On Subgroups of Finite Complexity in Groups Acting on Trees
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Large-Scale Geometry of Right-Angled Coxeter Groups
THE LARGE-SCALE GEOMETRY OF RIGHT-ANGLED COXETER GROUPS PALLAVI DANI Abstract. This is a survey of some aspects of the large-scale geometry of right-angled Coxeter groups. The emphasis is on recent results on their nega- tive curvature properties, boundaries, and their quasi-isometry and commen- surability classification. 1. Introduction Coxeter groups touch upon a number of areas of mathematics, such as represen- tation theory, combinatorics, topology, and geometry. These groups are generated by involutions, and have presentations of a specific form. The connection to ge- ometry and topology arises from the fact that the involutions in the group can be thought of as reflection symmetries of certain complexes. Right-angled Coxeter groups are the simplest examples of Coxeter groups; in these, the only relations between distinct generators are commuting relations. These have emerged as groups of vital importance in geometric group theory. The class of right-angled Coxeter groups exhibits a surprising variety of geometric phenomena, and at the same time, their rather elementary definition makes them easy to work with. This combination makes them an excellent source for examples for building intuition about geometric properties, and for testing conjectures. The book [Dav08] by Davis is an excellent source for the classical theory of Coxeter groups in geometric group theory. This survey focusses primarily on de- velopments that have occurred after this book was published. Rather than giving detailed definitions and precise statements of theorems (which can often be quite technical), in many cases we have tried to adopt a more intuitive approach. Thus we often give the idea of a definition or the criteria in the statement of a theorem, and refer the reader to other sources for the precise details. -
An Ascending Hnn Extension
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 134, Number 11, November 2006, Pages 3131–3136 S 0002-9939(06)08398-5 Article electronically published on May 18, 2006 AN ASCENDING HNN EXTENSION OF A FREE GROUP INSIDE SL2 C DANNY CALEGARI AND NATHAN M. DUNFIELD (Communicated by Ronald A. Fintushel) Abstract. We give an example of a subgroup of SL2 C which is a strictly ascending HNN extension of a non-abelian finitely generated free group F .In particular, we exhibit a free group F in SL2 C of rank 6 which is conjugate to a proper subgroup of itself. This answers positively a question of Drutu and Sapir (2005). The main ingredient in our construction is a specific finite volume (non-compact) hyperbolic 3-manifold M which is a surface bundle over the circle. In particular, most of F comes from the fundamental group of a surface fiber. A key feature of M is that there is an element of π1(M)inSL2 C with an eigenvalue which is the square root of a rational integer. We also use the Bass-Serre tree of a field with a discrete valuation to show that the group F we construct is actually free. 1. Introduction Suppose φ: F → F is an injective homomorphism from a group F to itself. The associated HNN extension H = G, t tgt−1 = φ(g)forg ∈ G is said to be ascending; this extension is called strictly ascending if φ is not onto. In [DS], Drutu and Sapir give examples of residually finite 1-relator groups which are not linear; that is, they do not embed in GLnK for any field K and dimension n. -
Bounded Depth Ascending HNN Extensions and Π1-Semistability at ∞ Arxiv:1709.09140V1
Bounded Depth Ascending HNN Extensions and π1-Semistability at 1 Michael Mihalik June 29, 2021 Abstract A 1-ended finitely presented group has semistable fundamental group at 1 if it acts geometrically on some (equivalently any) simply connected and locally finite complex X with the property that any two proper rays in X are properly homotopic. If G has semistable fun- damental group at 1 then one can unambiguously define the funda- mental group at 1 for G. The problem, asking if all finitely presented groups have semistable fundamental group at 1 has been studied for over 40 years. If G is an ascending HNN extension of a finitely pre- sented group then indeed, G has semistable fundamental group at 1, but since the early 1980's it has been suggested that the finitely pre- sented groups that are ascending HNN extensions of finitely generated groups may include a group with non-semistable fundamental group at 1. Ascending HNN extensions naturally break into two classes, those with bounded depth and those with unbounded depth. Our main theorem shows that bounded depth finitely presented ascending HNN extensions of finitely generated groups have semistable fundamental group at 1. Semistability is equivalent to two weaker asymptotic con- arXiv:1709.09140v1 [math.GR] 26 Sep 2017 ditions on the group holding simultaneously. We show one of these conditions holds for all ascending HNN extensions, regardless of depth. We give a technique for constructing ascending HNN extensions with unbounded depth. This work focuses attention on a class of groups that may contain a group with non-semistable fundamental group at 1. -
Combinatorial Group Theory
Combinatorial Group Theory Charles F. Miller III March 5, 2002 Abstract These notes were prepared for use by the participants in the Workshop on Algebra, Geometry and Topology held at the Australian National University, 22 January to 9 February, 1996. They have subsequently been updated for use by students in the subject 620-421 Combinatorial Group Theory at the University of Melbourne. Copyright 1996-2002 by C. F. Miller. Contents 1 Free groups and presentations 3 1.1 Free groups . 3 1.2 Presentations by generators and relations . 7 1.3 Dehn’s fundamental problems . 9 1.4 Homomorphisms . 10 1.5 Presentations and fundamental groups . 12 1.6 Tietze transformations . 14 1.7 Extraction principles . 15 2 Construction of new groups 17 2.1 Direct products . 17 2.2 Free products . 19 2.3 Free products with amalgamation . 21 2.4 HNN extensions . 24 3 Properties, embeddings and examples 27 3.1 Countable groups embed in 2-generator groups . 27 3.2 Non-finite presentability of subgroups . 29 3.3 Hopfian and residually finite groups . 31 4 Subgroup Theory 35 4.1 Subgroups of Free Groups . 35 4.1.1 The general case . 35 4.1.2 Finitely generated subgroups of free groups . 35 4.2 Subgroups of presented groups . 41 4.3 Subgroups of free products . 43 4.4 Groups acting on trees . 44 5 Decision Problems 45 5.1 The word and conjugacy problems . 45 5.2 Higman’s embedding theorem . 51 1 5.3 The isomorphism problem and recognizing properties . 52 2 Chapter 1 Free groups and presentations In introductory courses on abstract algebra one is likely to encounter the dihedral group D3 consisting of the rigid motions of an equilateral triangle onto itself. -
Beyond Serre's" Trees" in Two Directions: $\Lambda $--Trees And
Beyond Serre’s “Trees” in two directions: Λ–trees and products of trees Olga Kharlampovich,∗ Alina Vdovina† October 31, 2017 Abstract Serre [125] laid down the fundamentals of the theory of groups acting on simplicial trees. In particular, Bass-Serre theory makes it possible to extract information about the structure of a group from its action on a simplicial tree. Serre’s original motivation was to understand the structure of certain algebraic groups whose Bruhat–Tits buildings are trees. In this survey we will discuss the following generalizations of ideas from [125]: the theory of isometric group actions on Λ-trees and the theory of lattices in the product of trees where we describe in more detail results on arithmetic groups acting on a product of trees. 1 Introduction Serre [125] laid down the fundamentals of the theory of groups acting on sim- plicial trees. The book [125] consists of two parts. The first part describes the basics of what is now called Bass-Serre theory. This theory makes it possi- ble to extract information about the structure of a group from its action on a simplicial tree. Serre’s original motivation was to understand the structure of certain algebraic groups whose Bruhat–Tits buildings are trees. These groups are considered in the second part of the book. Bass-Serre theory states that a group acting on a tree can be decomposed arXiv:1710.10306v1 [math.GR] 27 Oct 2017 (splits) as a free product with amalgamation or an HNN extension. Such a group can be represented as a fundamental group of a graph of groups. -
Torsion, Torsion Length and Finitely Presented Groups 11
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo TORSION, TORSION LENGTH AND FINITELY PRESENTED GROUPS MAURICE CHIODO AND RISHI VYAS Abstract. We show that a construction by Aanderaa and Cohen used in their proof of the Higman Embedding Theorem preserves torsion length. We give a new construction showing that every finitely presented group is the quotient of some C′(1~6) finitely presented group by the subgroup generated by its torsion elements. We use these results to show there is a finitely presented group with infinite torsion length which is C′(1~6), and thus word-hyperbolic and virtually torsion-free. 1. Introduction It is well known that the set of torsion elements in a group G, Tor G , is not necessarily a subgroup. One can, of course, consider the subgroup Tor1 G generated by the set of torsion elements in G: this subgroup is always normal( ) in G. ( ) The subgroup Tor1 G has been studied in the literature, with a particular focus on its structure in the context of 1-relator groups. For example, suppose G is presented by a 1-relator( ) presentation P with cyclically reduced relator Rk where R is not a proper power, and let r denote the image of R in G. Karrass, Magnus, and Solitar proved ([17, Theorem 3]) that r has order k and that every torsion element in G is a conjugate of some power of r; a more general statement can be found in [22, Theorem 6]. As immediate corollaries, we see that Tor1 G is precisely the normal closure of r, and that G Tor1 G is torsion-free. -
Classification and Statistics of Finite Index Subgroups in Free Products
CLASSIFICATION AND STATISTICS OF FINITE INDEX SUBGROUPS IN FREE PRODUCTS Thomas W. Muller¨ and Jan-Christoph Schlage-Puchta 1. introduction ∗e For positive integers e and m denote by Cm the free product of e copies of the cyclic group of order m, and let Fr be the free group of rank r. Given integers r, t ≥ 0, distinct primes p1, . , pt, and positive integers e1, . , et, let ∗e1 ∗et Γ = Cp1 ∗ · · · ∗ Cpt ∗ Fr. (1) By the Kurosh subgroup theorem, a finite index subgroup ∆ ≤ Γ is again of the same ∼ ∗λ1 ∗λt form, that is, ∆ = Cp1 ∗ · · · ∗ Cpt ∗ Fµ with non-negative integers λ1, . , λt, µ. An Euler characteristic computation shows that the latter parameters are related to the index (Γ : ∆) via the relation X 1 X 1 λ 1 − + µ − 1 = (Γ : ∆) 1 − + r − 1 . (2) j p p j j j j The tuple τ(∆) := (λ1, . , λt; µ) is called the (isomorphism) type of ∆. The principal theme of the present paper is the enumeration of finite index subgroups ∆ in Γ under restrictions on τ(∆). In particular, we shall discuss, for Γ as above, the following three basic problems. (I) (Realization) Which abstract groups admitted by the Kurosh subgroup theorem are realized as finite index subgroups of Γ? (II) (Asymptotics) Find natural deformation conditions on τ ∈ Rt+1 implying an interesting asymptotic behaviour of the function sτ (Γ) counting the number of finite index subgroups in Γ of type τ. (III) (Distribution) What can we say about the distribution of isomorphism types for subgroups of index n in Γ (with respect to various weight distributions) as n tends to infinity? The motivation for these questions comes from three main sources: number theory, geometric function theory, and the theory of subgroup growth. -
Compressed Word Problems in HNN-Extensions and Amalgamated Products
Compressed word problems in HNN-extensions and amalgamated products Niko Haubold and Markus Lohrey Institut f¨ur Informatik, Universit¨atLeipzig {haubold,lohrey}@informatik.uni-leipzig.de Abstract. It is shown that the compressed word problem for an HNN- −1 extension hH,t | t at = ϕ(a)(a ∈ A)i with A finite is polynomial time Turing-reducible to the compressed word problem for the base group H. An analogous result for amalgamated free products is shown as well. 1 Introduction Since it was introduced by Dehn in 1910, the word problem for groups has emerged to a fundamental computational problem linking group theory, topol- ogy, mathematical logic, and computer science. The word problem for a finitely generated group G asks, whether a given word over the generators of G represents the identity of G, see Section 2 for more details. Dehn proved the decidability of the word problem for surface groups. On the other hand, 50 years after the appearance of Dehn’s work, Novikov and independently Boone proved the exis- tence of a finitely presented group with undecidable word problem, see [10] for references. However, many natural classes of groups with decidable word prob- lem are known, as for instance finitely generated linear groups, automatic groups and one-relator groups. With the rise of computational complexity theory, also the complexity of the word problem became an active research area. This devel- opment has gained further attention by potential applications of combinatorial group theory for secure cryptographic systems [11]. In order to prove upper bounds on the complexity of the word problem for a group G, a “compressed” variant of the word problem for G was introduced in [6, 7, 14]. -
3-Manifolds with Subgroups Z Z Z in Their Fundamental Groups
Pacific Journal of Mathematics 3-MANIFOLDS WITH SUBGROUPS Z ⊕ Z ⊕ Z IN THEIR FUNDAMENTAL GROUPS ERHARD LUFT AND DENIS KARMEN SJERVE Vol. 114, No. 1 May 1984 PACIFIC JOURNAL OF MATHEMATICS Vol 114, No. 1, 1984 3-MANIFOLDS WITH SUBGROUPS ZΦZΦZ IN THEIR FUNDAMENTAL GROUPS E. LUFT AND D. SJERVE In this paper we characterize those 3-manifolds M3 satisfying ZΘZΘZC ^i(Λf). All such manifolds M arise in one of the following ways: (I) M = Mo # R, (II) M= Mo # R*, (III) M = Mo Uθ R*. Here 2 Λf0 is any 3-manifold in (I), (II) and any 3-manifold having P compo- nents in its boundary in (III). R is a flat space form and R* is obtained from R and some involution t: R -> R with fixed points, but only finitely many, as follows: if C,,..., Cn are disjoint 3-cells around the fixed points then R* is the 3-manifold obtained from (R - int(C, U UQ))/ί by identifying some pairs of projective planes in the boundary. 1. Introduction. In [1] it was shown that the only possible finitely generated abelian subgroups of the fundamental groups of 3-manifolds are Zn9 Z θ Z2, Z, Z θ Z and Z θ Z θ Z. The purpose of this paper is to 3 characterize all M satisfying ZΘZΘZC πx(M). To explain this characterization recall that the Bieberbach theorem (see Chapter 3 of [8]) implies that if M is a closed 3-dimensional flat space form then ZΘZΘZC πx(M). We let M,,... 9M6 denote the 6 compact connected orientable flat space forms in the order given on p. -
Surface Subgroups of Graph Groups
Surface Subgroups of Graph Groups Herman Servatius Carl Droms College of the Holy Cross James Madison University Worcester, MA 01610 Harrisonburg, Va. 22807 Brigitte Servatius Worcester Polytechnic Institute Worcester, Ma. 01609 Abstract Let Γ = (V; E) be a graph with vertex set V and edge set E. The graph group based on Γ, FΓ, is the group generated by V , with defining relations xy = yx, one for each pair (x; y) of adjacent vertices in Γ. For n 3, the n-gon is the graph with n vertices, v ; : : : ; v , and n ≥ 1 n edges (vi; vi+1), indices modulo n. In this article we will show that if Γ has a full subgraph which is isomorphic to an n-gon, then the commutator subgroup of FΓ, FΓ0 , has a subgroup which is isomorphic to the fundamental group of the orientable surface of genus 1 + (n n 3 − 4)2 − . So, in particular, the graph group of the pentagon contains a sub- group which is isomorphic to the group of the five-holed torus. As an application, we note that this implies that many artin groups contain surface groups, see [4]. We also use this result to study the com- mutator subgroups of certain graph groups, continuing the study of subgroups of graph groups begun in [2] and [6]. We show that FΓ0 is free if and only if Γ contains no full subgraph isomorphic to any n-gon with n 4, which is an improvement on a theorem in [1]. We also ≥ show that if Γ contains no full squares, then FΓ0 is a graph group if and only if it is free; this shows that there exist graphs groups whose commutator subgroups are not graph groups. -
Volume Vs. Complexity of Hyperbolic Groups
Volume vs. Complexity of Hyperbolic Groups Nir Lazarovich∗ Abstract We prove that for a one-ended hyperbolic graph X, the size of the quotient X~G by a group G acting freely and cocompactly bounds from below the number of simplices in an Eilenberg-MacLane space for G. We apply this theorem to show that one-ended hyperbolic cubulated groups (or more generally, one-ended hyperbolic groups with globally stable cylin- ders `ala Rips-Sela) cannot contain isomorphic finite-index subgroups of different indices. 1 Introduction n Complexity vs volume. Let G act freely and cocompactly on H , n ≥ 2. For n = 2, the Gauss-Bonnet formula shows that the Euler characteristic of 2 the group G is proportional to the volume of the quotient H ~G. In higher dimensions, Gromov and Thurston [18,28] showed that the simplicial volume of n G is proportional to the hyperbolic volume of the quotient H ~G. In the above results, a topological feature of the group G is shown to be n related to the volume of the quotient H ~G. This phenomenon was extensively studied for groups acting on non-positively curved manifolds [1{3, 7, 10, 12{15]. In this work, we study the relation between topological complexity and volume in the discrete setting of group actions on hyperbolic simplicial complexes. For this purpose let us first define what we mean by \complexity" and \volume". Let G be a group. An Eilenberg-MacLane space K = K(G; 1) for G is a CW-complex such that π1(K) = G and πn(K) = 0 for all n ≥ 2. -
Groups Acting on Trees. the Theorem Will Tell Us That Such a Group Is the Fundamental Group of a Suitable Graph of Groups
GROUPS ACTING ON TREES A. Raghuram & B. Sury 1 Introduction This is an expanded version of the notes of talks given by us in the in- structional workshop on geometric group theory held in the Indian Institute of Technology in Guwahati, India during December 2002. The aim here is to give a self-contained presentation of what generally goes by the name of Bass-Serre theory. This theory studies the structure of groups acting sim- plicially on simplicial trees. The aim is to recover information about the group from its action. A principal result of this theory is that there is a combinatorially de¯ned notion of a `graph of groups' associated to this ac- tion and of a fundamental group of such an object and that the given group can be identi¯ed naturally with this fundamental group. This is in analogy with the topological result where a group acting properly discontinuously on a simply-connected space can be recovered as the fundamental group of a suitable quotient space. This theory has now been pro¯tably generalised by several people like Alperin, Bass, Culler, Morgan and Shalen to groups acting on nonarchimedean trees and to general ?-trees for ordered abelian groups. The presentation here is based on Serre's classical book titled Trees, Springer Verlag, (1990) but is meant to be more elementary; it is aimed at advanced undergraduate and beginning graduate students. In the last section, we dis- cuss some results on more general ?-trees. In another article, the second author uses these to discuss some generalisations as well as some interest- ing applications due to Culler, Formanek, Narain Gupta, Morgan, Procesi, 1 Shalen, Sidki, Tits and Voigtmann.