which is an improvement on a theorem in [1]. We also ≥ show that if Γ contains no full squares, then FΓ0 is a graph group if and only if it is free; this shows that there exist graphs groups whose commutator subgroups are not graph groups.
    [Show full text]
  • Combinatorial Group Theory
    Combinatorial Group Theory Charles F. Miller III 7 March, 2004 Abstract An early version of these notes was prepared for use by the participants in the Workshop on Algebra, Geometry and Topology held at the Australian National University, 22 January to 9 February, 1996. They have subsequently been updated and expanded many times for use by students in the subject 620-421 Combinatorial Group Theory at the University of Melbourne. Copyright 1996-2004 by C. F. Miller III. Contents 1 Preliminaries 3 1.1 About groups . 3 1.2 About fundamental groups and covering spaces . 5 2 Free groups and presentations 11 2.1 Free groups . 12 2.2 Presentations by generators and relations . 16 2.3 Dehn’s fundamental problems . 19 2.4 Homomorphisms . 20 2.5 Presentations and fundamental groups . 22 2.6 Tietze transformations . 24 2.7 Extraction principles . 27 3 Construction of new groups 30 3.1 Direct products . 30 3.2 Free products . 32 3.3 Free products with amalgamation . 36 3.4 HNN extensions . 43 3.5 HNN related to amalgams . 48 3.6 Semi-direct products and wreath products . 50 4 Properties, embeddings and examples 53 4.1 Countable groups embed in 2-generator groups . 53 4.2 Non-finite presentability of subgroups . 56 4.3 Hopfian and residually finite groups . 58 4.4 Local and poly properties . 61 4.5 Finitely presented coherent by cyclic groups . 63 1 5 Subgroup Theory 68 5.1 Subgroups of Free Groups . 68 5.1.1 The general case . 68 5.1.2 Finitely generated subgroups of free groups .
    [Show full text]
  • Surface Subgroups of Graph Groups
    PROCEEDINGS OF THE AMERICAN MATHEMATICALSOCIETY Volume 106, Number 3, July 1989 SURFACE SUBGROUPS OF GRAPH GROUPS HERMAN SERVATIUS, CARL DROMS, AND BRIGITTE SERVATIUS (Communicated by Warren J. Wong) Abstract. Given a graph T , define the group Fr to be that generated by the vertices of T, with a defining relation xy —yx for each pair x, y of adjacent vertices of T. In this article, we examine the groups Fr- , where the graph T is an H-gon, (n > 4). We use a covering space argument to prove that in this case, the commutator subgroup Ff contains the fundamental group of the orientable surface of genus 1 + (n - 4)2"-3 . We then use this result to classify all finite graphs T for which Fp is a free group. To each graph T = ( V, E), with vertex set V and edge set E, we associate a presentation PT whose generators are the elements of V, and whose rela- tions are {xy = yx\x ,y adjacent vertices of T). PT can be regarded as the presentation of a &-algebra kT, of a monoid Mr, or of a group Fr, called a graph group. These objects have been previously studied by various authors [2-8]. Graph groups constitute a subclass of the Artin groups. Recall that an Artin group is defined by a presentation whose relations all take the form xyx■ ■■= yxy ■• • , where the two sides have the same length n > 1, and there is at most one such relation for any pair of generators. To each such presentation we can associate a labeled graph T, which has a vertex for each generator, and for each relation xyx ■■ ■ = yxy • • • , an edge joining x and y and labeled " n ", where n is the length of each side of the relation.
    [Show full text]
  • Exercise Set 6
    Exercise set 6 Groups acting on trees Due by May 21 You can upload your solution to one exercise to sam-up.math.ethz.ch by May 21st. You are encouraged to work in pairs, which allows you to work together on two problems and get both solutions corrected. Solutions will be presented during the exercise class of May 27th. Bass{Serre trees If G is the fundamental group of a graph of groups, then the tree constructed in Theorem 8.10 is called the Bass{Serre tree of G. With these exercises, we get familiar with the construction. Exercise 1. Let G be a free product with amalgamation (respectively, an HNN extension). Express G as the fundamental group of a graph of groups, and show that its Bass{Serre tree coincides with the tree obtained via Theorem 6.12 (respectively, Theorem 7.14). Exercise 2. Consider the two GBS groups from Exercise 7 in Exercise set 5. Describe their Bass{Serre trees: define them, draw pictures, and compute the degrees of their vertices. Finite vertex groups The goal of this section is to prove the following application of the Fundamental Theorem of Bass{Serre theory, which vastly generalizes Exercise 2 in Exercise set 3. Proposition (Bass{Serre). Let G be the fundamental group of a finite connected graph of groups with finite vertex groups. Then G is virtually free. Remark. Time permitting, by the end of the lecture we will also prove the converse. The following exercise, which is where Bass{Serre theory comes into play, tells you where to find the free subgroup.
    [Show full text]
  • Some Characterizations of Howson PC-Groups
    AN ELECTRONIC JOURNAL OF THE SOCIETAT CATALANA DE MATEMATIQUES` Some characterizations of Howson PC-groups ∗Jordi Delgado Resum (CAT) Universitat Polit`ecnica de Es demostra que, a la classe dels grups parcialment commutatius, les condicions Catalunya d'´esserHowson, ´essertotalment residualment lliure, i ´esserproducte lliure de grups [email protected] lliure-abelians, s´onequivalents. ∗Corresponding author Abstract (ENG) We show that, within the class of partially commutative groups, the conditions of being Howson, being fully residually free, and being a free product of free-abelian groups, are equivalent. Acknowledgement The author gratefully acknowledges the Keywords: PC-group, residually free, support of Universitat Polit`ecnica de Howson group. Catalunya through PhD grant number MSC (2010): 20Exx. 81--727, and the partial support from the Received: May 9, 2014. MEC (Spanish Government) through re- Accepted: May 20, 2014. search project number MTM2011-25955. http://reportsascm.iec.cat Reports@SCM 1 (2014), 33{38; DOI:10.2436/20.2002.02.3. 33 Some characterizations of Howson PC-groups In [10], the authors study the family of finitely generated partially commutative groups for which the fixed points subgroup of every endomorphism is finitely generated. Concretely, they characterize this family as those groups consisting in (finite) free products of finitely generated free-abelian groups. In this note we provide an elementary proof for two extra characterizations of this same family, namely: being Howson, and being a limit group. Moreover, we observe that, for some of the properties, no restriction in the cardinal of the generating set is needed, and the result holds in full generality (i.e.
    [Show full text]
  • Kurosh Rank of Intersections of Subgroups of Free Products of Right-Orderable Groups Yago Antol´In, Armando Martino and Inga Schwabrow
    Math. Res. Lett. c 2014 International Press Volume 21, Number 04, 649–661, 2014 Kurosh rank of intersections of subgroups of free products of right-orderable groups Yago Antol´ın, Armando Martino and Inga Schwabrow We prove that the reduced Kurosh rank of the intersection of two subgroups H and K of a free product of right-orderable groups is bounded above by the product of the reduced Kurosh ranks of H and K. In particular, taking the fundamental group of a graph of groups with trivial vertex and edge groups, and its Bass–Serre tree, our theorem becomes the desired inequality of the usual strengthened Hanna Neumann conjecture for free groups. 1. Introduction Let H and K be subgroups of a free group F, and r(H)=max{0, rank(H) − 1}. It was an open problem dating back to the 1950s to find an optimal bound of the rank of H ∩ K in terms of the ranks of H and K. In [14], Hanna Neumann proved the following: (1) r(H ∩ K) ≤ 2 · r(H) · r(K). The Hanna Neumann conjecture says that (1) holds replacing the 2 with a 1. Later, in [15], Walter Neumann improved (1) to (2) r(Hg ∩ K) ≤ 2 · r(H) · r(K), g∈K\F/H where Hg = g−1Hg. The strengthened Hanna Neumann conjecture,intro- duced by Walter Neumann, says that (2) holds replacing the 2 with a 1. These two conjectures have received a lot of attention, and recently, Igor Mineyev [13] proved that both conjectures are true (independently and at the same time, Joel Friedman also proved these conjectures (see [5, 8])).
    [Show full text]
  • Contractible N-Manifolds and the Double N-Space Property Pete Sparks University of Wisconsin-Milwaukee
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations December 2014 Contractible n-Manifolds and the Double n-Space Property Pete Sparks University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Mathematics Commons Recommended Citation Sparks, Pete, "Contractible n-Manifolds and the Double n-Space Property" (2014). Theses and Dissertations. 643. https://dc.uwm.edu/etd/643 This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. CONTRACTIBLE n-MANIFOLDS AND THE DOUBLE n-SPACE PROPERTY by Pete Sparks A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctorate of Philosophy in Mathematics at The University of Wisconsin-Milwaukee December, 2014 ABSTRACT CONTRACTIBLE n-MANIFOLDS AND THE DOUBLE n-SPACE PROPERTY by Pete Sparks The University of Wisconsin-Milwaukee, 2014 Under the Supervision of Professor Craig Guilbault We are interested in contractible manifolds M n which decompose or split as n n n M = A ∪C B where A, B, C ≈ R or A, B, C ≈ B . We introduce a 4-manifold M containing a spine which can be written as A ∪C B with A, B, and C all collapsible 4 4 which in turn implies M splits as B ∪B4 B . From M we obtain a countably infinite 4 4 collection of distinct 4-manifolds all of which split as B ∪B4 B .
    [Show full text]
  • Contractible N-Manifolds and the Double N-Space Property Pete Sparks University of Wisconsin-Milwaukee
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations December 2014 Contractible n-Manifolds and the Double n-Space Property Pete Sparks University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Mathematics Commons Recommended Citation Sparks, Pete, "Contractible n-Manifolds and the Double n-Space Property" (2014). Theses and Dissertations. 643. https://dc.uwm.edu/etd/643 This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. CONTRACTIBLE n-MANIFOLDS AND THE DOUBLE n-SPACE PROPERTY by Pete Sparks A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctorate of Philosophy in Mathematics at The University of Wisconsin-Milwaukee December, 2014 ABSTRACT CONTRACTIBLE n-MANIFOLDS AND THE DOUBLE n-SPACE PROPERTY by Pete Sparks The University of Wisconsin-Milwaukee, 2014 Under the Supervision of Professor Craig Guilbault We are interested in contractible manifolds M n which decompose or split as n n n M = A ∪C B where A, B, C ≈ R or A, B, C ≈ B . We introduce a 4-manifold M containing a spine which can be written as A ∪C B with A, B, and C all collapsible 4 4 which in turn implies M splits as B ∪B4 B . From M we obtain a countably infinite 4 4 collection of distinct 4-manifolds all of which split as B ∪B4 B .
    [Show full text]