Review Article XB130—A Novel Adaptor Protein: Gene, Function, and Roles in Tumorigenesis

Total Page:16

File Type:pdf, Size:1020Kb

Review Article XB130—A Novel Adaptor Protein: Gene, Function, and Roles in Tumorigenesis Hindawi Publishing Corporation Scientifica Volume 2014, Article ID 903014, 9 pages http://dx.doi.org/10.1155/2014/903014 Review Article XB130—A Novel Adaptor Protein: Gene, Function, and Roles in Tumorigenesis Xiao-Hui Bai,1 Hae-Ra Cho,1,2 Serisha Moodley,1,3 and Mingyao Liu1,2,3,4 1 Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, 101 College Street, Toronto,ON,CanadaM5G1L7 2 Department of Physiology, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto,ON,CanadaM5S1A8 3 Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8 4 Department of Surgery, Faculty of Medicine, University of Toronto, 149 College Street, Toronto, ON, Canada M5T 1P5 Correspondence should be addressed to Mingyao Liu; [email protected] Received 10 February 2014; Accepted 15 May 2014; Published 5 June 2014 Academic Editor: Patrick Auberger Copyright © 2014 Xiao-Hui Bai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Several adaptor proteins have previously been shown to play an important role in the promotion of tumourigenesis. XB130 (AFAP1L2) is an adaptor protein involved in many cellular functions, such as cell survival, cell proliferation, migration, and gene and miRNA expression. XB130’s functional domains and motifs enable its interaction with a multitude of proteins involved in several different signaling pathways. As a tyrosine kinase substrate, tyrosine phosphorylated XB130 associates with thep85 regulatory subunit of phosphoinositol-3-kinase (PI3K) and subsequently affects Akt activity and its downstream signalling. Tumourigenesis studies show that downregulation of XB130 expression by RNAi inhibits tumor growth in mouse xenograft models. Furthermore, XB130 affects tumor oncogenicity by regulating the expression of specific tumour suppressing miRNAs. The expression level and pattern of XB130 has been studied in various human tumors, such as thyroid, esophageal, and gastric cancers, as well as, soft tissue tumors. Studies show the significant effects of XB130 in tumourigenesis and suggest its potential as a diagnostic biomarker and therapeutic target for cancer treatments. 1. Introduction 2. XB130: A Novel Gene and Protein All cellular functions are regulated through various signaling XB130 was first discovered in our research group and has, pathways and protein networks. Accumulating evidence sug- subsequently, been studied by several other research groups geststhatadaptorproteins,whichcontainmultipleprotein, and scientific consortia to produce a substantial amount of lipid, and DNA interaction domains and motifs, play essen- information related to XB130 gene structure, variations, and tial roles in mediating signal transduction cascades [1, 2]. tissue distribution, which is openly available to the scientific Adaptor proteins influence cell proliferation, cell survival, community. and migration through specific protein-protein and protein- lipid interactions [3]. In this review, we will define the gene 2.1. XB130 Gene Information. XB130 was discovered through andproteinstructureofthenoveladaptorprotein,XB130,and a molecular cloning process of actin filament associated illustrate its role in cellular function and human cancers. We protein 1 (AFAP1), and its apparent molecular size is of hope to draw more attention to this signaling molecule and 130 kDa [4]. XB130 is also known as actin filament asso- use it as an example to promote scientific awareness about ciated protein 1-like 2 (AFAP1L2) [5], KIAA1914 [6], and the importance of adaptor proteins in signal transduction. PI3KAP [7]. The human xb130 gene (NCBI gene ID 84632; 2 Scientifica c-Src binding and activation p85 binding Lamellipodia Lamellipodia translocation Lipid binding translocation 1 PH PH Unique region Coiled-coil 818 175–271 353–446 491–648 652–750 757–818 54YIYM57124YEEA127 457YDYV460 148YDEE151 98PDLPPPKMIP107 Proline-rich domain Figure 1: XB130 functional domains and motifs. The N-terminus of XB130 contains a proline-rich SH3 domain binding motif at aa 98–107 and three tyrosine containing SH2 domain binding sites at aa 54–57, aa 124–127, and aa 148–15. The first SH2 domain binding site contains a YXXM motif that binds the SH2 domain in the p85 subunit of PI3K. In the middle region, there are two PH domains and another SH2 domain binding site at aa 457–460. The C-terminus contains a coiled-coil region. Unigene cluster Hs.591106; Hugo gene ID 25901; Swiss- by Illumina Body Map also shows expression in lymph node, Port ID Q8N4X5) is located on chromosome 10 at 10q25.3 adipocytes, adrenal gland, breast, ovary, prostate, and testis between nucleotide positions 116,054,583 and 116,164,515 (http://www.genecard.org/)[8]. The expression of XB130 (http://www.genecards.org/)[8]. Neighboring genes are protein has also been confirmed with immunohistochemistry NHLRC2, TDRD1 (encodes a scaffold protein), VWA2 staining in human thyroid [14], submucosal glands of esoph- (involved in cytoskeleton structure stabilization), ADRB1, agus [15], and stomach [16]. ABLIM1, and PPIAP19. The proteins, von Willebrand factor A domain containing 2 (VWA2)and actin-binding LIM protein 1 (ABLIM1), are scaffold-like proteins with putative functions 2.2. XB130: A Member of AFAP Family. Like many other in cytoskeleton structural stabilization or remodeling [9, 10]. discoveries in science, XB130 was discovered serendipitously, In addition, at least 10 small nuclear polymorphisms (SNPs) while attempting to clone the human AFAP1 gene [4]. are present in the xb130 genome (http://www.genecards.org), Using the chicken AFAP1 cDNA sequence as a search query, which may relate to tissue specificity, genetically heritable XB130 was found in the human EST clone library (GenBank disease association, or cancer formation and development. accession 1154093) and showed 40% sequence homology with The human xb130 gene has 19 exons that cover the whole chicken and human AFAP1. Due to XB130’s sequence and coding sequence. Putative homologs of XB130 have been structural similarities to AFAP1, XB130 belongs to the AFAP identified from chimpanzee, mouse, rat, bovine, chicken, and family of proteins. zebra fish. The AFAP family contains three members; AFAP1, The transcript size of human xb130 is 3,751 bp in length AFAP1L1, and XB130 (AFAP1L2). All AFAP family members and encodes an 818-amino-acid protein [4]. The molecular contain two PH domains and a number of SH2 and SH3 weight of this protein by western blot analysis is approxi- binding domain motifs [5]. However, the number and loca- mately 130 kDa [4]. Furthermore, there are seven putative tion of SH2 and SH3 binding domain motifs, as well as other splicing variants based on Ensembl sequence alignment unique domains and sequences, differ in each AFAP family ENSG00000169129 [11]. XB130 also contains several tyrosine member (Figure 2). For example, AFAP1 has two SH3 binding phosphorylation sites and a proline-rich region (PRR) at motifs at the N-terminus, while AFAP1L1 and XB130 have the N-terminus, which allows XB130 to interact with Src only one SH3 binding motif [4, 5, 17]. AFAP1 and AFAP1L1 Homology 2 (SH2) and Src Homology 3 (SH3) domain have one SH2 binding motif, whereas XB130 has three at containing proteins, respectively [4]. In addition, there are the N-terminus. The C-termini of AFAP family members two pleckstrin-homology (PH) sequences located in the bear more functional differences. For instance, AFAP1 and middleoftheprotein,whichareputativephospholipid AFAP1L1 contain a leucine zipper and an actin-binding and/or membrane binding domains of XB130. Lastly, a domain (ABD), whereas XB130 only contains a coiled-coil coiled-coil domain is located at the C-terminal of XB130, domain in this region (Figure 2)[5]. The unique structural which may be involved in XB130 protein dimerization properties and arrangement of these proteins establish their (Figure 1). localization in different cellular compartments and deter- XB130 mRNA is highly expressed in human thyroid and mine their binding affinities and interactions with different spleen and moderately expressed in other organs, such as molecules that are involved in several signaling pathways that brain, pancreas, lung, and kidney [12]. According to the influence different cellular functions. For instance, AFAP1 HumanProteinAtlasdatabase,XB130proteinispresentin has a strong association with filamentous actin stress fibers thyroid, parathyroid, brain, kidney, skin, and gastrointesti- involved in cytoskeletal remodeling, focal adhesion forma- nal tracks, which include esophagus, stomach, and colon tion, and mechanotransduction [17, 18]. AFAP1L1 localizes (http://www.proteinatlas.org/)[13]. RNA sequence analysis at the cell periphery in cytoskeletal outgrowths, known as Scientifica 3 AFAP1 1 PH PH Leucine zipper ABD 730 AFAP1L1 1 PH PH Leucine zipper ABD 768 XB130/ 1 Unique region AFAP1L2 PH PH Coiled-coil 818 Figure 2: AFAP family proteins. XB130 shares both sequence and structural similarities to the AFAP family of proteins. GSTSrc GAP Grb2 Nckp85 PLC Shc WCL and in vitro [4]. XB130 also binds to the SH2 domain of Lck XB130- kinase, which is expressed in colorectal cancer cells [22]. Using the GST-fusion protein pull-down assay, it has been shown that XB130 binds SH2 domain containing proteins, such
Recommended publications
  • Gene Section Review
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL INIST -CNRS Gene Section Review AFAP1L2 (actin filament associated protein 1- like 2) Xiaohui Bai, Serisha Moodley, Hae-Ra Cho, Mingyao Liu Latner Thoracic Surgery Research Laboratoires, University Health Network, Toronto General Research Institute, University of Toronto, Toronto, Ontario, Canada (XB, SM, HRC, ML) Published in Atlas Database: January 2014 Online updated version : http://AtlasGeneticsOncology.org/Genes/AFAP1L2ID52197ch10q25.html DOI: 10.4267/2042/54026 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2014 Atlas of Genetics and Cytogenetics in Oncology and Haematology Abstract Identity Review on AFAP1L2, with data on DNA/RNA, on Other names: KIAA1914, XB130 the protein encoded and where the gene is HGNC (Hugo): AFAP1L2 implicated. Location: 10q25.3 Figure 1. XB130 chromosomal location and neighbour genes. A. xb130 gene is located on chromosome 10, at 10q25.3 by fluorescence in situ hybridization (FISH). B. Diagram of xb130 neighbour genes between 115939029 and 116450393. Atlas Genet Cytogenet Oncol Haematol. 2014; 18(9) 628 AFAP1L2 (actin filament associated protein 1-like 2) Bai X, et al. Figure 2. XB130 functional domains and motifs. Human XB130 has 818 amino acids. It contains the following motif/domains: proline-rich region: residues 98-107; tyrosine phosphorylation motif: residues 54-57, 124-127; 148-151; 457-460; PH domain: residues 175-272; 353-445; coiled-coil region: residues 652-749. approximately 130 kDa by western blotting (Xu et DNA/RNA al., 2007). As an adaptor protein, XB130 has no Note enzymatic domains or activity.
    [Show full text]
  • XB130: in Silico and in Vivo Studies of a Novel Signal Adaptor Protein
    XB130: in silico and in vivo studies of a novel signal adaptor protein By Matthew Rubacha A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Physiology University of Toronto © Copyright by Matthew Rubacha 2009 Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-59565-7 Our file Notre référence ISBN: 978-0-494-59565-7 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriété du droit d’auteur ownership and moral rights in this et des droits moraux qui protège cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Stimulus-Dependent Dissociation Between XB130 and Tks5 Scaffold Proteins Promotes Airway Epithelial Cell Migration
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 47 Research Paper: Pathology Stimulus-dependent dissociation between XB130 and Tks5 scaffold proteins promotes airway epithelial cell migration Serisha Moodley1,2, Mathieu Derouet2, Xiao Hui Bai2, Feng Xu3, Andras Kapus1,4, Burton B. Yang1,5 and Mingyao Liu1,2 1 Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada 2 Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Canada 3 Advanced Optical Microscopy Facility, UHN, Toronto, Canada 4 Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Canada 5 Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada Correspondence to: Mingyao Liu, email: [email protected] Keywords: actin filament associate protein 1-like 2, SH3PXD2A, lamellipodia, podosomes, lung repair, Pathology Section Received: August 26, 2016 Accepted: November 02, 2016 Published: November 09, 2016 ABSTRACT Repair of airway epithelium after injury requires migration of neighboring epithelial cells to injured areas. However, the molecular mechanisms regulating airway epithelial cell migration is not well defined. We have previously shown that XB130, a scaffold protein, is required for airway epithelial repair and regeneration in vivo, and interaction between XB130 and another scaffold protein, Tks5, regulates cell proliferation and survival in human bronchial epithelial cells. The objective of the present study was to determine the role of XB130 and Tks5 interaction in airway epithelial cell migration. Interestingly, we found that XB130 only promotes lateral cell migration, whereas, Tks5 promotes cell migration/invasion via proteolysis of extracellular matrix. Upon stimulation with EGF, PKC activator phorbol 12, 13-dibutyrate or a nicotinic acetylcholine receptor ligand, XB130 and Tks5 translocated to the cell membrane in a stimulus-dependent manner.
    [Show full text]
  • RET Gene Fusions in Malignancies of the Thyroid and Other Tissues
    G C A T T A C G G C A T genes Review RET Gene Fusions in Malignancies of the Thyroid and Other Tissues Massimo Santoro 1,*, Marialuisa Moccia 1, Giorgia Federico 1 and Francesca Carlomagno 1,2 1 Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; [email protected] (M.M.); [email protected] (G.F.); [email protected] (F.C.) 2 Institute of Endocrinology and Experimental Oncology of the CNR, 80131 Naples, Italy * Correspondence: [email protected] Received: 10 March 2020; Accepted: 12 April 2020; Published: 15 April 2020 Abstract: Following the identification of the BCR-ABL1 (Breakpoint Cluster Region-ABelson murine Leukemia) fusion in chronic myelogenous leukemia, gene fusions generating chimeric oncoproteins have been recognized as common genomic structural variations in human malignancies. This is, in particular, a frequent mechanism in the oncogenic conversion of protein kinases. Gene fusion was the first mechanism identified for the oncogenic activation of the receptor tyrosine kinase RET (REarranged during Transfection), initially discovered in papillary thyroid carcinoma (PTC). More recently, the advent of highly sensitive massive parallel (next generation sequencing, NGS) sequencing of tumor DNA or cell-free (cfDNA) circulating tumor DNA, allowed for the detection of RET fusions in many other solid and hematopoietic malignancies. This review summarizes the role of RET fusions in the pathogenesis of human cancer. Keywords: kinase; tyrosine kinase inhibitor; targeted therapy; thyroid cancer 1. The RET Receptor RET (REarranged during Transfection) was initially isolated as a rearranged oncoprotein upon the transfection of a human lymphoma DNA [1].
    [Show full text]
  • Supplementary Material
    BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Neurol Neurosurg Psychiatry Page 1 / 45 SUPPLEMENTARY MATERIAL Appendix A1: Neuropsychological protocol. Appendix A2: Description of the four cases at the transitional stage. Table A1: Clinical status and center proportion in each batch. Table A2: Complete output from EdgeR. Table A3: List of the putative target genes. Table A4: Complete output from DIANA-miRPath v.3. Table A5: Comparison of studies investigating miRNAs from brain samples. Figure A1: Stratified nested cross-validation. Figure A2: Expression heatmap of miRNA signature. Figure A3: Bootstrapped ROC AUC scores. Figure A4: ROC AUC scores with 100 different fold splits. Figure A5: Presymptomatic subjects probability scores. Figure A6: Heatmap of the level of enrichment in KEGG pathways. Kmetzsch V, et al. J Neurol Neurosurg Psychiatry 2021; 92:485–493. doi: 10.1136/jnnp-2020-324647 BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Neurol Neurosurg Psychiatry Appendix A1. Neuropsychological protocol The PREV-DEMALS cognitive evaluation included standardized neuropsychological tests to investigate all cognitive domains, and in particular frontal lobe functions. The scores were provided previously (Bertrand et al., 2018). Briefly, global cognitive efficiency was evaluated by means of Mini-Mental State Examination (MMSE) and Mattis Dementia Rating Scale (MDRS). Frontal executive functions were assessed with Frontal Assessment Battery (FAB), forward and backward digit spans, Trail Making Test part A and B (TMT-A and TMT-B), Wisconsin Card Sorting Test (WCST), and Symbol-Digit Modalities test.
    [Show full text]
  • Original Article Expression of XB130 in Human Ductal Breast Cancer
    Int J Clin Exp Pathol 2015;8(5):5300-5308 www.ijcep.com /ISSN:1936-2625/IJCEP0006785 Original Article Expression of XB130 in human ductal breast cancer Jiacun Li1, Wanli Sun1, Hui Wei2, Xiurong Wang3, Hongjun Li1, Zhengjun Yi1 1Department of Clinical Laboratory, The Affiliated Hospital of Weifang Medical College, Weifang, China; 2Department of Hepatobiliary Surgery,The People’s Hospital of Zhangqiu, Jinnan, China; 3Department of Ultrasonography, The People’s Hospital of Zhangqiu, Jinnan, China Received February 6, 2015; Accepted March 30, 2015; Epub May 1, 2015; Published May 15, 2015 Abstract: Objectives: XB130 is involved in gene regulation, cell proliferation, cell survival, cell migration, and tu- morigenesis. In the present study, we first evaluated the expression of the XB130 and its prognostic significance in breast cancer. Then we evaluated whether XB130 could be a target for therapy in breast cancer. Materials and methods: Immunohistochemistry was used to assess the level of XB130 protein in surgically resected, formalin- fixed, paraffin-embedded breast cancer specimens. Associations between XB130 and the postoperative prognosis of patients with breast cancer were evaluated. We evaluated the effect of XB130 inhibited by RNA interference on proliferation, invasion and apoptosis in vitro in a metastatic subclone of MCF-7 breast cancer cell line (LM-MCF-7). The effect of XB130 silencing alone or in combination with gemcitabine on LM-MCF-7 cells apoptosis was also investigated. Results: XB130 protein was present in the cytoplasm of malignant cells, and not in the normal breast tissues. There was correlation between the presence of XB130 in tumour cells and lymph node status, tumor clas- sification and clinical stage.
    [Show full text]
  • Actin Filament-Associated Protein 1-Like 1 Mediates Proliferation And
    LAB/IN VITRO RESEARCH e-ISSN 1643-3750 © Med Sci Monit, 2018; 24: 215-224 DOI: 10.12659/MSM.905900 Received: 2017.06.24 Accepted: 2017.07.17 Actin Filament-Associated Protein 1-Like 1 Published: 2018.01.11 Mediates Proliferation and Survival in Non- Small Cell Lung Cancer Cells Authors’ Contribution: ABE 1,2 Meng Wang 1 Graduate School, Tianjin Medical University, Tianjin, P.R. China Study Design A D 2 Xingpeng Han 2 Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, P.R. China Data Collection B 3 Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Statistical Analysis C B 2 Wei Sun Tianjin, P.R. China Data Interpretation D C 2 Xin Li Manuscript Preparation E F 3 Guohui Jing Literature Search F Funds Collection G AG 2 Xun Zhang Corresponding Author: Xun Zhang, e-mail: [email protected] Source of support: Departmental sources Background: The actin filament-associated protein (AFAP) family consists of 3 novel adaptor proteins: AFAP1, AFAP1L1, and AFAP1L2/XB130. Although evidence shows that AFAP1 and AFAP1L2 play an oncogenic role, the effect of AFAP1L1 on tumor cell behavior has not been fully elucidated, and it remains unknown whether AFAP1L1 could be a prognostic marker and/or therapeutic target of lung cancer. Material/Methods: Human A549 non-small cell lung cancer (NSCLC) cells were used in this study. AFAP1L1 gene was knocked down by AFAP1L1 short hairpin RNA (shRNA) transfection. Cell proliferation was analyzed using Celigo image cytom- etry and MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay, cell cycle progression was assessed with flow cytometry, and cell apoptosis was determined by flow cytometry after annexin-n staining.
    [Show full text]
  • XB130 Is Overexpressed in Prostate Cancer and Involved in Cell Growth and Invasion
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 37 Research Paper XB130 is overexpressed in prostate cancer and involved in cell growth and invasion Bin Chen1,2,*, Mengying Liao3,*, Qiang Wei4,*, Feiye Liu5, Qinsong Zeng6, Wei Wang6, Jun Liu6, Jianing Hou7, Xinpei Yu8,9, Jian Liu9 1Department of Science and Training, General Hospital of Guangzhou Military Command of People’s Liberation Army, Guangzhou, Guangdong, China 2Guangzhou Huabo Biopharmaceutical Research Institute, Guangzhou, Guangdong, China 3Department Of Pathology, Peking University Shenzhen Hospital, Shenzhen, China 4Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China 5Cancer Center, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, China 6Department of Urology, General Hospital of Guangzhou Military Command of People’s Liberation Army, Guangzhou, Guangdong, China 7Sun Yat-Sen University, Guangzhou, China 8Guangdong Provincial Key Laboratory of Geriatric Infection and Organ Function Support and Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Guangzhou, Guangdong, China 9Center for Geriatrics, General Hospital of Guangzhou Military Command of People’s Liberation Army, Guangzhou, Guangdong, China *These authors contributed equally to this work Correspondence to: Xinpei Yu, email: [email protected] Jian Liu, email: [email protected] Keywords: XB130, adaptor protein, proliferation, invasion, Akt Received: January 27, 2016 Accepted: June 29, 2016 Published: August 05, 2016 ABSTRACT XB130 is a cytosolic adaptor protein involved in various physiological processes and oncogenesis of certain malignancies, but its role in the development of prostate cancer remains unclear. In current study, we examined XB130 expression in prostate cancer tissues and found that XB130 expression was remarkably increased in prostate cancer tissues and significantly correlated with increased prostate specific antigen (PSA), free PSA (f-PSA), prostatic acid phosphatase (PAP) and T classification.
    [Show full text]
  • XB130 Mediates Cancer Cell Proliferation and Survival Through Multiple Signaling Events Downstream of Akt
    XB130 Mediates Cancer Cell Proliferation and Survival through Multiple Signaling Events Downstream of Akt Atsushi Shiozaki1, Grace Shen-Tu1, Xiaohui Bai1, Daisuke Iitaka1, Valentina De Falco3, Massimo Santoro3, Shaf Keshavjee1,2, Mingyao Liu1,2* 1 Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Ontario, Canada, 2 Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada, 3 Dipartimento di Biologia e Patologia Cellulare e Molecolare, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR ‘G. Salvatore’, Naples, Italy Abstract XB130, a novel adaptor protein, mediates RET/PTC chromosome rearrangement-related thyroid cancer cell proliferation and survival through phosphatidyl-inositol-3-kinase (PI3K)/Akt pathway. Recently, XB130 was found in different cancer cells in the absence of RET/PTC. To determine whether RET/PTC is required of XB130-related cancer cell proliferation and survival, WRO thyroid cancer cells (with RET/PTC mutation) and A549 lung cancer cells (without RET/PTC) were treated with XB130 siRNA, and multiple Akt down-stream signals were examined. Knocking-down of XB130 inhibited G1-S phase progression, and induced spontaneous apoptosis and enhanced intrinsic and extrinsic apoptotic stimulus-induced cell death. Knocking- down of XB130 reduced phosphorylation of p21Cip1/WAF1, p27Kip1, FOXO3a and GSK3b, increased p21Cip1/WAF1protein levels and cleavages of caspase-8 and-9. However, the phosphorylation of FOXO1 and the protein levels of p53 were not affected by XB130 siRNA. We also found XB130 can be phosphorylated by multiple protein tyrosine kinases. These results indicate that XB130 is a substrate of multiple protein tyrosine kinases, and it can regulate cell proliferation and survival through modulating selected down-stream signals of PI3K/Akt pathway.
    [Show full text]
  • XB130 Enhances Invasion and Migration of Human Colorectal Cancer Cells by Promoting Epithelial‑Mesenchymal Transition
    5592 MOLECULAR MEDICINE REPORTS 16: 5592-5598, 2017 XB130 enhances invasion and migration of human colorectal cancer cells by promoting epithelial‑mesenchymal transition JIANCHENG SHEN1*, CHANG'E JIN2*, YONGLIN LIU3, HEPING RAO4, JINRONG LIU5 and JIE LI6 1Clinical Laboratory, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang 312499; 2Intensive Care Unit, Laigang Hospital Affiliated to Taishan Medical University, Laiwu, Shandong 272009; 3Clinical Laboratory, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310002; 4Department of Nursing, School of Medicine, Quzhou College of Technology, Quzhou, Zhejiang 324000; 5Department of Child Healthcare; 6Department of Infectious Disease, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China Received October 16, 2016; Accepted June 8, 2017 DOI: 10.3892/mmr.2017.7279 Abstract. The expression of XB130 is associated with inva- result of EMT inhibition. Thus, upregulation of XB130 may sion and migration of many tumor cells, but its roles in human underlie some of the tumorigenic events observed in human colorectal cancer (CRC) remains unknown. To investigate this, CRCs. XB130 may be a promising target for CRC therapy in protein expression levels of XB130 in numerous human CRC humans; further mechanistic studies exploring the function of cell lines were compared with a normal colorectal mucosa cell XB130 in CRC cells are warranted. line by western blotting. Knockdown of XB130 using small interfering (si)RNA was performed to assess the effects on cell Introduction invasion and migration in a Transwell assay and a scratch test. Western blotting was also used to quantify the levels of proteins Colorectal cancer (CRC) is one of the most common malig- associated with epithelial-mesenchymal transition (EMT), nancies in the world, accounting for 10% of all cancers (1,2).
    [Show full text]
  • A New Member of the AFAP Family, AFAP1L1, Binds to Cortactin and Localizes to Invadosomes
    Graduate Theses, Dissertations, and Problem Reports 2011 A New Member of the AFAP Family, AFAP1L1, Binds to Cortactin and Localizes to Invadosomes Brandi Nicole Snyder West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Snyder, Brandi Nicole, "A New Member of the AFAP Family, AFAP1L1, Binds to Cortactin and Localizes to Invadosomes" (2011). Graduate Theses, Dissertations, and Problem Reports. 3379. https://researchrepository.wvu.edu/etd/3379 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. A New Member of the AFAP Family, AFAP1L1, Binds to Cortactin and Localizes to Invadosomes Brandi Nicole Snyder Dissertation submitted to the School of Medicine at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Cancer Cell Biology
    [Show full text]
  • XB130 Promotes Proliferation and Invasion of Gastric Cancer Cells
    Shi et al. Journal of Translational Medicine 2014, 12:1 http://www.translational-medicine.com/content/12/1/1 RESEARCH Open Access XB130 promotes proliferation and invasion of gastric cancer cells Min Shi1†, Dayong Zheng1†, Li Sun1, Lin Wang1, Li Lin1, Yajun Wu1, Minyu Zhou1, Wenjun Liao1, Yulin Liao2, Qiang Zuo1* and Wangjun Liao1* Abstract Background: XB130 has been reported to be expressed by various types of cells such as thyroid cancer and esophageal cancer cells, and it promotes the proliferation and invasion of thyroid cancer cells. Our previous study demonstrated that XB130 is also expressed in gastric cancer (GC), and that its expression is associated with the prognosis, but the role of XB130 in GC has not been well characterized. Methods: In this study, we investigated the influence of XB130 on gastric tumorigenesis and metastasis in vivo and in vitro using the MTT assay, clonogenic assay, BrdU incorporation assay, 3D culture, immunohistochemistry and immunofluorescence. Western blot analysis was also performed to identify the potential mechanisms involved. Results: The proliferation, migration, and invasion of SGC7901 and MNK45 gastric adenocarcinoma cell lines were all significantly inhibited by knockdown of XB130 using small hairpin RNA. In a xenograft model, tumor growth was markedly inhibited after shXB130-transfected GC cells were implanted into nude mice. After XB130 knockdown, GC cells showed a more epithelial-like phenotype, suggesting an inhibition of the epithelial-mesenchymal transition (EMT) process. In addition, silencing of XB130 reduced the expression of p-Akt/Akt, upregulated expression of epithelial markers including E-cadherin, α-catenin and β-catenin, and downregulated mesenchymal markers including fibronectin and vimentin.
    [Show full text]