University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2014 Selection and Evaluation of a Silver Nanoparticle Imaging Agent for Dual-Energy Mammography Roshan Anuradha Karunamuni University of Pennsylvania,
[email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biomedical Commons Recommended Citation Karunamuni, Roshan Anuradha, "Selection and Evaluation of a Silver Nanoparticle Imaging Agent for Dual- Energy Mammography" (2014). Publicly Accessible Penn Dissertations. 1326. https://repository.upenn.edu/edissertations/1326 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1326 For more information, please contact
[email protected]. Selection and Evaluation of a Silver Nanoparticle Imaging Agent for Dual-Energy Mammography Abstract Over the past decade, contrast-enhanced (CE) dual-energy (DE) x-ray breast imaging has emerged as an exciting, new modality to provide high quality anatomic and functional information of the breast. The combination of these data in a single imaging procedure represents a powerful tool for the detection and diagnosis of breast cancer. The most widely used implementation of CEDE imaging is k-edge imaging, whereby two x-ray spectra are placed on either side of the k-edge of the contrast material. Currently, CEDE imaging is performed with iodinated contrast agents. The lower energies used in clinical DE breast imaging systems compared to imaging systems for other organs suggest that an alternative material may be better suited. We developed an analytical model to compare the contrast of various elements in the periodic table. The model predicts that materials with atomic numbers from 42 to 52 should provide the best contrast in DE breast imaging while still providing high-quality anatomical images.