Re-Examining the Burgess Shale a Hundred

Total Page:16

File Type:pdf, Size:1020Kb

Re-Examining the Burgess Shale a Hundred The American Geological Institute 4220 King Street, Alexandria, VA 22302-1502, U.S.A. 703-379-2480; Fax: 703-379-7563; [email protected] www.earthmagazine.org Re-examining the Burgess Shale David B. Williams EARTH Vol. 54 (No. 8), p. 30 REPRODUCTION: More than one photocopy of an item from EARTH may be made provided that fees are paid directly to the Copyright Clearance Center, 222 Rosewood Dr., Danvers, MA 01923, USA. Phone: (978)750-8400. Fax: (978)646-8600. Any other form of reproduction requires special permission from and is subject to fees by EARTH. Information about obtaining reprints of this article or about obtaining permission to reproduce this article in whole or in part can be found by e-mailing [email protected]. EARTH is published monthly for a base subscription rate of $34.50 a year (single copies $4.99) by the American Geological Institute. © 2009 American Geological Institute. Standard mail, nonprofit postage paid at Denver, Colo., and at other mailing offices. Claims for missing issues will be honored only up to six months. Issues undelivered through failure to notify EARTH of address change will not be replaced. www.earthmagazine.org Trends and Innovations Re-examining the Burgess Shale A hundred years after it was discovered, the world’s most famous fossil site still holds surprises David B. Williams bout 505 million years ago, the continent that would become North America straddled the equator. With no terrestrial plants or animals, the land was a bar- ren landscape. The warm, shallow sea bordering Athe continent, however, hosted a carbonated reef teeming with a diverse array of organisms, most of which were relatively small bottom-dwellers. Periodically, the animals would get washed over the reef and deposited at its base, where their bodies accumulated in the muddy sediments. Today, these creatures are beautifully preserved in the Burgess Shale. The Find “The Burgess Shale is arguably the most important fossil site Charles Doolittle Walcott, director of the Smithsonian’s in the world,” says Robert Gaines, a paleoecologist at Pomona National Museum of Natural History in Washington, D.C., College in Claremont, Calif. The site’s unique abundance had been collecting fossils for more than four decades when and diversity, especially of soft-bodied creatures, highlight he discovered the Burgess locality on Aug. 31, 1909. He was one of the most critical events in evolution — the Cambrian on a steep rocky slope, high in the Canadian Rockies in British Explosion (540 million to 525 million years ago), which Gaines Columbia’s Yoho National Park, when he observed numerous calls a fundamental divide in the geologic record. Before the smooth, dark gray rocks dotted with what Walcott recognized divide, the world, or at least the rock record, appears devoid as fossil crustaceans. They were, however, crustaceans unlike of life except for a smattering of microbes. But in Cambrian any he, or any other paleontologist, had ever seen. rocks, paleontologists find a planet “that’s literally teeming He drew three of the fossils in his diary and wrote, “We with animals,” he says. found a remarkable group of Phyllopod Crustaceans. Took This month marks the centennial anniversary of the dis- a large number of fine samples to camp.” Over the next 15 covery of the Burgess Shale. Although scientists have been years, Walcott returned seven times to his quarry site between mining the Burgess Shale for bizarre and unique creatures Wapta Mountain and Mount Field, about 70 kilometers north- for a century, the fossil site — and especially the fossil collec- west of Banff in Alberta, Canada. Collecting was a family tions currently sitting in museum drawers — still have a lot affair, as his wife and several of their children joined him. of surprises for scientists. (Walcott honored his son Sidney by naming the first formally CourtesyBottom: of the Smithsonian Institution; Robert top: Gaines 30 EARTH August 2009 www.earthmagazine.org described fossil from the Burgess The Site Sidneyia inexpectans.) They eventually Once an unknown and isolated collected more than 65,000 specimens, mountainside, the Burgess Shale quar- now housed at the Smithsonian. ries became a UNESCO World Heritage Walcott hoped to write a definitive Site in 1981 to prevent over-collecting of study on his Burgess fossils. He pub- fossils. Located between Mount Field lished his first paper in April 1910 and and Wapta Mountain, Walcott’s original another five over the next decade. He quarry has produced many of the best called these preliminary reports, but he fossils. In 1924, Harvard University pro- never went further. The site remained fessor Percy Raymond opened a second somewhat in anonymity until the 1960s, quarry. Recently, researchers have also when paleontologist Harry Whittington started to find other fossil-bearing sites and two paleontology graduate students on nearby mountains. at Cambridge University in England, The dominant fossils found to date Simon Conway Morris and Derek Briggs, are arthropods, the largest animal phy- began working on the site. lum, which includes insects, spiders and Top left: Burgess Shale discovery site in the Canadian Rockies today. Left and below: Charles Walcott and his crew as they discovered the Burgess Shale in 1909. Top: Burgessia bella, a Middle Cambrian arthropod found in the Burgess Shale, lived about 505 million years ago. Above: Jean-Bernard Caron at the Burgess Shale site in 2007. Below: Caron at the site in 2008. Bottom left: Courtesy of the Smithsonian Institution; bottom right: Robert Gaines; top and middle right: With permission of Parks Canada © Royal Ontario Museum 2008. Photo Credit: J.B. Caron. All rights reserved. All Caron. J.B. Credit: Ontario Museum 2008. Photo © Royal Canada left:permissionBottom of Parks CourtesyWith of the Smithsonian Institution; right: Robert bottom Gaines; and middle right: top www.earthmagazine.org EARTH August 2009 31 Trends and Innovations Right: Reconstruction of Hurdia victoria. Below: The most well-preserved fossil specimen of Hurdia victoria, which was collected by Charles Walcott. The fossil was rediscovered in the drawers of the Royal Ontario Museum and re-examined a couple years ago. crustaceans, as well as extinct groups must have been suppressed; otherwise Gould’s landmark book on the Burgess such as trilobites. But sponges, worms, tissues would have broken down in Shale, “Wonderful Life.” sea pens and one chordate (perhaps weeks and not been preserved. Initially, When Walcott studied his fossils, he our earliest ancestor, Pikaia), have also Gaines suggests, an event such as a placed, or as some say, “shoehorned,” been found in abundance, along with muddy, swirling turbidity current or a most of them into established groups of the single-celled organisms cyanobac- landslide carried the animals deep into fossil lineages. To Gould, Walcott “mis- teria, bacteria and dinoflagellates. Part the ocean and entombed them under interpreted these fossils in a comprehen- of what makes the Burgess so valuable beds of clay-sized particles. Secondarily, sive and thoroughly consistent manner to science is that more than 85 percent a chemical cement of inorganic carbon- arising directly from his conventional of the preserved fauna are soft-bodied, ates developed atop the fossils, which view of life.” Gould proposed that many an unprecedented level of preservation. sealed them from microbial decompos- of the animals seen in the Burgess were In fact, such preservation is so rare that ers. “Several processes contributed to from groups that no longer existed and paleontologists now refer to this mode the chemical deposition of the carbon- had not existed since the Cambrian. In of preservation as Burgess Shale-type ates, most of which no longer occur his view, the Burgess Shale represented fossilization. in today’s ocean,” he says. “It led to a a time of evolutionary experimentation, Nine high-quality Burgess Shale-type type of preservation unique in the fos- which led to many failed body plans. sites occur throughout the world — two sil record.” Gould’s conclusion upset many people, in Canada, three in China, three in Utah in part because of the way he treated and one in Greenland — with another 40 Evolution Walcott, and in part by upsetting the or so containing a minor component of Biologists since at least Charles Darwin paradigm of a continuously and gradu- Burgess Shale-type fossilization. In each have debated how ancient branches of ally branching tree of life. locality, dark-colored films preserve the evolution connect, but the discovery of More recently, paleontologists have biota as two-dimensional compression the complete and well-preserved record gotten better insights into these long-sim- fossils. “What we are seeing are guts, of Cambrian life in the Burgess Shale has mering questions, prompted by discover- eyes and gills preserved as carbon. It’s a led to even more fundamental questions ies of other Burgess Shale-type deposits, singular type of process,” Gaines says. in evolution: Did some change in the primarily the older Chengjiang fossils in “Two central questions of the Burgess environment 540 million years ago allow China. New work on the Burgess itself — are ‘Why were these fossils preserved for the preservation of unusual biota that both fieldwork and new investigations this way?’ and ‘Why does it not happen had only recently evolved, or were long- of museum collections that haven’t been again?’” he says. Gaines has recently evolved biota finally preserved in an thoroughly examined in years — has also proposed a new mechanism for Burgess unusual environment? What is the rela- produced new insights. Shale-type fossilization, based on 53 fos- tionship between the Burgess biota and Jean-Bernard Caron, associate curator sils from 11 sites. modern animals? The discussion took an of invertebrate paleontology at the Royal Central to his argument is that the nor- intense upturn in the late 1980s, particu- Ontario Museum in Canada, which mal means of decay in marine sediments larly after the publication of Stephen Jay houses the largest collection of Burgess (2008).
Recommended publications
  • Discussion Acta Palaeontologica Polonica 63 (1): 105– 110, 2018
    Discussion Acta Palaeontologica Polonica 63 (1): 105– 110, 2018 Reply to Comment on “Aysheaia prolata from the Utah Wheeler Formation (Drumian, Cambrian) is a frontal appendage of the radiodontan Stanleycaris” with the formal description of Stanleycaris STEPHEN PATES, ALLISON C. DALEY, and JAVIER ORTEGA-HERNÁNDEZ As part of a comprehensive examination of all radiodontans extend beyond the fossil margins into the rock matrix, demon- from Cambrian localities in the USA, Pates et al. (2017a, b) strating that they are not part of the fossil specimen. and Pates and Daley (2017) revised the taxonomic affinities of several described specimens. This included the reinter- Antenniform frontal appendage.—There are no features that distinguish the structure regarded by Gámez Vintaned et al. pretation of two putative lobopodians, one from the Wheeler (2011) as an antenniform limb, and the interpretation of this Formation (Utah, USA) and one from the Valdemiedes For- feature as a small burrow is more compelling as it extends into mation (Spain), as frontal appendages of the radiodontan the surrounding matrix. Structures identified as “pores” are like- genera Stanleycaris and Caryosyntrips respectively. In their ly plucked mineral grains approximately aligned in this region, comment, Gámez Vintaned and Zhuravlev (2018) disagree and other unaligned voids can be seen elsewhere in the SEM with these conclusions and raise three topics for discussion: images (Gámez Vintaned et al. 2011: fig. 12.5h, k). (i) anatomical features they suggest support a lobopodian affinity for “Mureropodia”; (ii) the identity of Caryosyntrips Proboscis with retractor-protractor muscle system.—The as a radiodontan, and the assignment of certain specimens to presence of a fleshy proboscis among lobopodians has only been this genus; and (iii) the nomenclatural status of Stanleycaris reliably documented in the Chengjiang Onychodictyon ferox (Ou hirpex as an invalid taxon.
    [Show full text]
  • The Cambrian Explosion: a Big Bang in the Evolution of Animals
    The Cambrian Explosion A Big Bang in the Evolution of Animals Very suddenly, and at about the same horizon the world over, life showed up in the rocks with a bang. For most of Earth’s early history, there simply was no fossil record. Only recently have we come to discover otherwise: Life is virtually as old as the planet itself, and even the most ancient sedimentary rocks have yielded fossilized remains of primitive forms of life. NILES ELDREDGE, LIFE PULSE, EPISODES FROM THE STORY OF THE FOSSIL RECORD The Cambrian Explosion: A Big Bang in the Evolution of Animals Our home planet coalesced into a sphere about four-and-a-half-billion years ago, acquired water and carbon about four billion years ago, and less than a billion years later, according to microscopic fossils, organic cells began to show up in that inert matter. Single-celled life had begun. Single cells dominated life on the planet for billions of years before multicellular animals appeared. Fossils from 635,000 million years ago reveal fats that today are only produced by sponges. These biomarkers may be the earliest evidence of multi-cellular animals. Soon after we can see the shadowy impressions of more complex fans and jellies and things with no names that show that animal life was in an experimental phase (called the Ediacran period). Then suddenly, in the relatively short span of about twenty million years (given the usual pace of geologic time), life exploded in a radiation of abundance and diversity that contained the body plans of almost all the animals we know today.
    [Show full text]
  • The Morphology and Evolutionary Significance of the Anomalocaridids
    !"#$ %&'%( )*+'*'&&'(,', -.---'/( ! " #$%%&&&'&& $ ($ $)*$ + , $) -.)%&&)*$ $ $ ) - ) /0)0& ) )1234/56467706//%868) - && 7&& 9 $ :. , ; $9 $! + )*$ $$21$ . +$ 6 < ) # . $ $ $ +$$ +$ 6 $ $ $ $ $< $ + )= $ $ $$$ $ )*$ $ !+$ $ +$ $ ! $ )= + + $21$ $ + $ $ $ $ + $ $$) 3+ $$ 21$ ! + +$ 6 $ $$ $ $ $+$ ) $ $ $ +$ + $ < )*+ + $ $ $ $ ) - $ $ $ $$ >+6 $$ $+$ $ $ 6 $ )*$$ $$ $ $. $ +! +$ ) $ + $ $$ +! +$$ 6!)*$ $ $2 1$ $ + ! + ) $ $ $.$ 9 .$ < $21$)* $1( 3 $? ) ! + +$$ $ $$ 6 $ $ )*$$ + $$ . +$$ $ $$ ) !" # . 21$ $% & %' %($)*% %&+,-./* %" @- .)%&& 11376%0 1234/56467706//%868 ' ''' 60&%A$ 'BB )!)B C D ' ''' 60&%E To my family List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Daley, A.C., Budd, G.E., Caron, J.-B., Edgecombe, G.D. & Collins, D. 2009. The Burgess Shale anomalocaridid Hurdia and its significance for early euarthropod evolution. Science, 323:1597-1600. II Daley, A.C. & Budd, G.E. New anomalocaridid appendages from the Burgess Shale, Canada. In press. Palaeontology. III Daley, A.C., Budd,
    [Show full text]
  • The Weeks Formation Konservat-Lagerstätte and the Evolutionary Transition of Cambrian Marine Life
    Downloaded from http://jgs.lyellcollection.org/ by guest on October 1, 2021 Review focus Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2018-042 The Weeks Formation Konservat-Lagerstätte and the evolutionary transition of Cambrian marine life Rudy Lerosey-Aubril1*, Robert R. Gaines2, Thomas A. Hegna3, Javier Ortega-Hernández4,5, Peter Van Roy6, Carlo Kier7 & Enrico Bonino7 1 Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia 2 Geology Department, Pomona College, Claremont, CA 91711, USA 3 Department of Geology, Western Illinois University, 113 Tillman Hall, 1 University Circle, Macomb, IL 61455, USA 4 Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK 5 Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA 6 Department of Geology, Ghent University, Krijgslaan 281/S8, B-9000 Ghent, Belgium 7 Back to the Past Museum, Carretera Cancún, Puerto Morelos, Quintana Roo 77580, Mexico R.L.-A., 0000-0003-2256-1872; R.R.G., 0000-0002-3713-5764; T.A.H., 0000-0001-9067-8787; J.O.-H., 0000-0002- 6801-7373 * Correspondence: [email protected] Abstract: The Weeks Formation in Utah is the youngest (c. 499 Ma) and least studied Cambrian Lagerstätte of the western USA. It preserves a diverse, exceptionally preserved fauna that inhabited a relatively deep water environment at the offshore margin of a carbonate platform, resembling the setting of the underlying Wheeler and Marjum formations. However, the Weeks fauna differs significantly in composition from the other remarkable biotas of the Cambrian Series 3 of Utah, suggesting a significant Guzhangian faunal restructuring.
    [Show full text]
  • Aysheaia Prolata from the Utah Wheeler Formation (Drumian, Cambrian) Is a Frontal Appendage of the Radiodontan Stanleycaris
    Aysheaia prolata from the Utah Wheeler Formation (Drumian, Cambrian) is a frontal appendage of the radiodontan Stanleycaris STEPHEN PATES, ALLISON C. DALEY, and JAVIER ORTEGA-HERNÁNDEZ Pates, S., Daley, A.C., and J. Ortega-Hernández, J. 2017. Aysheaia prolata from the Utah Wheeler Formation (Drumian, Cambrian) is a frontal appendage of the radiodontan Stanleycaris. Acta Palaeontologica Polonica 62 (3): 619–625. Aysheaia prolata, was described as the only lobopodian from the Drumian (Cambrian) Wheeler Formation in Utah, USA, and the sole representative of this genus besides the type species Aysheaia pedunculata, from the Cambrian (Stage 5) Stephen Formation, British Columbia. A redescription of Aysheaia prolata reveals previously overlooked morphological features, including segmental boundaries between putative lobopods, and curved terminal spines on the putative anterior end. These observations undermine lobopodian affinities of Aysheaia prolata, and instead we interpret this specimen as an isolated radiodontan frontal appendage. The presence of 11 podomeres, five of which possess elongate and anteri- orly recurved ventral blades with auxiliary spines, together with shorter robust dorsal spines, identify the specimen as Stanleycaris. This represents the first report of Stanelycaris outside of the Cambrian Stage 5 thin Stephen Formation in British Columbia, expanding its palaeobiogeographic and stratigraphic range. Aysheaia is left as a monotypic genus endemic to the Burgess Shale. The Spence Shale luolishaniid Acinocrinus stichus is currently the only lobopodian known from the Cambrian of Utah. Key words: Euarthropoda, Radiodonta, Hurdiidae, Cambrian, United States. Stephen Pates [[email protected]], Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK. Allison C. Daley [[email protected]], Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015, Lausanne, Switzerland.
    [Show full text]
  • The Leanchoilia-Ottoia Fauna from the Middle Cambrian Burgess Shale of British Columbia
    77 THE LEANCHOILIA-OTTOIA FAUNA FROM THE MIDDLE CAMBRIAN BURGESS SHALE OF BRITISH COLUMBIA. COLLINS, Desmond, Royal ontario Museum, 100 Queen's Park, Toronto, ontario M5S 2C6, CANADA The Leanchoilia-ottoia fauna from the Raymond quarry level of the Burgess Shale is different in both content and average size to the classic Marrel1a-Burgessia fauna excavated by Walcott from the Phyllopod bed just 20 m below. The animals most common in the fauna, Leanchoilia, Ottoia, Sidneyia and Vauxia, are typically 5 to 10 cm in length, whereas Phyllopod bed animals such as Marrella and Burgessia which make up half of this fauna are only 1 to 2 cm in length. This distinct difference also applies to the major predators, where large Anomalocaris and Hurdia dominate the Leanchoilia-ottoia fauna compared to the smaller Laggania in the Phyllopod bed fauna. Along with the different forms, there are elements common to both faunas, such as Choia, Helmetia, Olenoides, Ottoia, Sidneyia, Tuzoia, Vauxia and Waptia. New discoveries include a large jellyfish, a ctenophore, a "sea moth", a benthic sea-cucumber, Isoxys with eyes and appendages, tubular burrows containing commensal worms and the barnacle, Priscansermarinus, previously found in talus. The environment of burial of the two faunas also differs. Most of the Phyllopod bed animals occur within 3 to 6 cm thick bands, indicating transport from elsewhere. In contrast, many of the Leanchoilia-ottoia animals were buried in life position on the bedding planes, inclUding sessile forms such as the sponge, Chancelloria, rooted in the bedding surface and bent over in parallel..
    [Show full text]
  • Paleontological Contributions
    THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS July 24, 1984 Paper 111 EXCEPTIONALLY PRESERVED NONTRILOBITE ARTHROPODS AND ANOMALOCARIS FROM THE MIDDLE CAMBRIAN OF UTAH' D. E. G. BRIGGS and R. A. ROBISON Department of Geology, Goldsmiths' College, University of London, Creek Road, London SE8 3BU, and Department of Geology, University of Kansas, Lawrence, Kansas 66045 Abstract—For the first time arthropods with preserved soft parts and appendages are recorded from Middle Cambrian strata in Utah. Occurrences of four nontrilobite taxa are described, including Branchiocaris pretiosa (Resser) and Emeraldella? sp. from the Marjum Formation, Sidneyia? sp. from the Wheeler Formation, and Leanchoilia? hanceyi, n. sp., from the Spence Shale. A small specimen of the giant predator Anomalocaris nathorsti (Walcott) also is described from the Marjum Formation. These occurrences extend upward the observed stratigraphie ranges of Anomalocaris, Branchiocaris, and questionably Emeraldella and Sidneyia. Emeraldella, Leanchoilia, and Sidneyia hitherto have been recorded from only the Stephen Formation in British Columbia. Further evaluation indicates that Dicerocaris opisthoeces Robison and Rich- ards, 1981, is a junior synonym of Pseudoarctolepis sharpi Brooks and Caster, 1956. DURING RECENT years, intensive collecting has 1983). Although providing little new morpho- produced rare but diverse, soft-bodied or scler- logic data, the Utah specimens are important otized Middle Cambrian fossils from several because of new information they provide about
    [Show full text]
  • New Anomalocaridid Frontal Appendages from the Guanshan Biota, Eastern Yunnan
    Article Geology November 2013 Vol.58 No.32: 39373942 doi: 10.1007/s11434-013-5908-x New anomalocaridid frontal appendages from the Guanshan biota, eastern Yunnan WANG YuanYuan1, HUANG DiYing1* & HU ShiXue2 1 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China; 2 Chengdu Institute of Geology and Mineral Resources, Chengdu 610081, China Received August 1, 2012; accepted April 15, 2013; published online June 14, 2013 Anomalocaridids were large predators of the Cambrian seas at the top of the trophic pyramid. Complete anomalocaridid speci- mens have been rarely discovered and the rigid isolated frontal appendages and mouthparts are more commonly preserved. Here we study new material of the frontal appendages from the Wulongqing Formation, Cambrian Stage 4, Series 2 near Kunming, eastern Yunnan. Two new forms of anomalocaridid frontal appendages are described, namely Anomalocaris kunmingensis sp. nov. and Paranomalocaris multisegmentalis gen. nov., sp. nov. The frontal appendage of A. kunmingensis sp. nov. probably comprises 15 podomeres of which the first one has a weakened skeletoned, the second one is armed with small spines, and the third one is armed with remarkably robust proximal ventral spines with 6 anisomerous auxiliary spines; paired auxiliary spines are associated with podomeres 4–14; podomeres 12–14 are armed with paired dorsal spines, and the last podomere bears 2 distal spines, one spine distinctly larger than the other. The frontal appendage of P. multisegmentalis tapered backwards, consisting of 22 visible podomeres; the most ventral spine is armed with 5 pairs of auxiliary spines, and podomeres 12–21 bear dorsal spines, the last podomere with 2 small distal spines.
    [Show full text]
  • The Endemic Radiodonts of the Cambrian Stage 4 Guanshan Biota of South China
    Editors' choice The endemic radiodonts of the Cambrian Stage 4 Guanshan Biota of South China DE-GUANG JIAO, STEPHEN PATES, RUDY LEROSEY-AUBRIL, JAVIER ORTEGA-HERNÁNDEZ, JIE YANG, TIAN LAN, and XI-GUANG ZHANG Jiao, D.-G., Pates, S., Lerosey-Aubril, R., Ortega-Hernández, J., Yang, J., Lan, T., and Zhang, X.-G. 2021. The endemic radiodionts of the Cambrian Stage 4 Guanshan Biota of South China. Acta Palaeontologica Polonica 66 (2): 255–274. The Guanshan Biota (South China, Cambrian, Stage 4) contains a diverse assemblage of biomineralizing and non-biomin- eralizing animals. Sitting temporally between the Stage 3 Chengjiang and Wuliuan Kaili Biotas, the Guanshan Biota con- tains numerous fossil organisms that are exclusive to this exceptional deposit. The Guanshan Konservat-Lagerstätte is also unusual amongst Cambrian strata that preserve non-biomineralized material, as it was deposited in a relatively shallow water setting. In this contribution we double the diversity of radiodonts known from the Guanshan Biota from two to four, and describe the second species of Paranomalocaris. In addition, we report the first tamisiocaridid from South China, and confirm the presence of a tetraradial oral cone bearing small and large plates in “Anomalocaris” kunmingensis, the most abundant radiodont from the deposit. All four radiodont species, and three genera, are apparently endemic to the Guanshan Biota. When considered in the wider context of geographically and temporally comparable radiodont faunas, endemism in Guanshan radiodonts is most likely a consequence of the shallower and more proximal environment in which they lived. The strong coupling of free-swimming radiodonts and benthic communities underlines the complex relationship between the palaeobiogeographic and environmental distributions of prey and predators.
    [Show full text]
  • The Early History of the Metazoa—A Paleontologist's Viewpoint
    ISSN 20790864, Biology Bulletin Reviews, 2015, Vol. 5, No. 5, pp. 415–461. © Pleiades Publishing, Ltd., 2015. Original Russian Text © A.Yu. Zhuravlev, 2014, published in Zhurnal Obshchei Biologii, 2014, Vol. 75, No. 6, pp. 411–465. The Early History of the Metazoa—a Paleontologist’s Viewpoint A. Yu. Zhuravlev Geological Institute, Russian Academy of Sciences, per. Pyzhevsky 7, Moscow, 7119017 Russia email: [email protected] Received January 21, 2014 Abstract—Successful molecular biology, which led to the revision of fundamental views on the relationships and evolutionary pathways of major groups (“phyla”) of multicellular animals, has been much more appre ciated by paleontologists than by zoologists. This is not surprising, because it is the fossil record that provides evidence for the hypotheses of molecular biology. The fossil record suggests that the different “phyla” now united in the Ecdysozoa, which comprises arthropods, onychophorans, tardigrades, priapulids, and nemato morphs, include a number of transitional forms that became extinct in the early Palaeozoic. The morphology of these organisms agrees entirely with that of the hypothetical ancestral forms reconstructed based on onto genetic studies. No intermediates, even tentative ones, between arthropods and annelids are found in the fos sil record. The study of the earliest Deuterostomia, the only branch of the Bilateria agreed on by all biological disciplines, gives insight into their early evolutionary history, suggesting the existence of motile bilaterally symmetrical forms at the dawn of chordates, hemichordates, and echinoderms. Interpretation of the early history of the Lophotrochozoa is even more difficult because, in contrast to other bilaterians, their oldest fos sils are preserved only as mineralized skeletons.
    [Show full text]
  • New Suspension-Feeding Radiodont Suggests Evolution of Microplanktivory in Cambrian Macronekton
    ARTICLE DOI: 10.1038/s41467-018-06229-7 OPEN New suspension-feeding radiodont suggests evolution of microplanktivory in Cambrian macronekton Rudy Lerosey-Aubril 1 & Stephen Pates 2,3 The rapid diversification of metazoans and their organisation in modern-style marine eco- systems during the Cambrian profoundly transformed the biosphere. What initially sparked 1234567890():,; this Cambrian explosion remains passionately debated, but the establishment of a coupling between pelagic and benthic realms, a key characteristic of modern-day oceans, might represent a primary ecological cause. By allowing the transfer of biomass and energy from the euphotic zone—the locus of primary production—to the sea floor, this biological pump would have boosted diversification within the emerging metazoan-dominated benthic communities. However, little is known about Cambrian pelagic organisms and their trophic interactions. Here we describe a filter-feeding Cambrian radiodont exhibiting morphological characters that likely enabled the capture of microplankton-sized particles, including large phyto- plankton. This description of a large free-swimming suspension-feeder potentially engaged in primary consumption suggests a more direct involvement of nekton in the establishment of an oceanic pelagic-benthic coupling in the Cambrian. 1 Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia. 2 Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. 3 Institute of
    [Show full text]
  • A New Phyllopod Bed-Like Assemblage from the Burgess Shale of the Canadian Rockies
    ARTICLE Received 30 Dec 2013 | Accepted 7 Jan 2014 | Published 11 Feb 2014 DOI: 10.1038/ncomms4210 A new phyllopod bed-like assemblage from the Burgess Shale of the Canadian Rockies Jean-Bernard Caron1,2,3, Robert R. Gaines4,Ce´dric Aria1,2, M. Gabriela Ma´ngano5 & Michael Streng6 Burgess Shale-type fossil assemblages provide the best evidence of the ‘Cambrian explosion’. Here we report the discovery of an extraordinary new soft-bodied fauna from the Burgess Shale. Despite its proximity (ca. 40 km) to Walcott’s original locality, the Marble Canyon fossil assemblage is distinct, and offers new insights into the initial diversification of metazoans, their early morphological disparity, and the geographic ranges and longevity of many Cambrian taxa. The arthropod-dominated assemblage is remarkable for its high density and diversity of soft-bodied fossils, as well as for its large proportion of new species (22% of total diversity) and for the preservation of hitherto unreported anatomical features, including in the chordate Metaspriggina and the arthropod Mollisonia. The presence of the stem arthropods Misszhouia and Primicaris, previously known only from the early Cambrian of China, suggests that the palaeogeographic ranges and longevity of Burgess Shale taxa may be underestimated. 1 Department of Natural History-Palaeobiology, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, Canada M5S 2C6. 2 Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2. 3 Department of Earth Sciences, University of Toronto, 25 Russell Street, Toronto, Ontario, Canada M5S 3B1. 4 Geology Department, Pomona College, 185 E. Sixth Street, Claremont, California 91711, USA.
    [Show full text]