Classification and Statistics of Finite Index Subgroups in Free Products
CLASSIFICATION AND STATISTICS OF FINITE INDEX SUBGROUPS IN FREE PRODUCTS Thomas W. Muller¨ and Jan-Christoph Schlage-Puchta 1. introduction ∗e For positive integers e and m denote by Cm the free product of e copies of the cyclic group of order m, and let Fr be the free group of rank r. Given integers r, t ≥ 0, distinct primes p1, . , pt, and positive integers e1, . , et, let ∗e1 ∗et Γ = Cp1 ∗ · · · ∗ Cpt ∗ Fr. (1) By the Kurosh subgroup theorem, a finite index subgroup ∆ ≤ Γ is again of the same ∼ ∗λ1 ∗λt form, that is, ∆ = Cp1 ∗ · · · ∗ Cpt ∗ Fµ with non-negative integers λ1, . , λt, µ. An Euler characteristic computation shows that the latter parameters are related to the index (Γ : ∆) via the relation X 1 X 1 λ 1 − + µ − 1 = (Γ : ∆) 1 − + r − 1 . (2) j p p j j j j The tuple τ(∆) := (λ1, . , λt; µ) is called the (isomorphism) type of ∆. The principal theme of the present paper is the enumeration of finite index subgroups ∆ in Γ under restrictions on τ(∆). In particular, we shall discuss, for Γ as above, the following three basic problems. (I) (Realization) Which abstract groups admitted by the Kurosh subgroup theorem are realized as finite index subgroups of Γ? (II) (Asymptotics) Find natural deformation conditions on τ ∈ Rt+1 implying an interesting asymptotic behaviour of the function sτ (Γ) counting the number of finite index subgroups in Γ of type τ. (III) (Distribution) What can we say about the distribution of isomorphism types for subgroups of index n in Γ (with respect to various weight distributions) as n tends to infinity? The motivation for these questions comes from three main sources: number theory, geometric function theory, and the theory of subgroup growth.
[Show full text]