THE Official Magazine of the OCEANOGRAPHY SOCIETY

Total Page:16

File Type:pdf, Size:1020Kb

THE Official Magazine of the OCEANOGRAPHY SOCIETY OceThe OFFiciala MaganZineog OF the Oceanographyra Spocietyhy CITATION D’Asaro, E., P. Black, L. Centurioni, P. Harr, S. Jayne, I.-I. Lin, C. Lee, J. Morzel, R. Mrvaljevic, P.P. Niiler, L. Rainville, T. Sanford, and T.Y. Tang. 2011. Typhoon-ocean interaction in the western North Pacific: Part 1.Oceanography 24(4):24–31, http://dx.doi.org/10.5670/oceanog.2011.91. DOI http://dx.doi.org/10.5670/oceanog.2011.91 COPYRIGHT This article has been published inOceanography , Volume 24, Number 4, a quarterly journal of The Oceanography Society. Copyright 2011 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. doWnloaded From http://WWW.tos.org/oceanography SPECIAL IssUE ON THE OCEANOGRAPHY OF TAIWAN Typhoon-Ocean Interaction in the Western North Pacific Part 1 BY ERIC D’AsARO, PETER BLACK, LUCA CENTURIONI, PATRICK HARR, STEVEN JAYNE, I.-I. LIN, CRAIG LEE, JAN MORZEL, ROSALINDA MRVALJEVIC, PEARN P. NIILER, LUC RAInvILLE, THOMAS SANFORD, AND TsWEN YUNG TANG An oceanographic float is air-deployed out the back of a C130 aircraft by the 53rd Air Force Reserve squadron, “Hurricane Hunters,” during the 2010 Impact of Typhoons on the Ocean in the Pacific (ITOP) program in the western Pacific. Deployments of such instruments in front of typhoons provide a detailed view of the inter- actions between these storms and the ocean. 24 Oceanography | Vol.24, No.4 ABSTRACT. The application of new technologies has allowed oceanographers a comprehensive review. Pun et al. (2011, and meteorologists to study the ocean beneath typhoons in detail. Recent studies in this issue) follow with a more detailed in the western Pacific Ocean reveal new insights into the influence of the ocean presentation of data from the Impact of on typhoon intensity. Typhoons on the Ocean in the Pacific (ITOP) program. InTRODUCTION winds and large waves generated by a The western North Pacific Ocean has typhoon mix these two layers, often THE TYPHOON WAKE the highest concentration of tropical creating a trail of colder water—a Satellite infrared images of the sea cyclones in the world. These strong and typhoon “cold wake”—behind the storm. surface often identify typhoon cold dangerous storms—called hurricanes in More importantly, this wake forms wakes. An image of Typhoon Fanapi the Atlantic Ocean and eastern Pacific underneath the typhoon, decreasing in 2010 (Figure 2) shows a narrow Ocean, cyclones in the Indian Ocean, the sea surface temperature, thereby trail of cold water, 2–3°C colder than and typhoons in the western North reducing the energy supply to the storm the surrounding ocean, that is located Pacific Ocean—draw their energy from and limiting its intensity (Emanuel, 1999; slightly to the north of the storm track. the warm, humid air found over warm Lin et al., 2008, 2009). By the time of this image, the storm had ocean waters. A 150-year compilation Here, we present a brief description moved west and was impacting Taiwan. of tropical cyclone tracks (Figure 1) of these typhoon-ocean interactions and The typhoon is the large masked region shows hurricanes concentrated over the the methods used to study them, using on the west side of the image; the storm warm waters of the subtropical western examples and data from recent scientific clouds prevent this type of satellite Atlantic and Caribbean, and typhoons programs sponsored by the US Office of (infrared radiometer) from sensing the concentrated over the warm waters of Naval Research, the US National Science ocean surface. Satellite microwave radi- the western Pacific. Foundation, and the Taiwan National ometers can see though many clouds, On average, there are 16 typhoons Science Council. This article is intended at reduced spatial resolution, but not per year, about twice the number of to be an introduction to this subject, not through the heavy precipitation within Atlantic hurricanes (Webster et al., 2005). Typhoons can occur in any season, unlike hurricanes, which occur almost entirely from June to November. However, both typhoons and hurri- canes occur most commonly in the late summer and fall. The region of glob- ally highest concentration of storms is the Philippine Sea, east of Luzon and Taiwan. Destructive landfalling storms are common in the Philippines, Taiwan, Japan, Korea, and mainland China, as well as other nearby countries. The typhoons’ strong winds can have TD TS 1 2 3 4 5 a large effect on the underlying ocean under certain conditions. The warm Figure 1. Worldwide tropical cyclone tracks through 2006 from the National Hurricane Center and ocean water that energizes typhoons the Joint Typhoon Warning Center, spanning nearly 150 years. Each track is colored by storm intensity using the Saffir-Simpson storm categoriesT ( ropical Depression, Tropical Storm, and Tropical Cyclone occupies only a relatively thin layer on categories 1 [wind 33–42 m s–1] to 5 [wind > 70 m s–1]). The tracks show that the regions of most top of a colder deep ocean. The strong frequent and intense storms are in the western North Pacific.Image courtesy of NASA Earth Observatory Oceanography | December 2011 25 Satellite SST on 9/20 °C 32 by most of the usual methods. One approach in tropical cyclone oceanog- 31 25°N raphy is to deploy instrumented moor- 30 ings in the regions of most frequent 24°N typhoon activity for several years and 9/19 29 wait for a storm to pass over (Pun et al., 23°N 2011, in this issue). Another approach 28 uses aircraft to both deploy oceano- 22°N = 70 knots graphic instrumentation and measure 27 the properties of the storm itself. Aircraft = 95 knots are the mainstay of meteorological 26 123°E 125°E 127°E 129°E measurements of tropical cyclones. Figure 2. The track (black line) and cold wake (blue stripe) of Typhoon Fanapi on In the Atlantic, “Hurricane Hunter” September 20, 2010. The diameters of the circles along the track are proportional to peak storm winds. The storm traveled along a complex S-shaped path as it aircraft from the US Air Force Reserve strengthened, before heading westward and striking Taiwan. Here, the storm is Command 53rd Weather Reconnaissance centered off the western edge of the image; its cloud mass hides the sea surface Squadron and the National Oceanic and from the satellite. Atmospheric Administration Aircraft Operations Center routinely penetrate the central core of a typhoon. Thus, instruments at the sea surface. hurricanes, providing nearly continuous satellite instruments cannot observe the Oceanographic ships cannot make measurements of the strengths and posi- actual formation of the cold wake nor measurements safely within typhoons. tions of storms that threaten land as well detect the ocean temperature beneath Even if a ship were to unfortunately as supporting research to improve hurri- the core of the storm. These measure- find itself within a typhoon, the severe cane forecasting. Adding aircraft-based ments require aircraft instruments or conditions would prevent measurements oceanographic instrumentation to these operations capitalizes on decades of Eric D’Asaro ([email protected]) is Principal Oceanographer and Professor, experience in tropical cyclone operations Applied Physics Laboratory and School of Oceanography, University of Washington, acquired by the “Hurricane Hunters.” Seattle, WA, USA. Peter Black is Senior Scientist, Naval Research Laboratory Marine Oceanographic profilers deployed Meteorology Division (SAIC), Monterey, CA, USA. Luca Centurioni is Associate Project from aircraft and telemetering data back Scientist, Scripps Institution of Oceanography, La Jolla, CA, USA. Patrick Harr is Professor, to the aircraft have been used for several Naval Postgraduate School, Monterey, CA, USA. Steven Jayne is Associate Scientist, Woods decades in tropical cyclone research Hole Oceanographic Institution, Woods Hole, MA, USA. I.-I. Lin is Professor, Department (Black, 1983; Shay and Elsbery, 1987; of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan. Craig Lee is Sanford et al., 1987). More recently, Principal Oceanographer and Associate Professor, Applied Physics Laboratory and School autonomous floats and drifters, capable of Oceanography, University of Washington, Seattle, WA, USA. Jan Morzel is Research of measuring the ocean throughout the Scientist, Rosetta Consulting, Boulder, CO, USA. Rosalinda Mrvaljevic is a graduate student entire passage of a tropical cyclone, have at the Applied Physics Laboratory and School of Oceanography, University of Washington, been developed. Typically, drifters and Seattle, WA, USA. Pearn P. Niiler (deceased) was Distinguished Emeritus Professor, Scripps floats are deployed about one day in Institution of Oceanography, University of California, San Diego, CA, USA. Luc Rainville is front of the storm. Each instrument is Oceanographer and Affiliate Assistant Professor, Applied Physics Laboratory and School of packed within a wood and/or cardboard Oceanography, University of Washington, Seattle, WA, USA. Thomas Sanford is Principal box that is deployed off the back ramp Oceanographer and Professor, Applied Physics Laboratory and School of Oceanography, of a WC-130J aircraft (see opening- University of Washington, Seattle, WA, USA. Tswen Yung Tang is Professor, Institute of spread photo). A parachute is used to Oceanography National Taiwan University, Taipei, Taiwan. deliver the box to the ocean surface. 26 Oceanography | Vol.24, No.4 Once in the water, the box comes apart, (Figure 3c) showed that this cooling surface to about 200 m depth making a usually through the use of dissolving salt extended across the entire surface full round trip about once an hour and blocks, and the instrument is released. mixed layer, to about 90 m depth.
Recommended publications
  • Effects of Landfall Location and the Approach Angle of a Cyclone Vortex Encountering a Mesoscale Mountain Range
    SEPTEMBER 2011 L I N A N D S A V A G E 2095 Effects of Landfall Location and the Approach Angle of a Cyclone Vortex Encountering a Mesoscale Mountain Range YUH-LANG LIN Department of Physics, and Department of Energy & Environmental Systems, and NOAA ISET Center, North Carolina A&T State University, Greensboro, North Carolina L. CROSBY SAVAGE III Wind Analytics, WindLogics, Inc., St. Paul, Minnesota (Manuscript received 3 November 2010, in final form 30 April 2011) ABSTRACT The orographic effects of landfall location, approach angle, and their combination on track deflection during the passage of a cyclone vortex over a mesoscale mountain range are investigated using idealized model simulations. For an elongated mesoscale mountain range, the local vorticity generation, driving the cyclone vortex track deflection, is more dominated by vorticity advection upstream of the mountain range, by vorticity stretching over the lee side and its immediate downstream area, and by vorticity advection again far downstream of the mountain as it steers the vortex back to its original direction of movement. The vorticity advection upstream of the mountain range is caused by the flow splitting associated with orographic blocking. It is found that the ideally simulated cyclone vortex tracks compare reasonably well with observed tracks of typhoons over Taiwan’s Central Mountain Range (CMR). In analyzing the relative vorticity budget, the authors found that jumps in the vortex path are largely governed by stretching on the lee side of the mountain. Based on the vorticity equation, this stretching occurs where fluid columns descend the lee slope so that the rate of stretching is governed mostly by the flow speed and the terrain slope.
    [Show full text]
  • Improvement of Wind Field Hindcasts for Tropical Cyclones
    Water Science and Engineering 2016, 9(1): 58e66 HOSTED BY Available online at www.sciencedirect.com Water Science and Engineering journal homepage: http://www.waterjournal.cn Improvement of wind field hindcasts for tropical cyclones Yi Pan a,b, Yong-ping Chen a,b,*, Jiang-xia Li a,b, Xue-lin Ding a,b a State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China b College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China Received 16 August 2015; accepted 10 December 2015 Available online 21 February 2016 Abstract This paper presents a study on the improvement of wind field hindcasts for two typical tropical cyclones, i.e., Fanapi and Meranti, which occurred in 2010. The performance of the three existing models for the hindcasting of cyclone wind fields is first examined, and then two modification methods are proposed to improve the hindcasted results. The first one is the superposition method, which superposes the wind field calculated from the parametric cyclone model on that obtained from the cross-calibrated multi-platform (CCMP) reanalysis data. The radius used for the superposition is based on an analysis of the minimum difference between the two wind fields. The other one is the direct modification method, which directly modifies the CCMP reanalysis data according to the ratio of the measured maximum wind speed to the reanalyzed value as well as the distance from the cyclone center. Using these two methods, the problem of underestimation of strong winds in reanalysis data can be overcome. Both methods show considerable improvements in the hindcasting of tropical cyclone wind fields, compared with the cyclone wind model and the reanalysis data.
    [Show full text]
  • Eyes on the Ocean NDBC Buoys Supporting Prediction, Forecast and Warning for Natural Hazards for Oceans in Action Stennis Space Center August 17, 2016
    Eyes on the Ocean NDBC Buoys Supporting Prediction, Forecast and Warning for Natural Hazards for Oceans In Action Stennis Space Center August 17, 2016 Helmut H. Portmann Director, National Data Buoy Center National Weather Service August 17, 2016 1 2016 Atlantic Hurricane Season Near to above-normal Atlantic hurricane season is most likely this year 70 percent likelihood of 12 to 17 named storms Hurricane Alex January TS Bonnie May TS Colin June TS Danielle June Hurricane Earl August Fiona Gaston Hermine Ian Julia Karl Lisa Matthew Nicole Otto Paula Richard Shary Tobias Virginie Walter NationalNational Weather Data Buoy Service Center 2 Influence of La Nina Typical influence of La Niña on Pacific and Atlantic seasonal hurricane activity. Map by NOAA Climate.gov, based on originals by Gerry Bell NationalNational Weather Data Buoy Service Center 3 NOAA’s National Data Buoy Center NationalNational Weather Data Buoy Service Center 4 www. ndbc.noaa.gov www. ndbc.noaa.gov NationalNational Weather Data Buoy Service Center NDBC Observing Platforms Tsunami Weather Buoys in Place for > 30 Years Wx TAO 106 met/ocean WX buoys 47 C-MAN stations 55 TAO Climate Monitoring buoys + 4 current profiler moorings 39 DART Tsunami Monitoring stations NationalNational Weather Data BuoyService Center 6 National Data Buoy Center Electronics Labs Facilities at SSC, MS MCC Operates 24/7/365 Sensor Testing & Cal High Bay Fabrication Paint & Sandblasting Wind Tunnel & Environmental Chambers In-Water Testing Machine Shops El Nino - La Nina Detection NDBC maintains an
    [Show full text]
  • May 20 Virtual Media Briefing on NOAA's 2021 Atlantic Hurricane
    TRANSCRIPT NOAA 2021 Hurricane Season Outlook Virtual Media Briefing May 20, 2021 at 12:30 p.m. EDT via GoToMeeting Hosted by NOAA National Weather Service Public Affairs Media advisory about briefing NOAA to announce 2021 Atlantic hurricane season outlook on May 20 Hurricane Outlook news release NOAA predicts another active Atlantic hurricane season 0:22 Good afternoon, everyone. Thank you for joining the announcement of NOAA's 2021, Hurricane Season Outlook. 0:29 This media briefing is being recorded, so if you do not wish to be recorded, please disconnect at this time. 0:34 My name is Lauren, and I'm the media contact for today's Hurricane Outlook. 0:39 At the conclusion of this media briefing, maybe contact e-mail, or by phone, using the contact information included in the media advisory to use to access today's webinar. 0:48 Due to a scheduling conflict, the Secretary of Commerce was unable to join us today, but we are very glad to welcome Deputy Commerce Secretary John Graves in her stead. 0:57 In addition to Deputy secretary grades, I'm joined by Ben Friedman, the App to NOAA Administrator, Matthew Rosencrantz. Now as lead hurricane season forecaster and FEMA administrator as well. 1:09 We'll begin today's briefing with remarks from our speakers and then we'll take questions from reporters. If you'd like to ask a question during the question and answer portion of this briefing, please click the hand icon in the GoToWebinar window next to your name. 1:22 I'll then call upon each quarter.
    [Show full text]
  • ISAIAS (AL092020) 30 July–4 August 2020
    NATIONAL HURRICANE CENTER TROPICAL CYCLONE REPORT HURRICANE ISAIAS (AL092020) 30 July–4 August 2020 Andy Latto, Andrew Hagen, and Robbie Berg National Hurricane Center 1 11 June 2021 GOES-16 10.3-µM INFRARED SATELLITE IMAGE OF HURRICANE ISAIAS AT 0310 UTC 04 AUGUST 2020 AS IT MADE LANDFALL NEAR OCEAN ISLE BEACH, NORTH CAROLINA. Isaias was a hurricane that formed in the eastern Caribbean Sea. The storm affected the Leeward Islands, Puerto Rico, Hispaniola, Cuba, the Bahamas, and a large portion of the eastern United States. 1 Original report date 30 March 2021. Second version on 15 April updated Figure 12. This version corrects a wind gust value in the Winds and Pressures section and the track length of a tornado in Delaware. Hurricane Isaias 2 Table of Contents SYNOPTIC HISTORY .......................................................................................... 3 METEOROLOGICAL STATISTICS ...................................................................... 5 Winds and Pressure ........................................................................................... 5 Caribbean Islands and Bahamas ..................................................................... 6 United States ................................................................................................... 6 Rainfall and Flooding ......................................................................................... 7 Storm Surge ....................................................................................................... 8 Tornadoes .......................................................................................................
    [Show full text]
  • Effects of Landfall Location and the Approach Angle of a Cyclone Vortex Encountering a Mesoscale Mountain Range
    SEPTEMBER 2011 L I N A N D S A V A G E 2095 Effects of Landfall Location and the Approach Angle of a Cyclone Vortex Encountering a Mesoscale Mountain Range YUH-LANG LIN Department of Physics, and Department of Energy & Environmental Systems, and NOAA ISET Center, North Carolina A&T State University, Greensboro, North Carolina L. CROSBY SAVAGE III Wind Analytics, WindLogics, Inc., St. Paul, Minnesota (Manuscript received 3 November 2010, in final form 30 April 2011) ABSTRACT The orographic effects of landfall location, approach angle, and their combination on track deflection during the passage of a cyclone vortex over a mesoscale mountain range are investigated using idealized model simulations. For an elongated mesoscale mountain range, the local vorticity generation, driving the cyclone vortex track deflection, is more dominated by vorticity advection upstream of the mountain range, by vorticity stretching over the lee side and its immediate downstream area, and by vorticity advection again far downstream of the mountain as it steers the vortex back to its original direction of movement. The vorticity advection upstream of the mountain range is caused by the flow splitting associated with orographic blocking. It is found that the ideally simulated cyclone vortex tracks compare reasonably well with observed tracks of typhoons over Taiwan’s Central Mountain Range (CMR). In analyzing the relative vorticity budget, the authors found that jumps in the vortex path are largely governed by stretching on the lee side of the mountain. Based on the vorticity equation, this stretching occurs where fluid columns descend the lee slope so that the rate of stretching is governed mostly by the flow speed and the terrain slope.
    [Show full text]
  • Simulating Storm Surge and Inundation Along the Taiwan Coast During Typhoons Fanapi in 2010 and Soulik in 2013
    Terr. Atmos. Ocean. Sci., Vol. 27, No. 6, 965-979, December 2016 doi: 10.3319/TAO.2016.06.13.01(Oc) Simulating Storm Surge and Inundation Along the Taiwan Coast During Typhoons Fanapi in 2010 and Soulik in 2013 Y. Peter Sheng1, *, Vladimir A. Paramygin1, Chuen-Teyr Terng 2, and Chi-Hao Chu 2 1 University of Florida, Gainesville, Florida, U.S.A. 2 Central Weather Bureau, Taipei City, Taiwan, R.O.C. Received 10 January 2016, revised 9 June 2016, accepted 13 June 2016 ABSTRACT Taiwan is subjected to significant storm surges, waves, and coastal inundation during frequent tropical cyclones. Along the west coast, with gentler bathymetric slopes, storm surges often cause significant coastal inundation. Along the east coast with steep bathymetric slopes, waves can contribute significantly to the storm surge in the form of wave setup. To examine the importance of waves in storm surges and quantify the significance of coastal inundation, this paper presents numerical simulations of storm surge and coastal inundation during two major typhoons, Fanapi in 2010 and Soulik in 2013, which impacted the southwest and northeast coasts of Taiwan, respectively. The simulations were conducted with an integrated surge-wave modeling system using a large coastal model domain wrapped around the island of Taiwan, with a grid resolution of 50 - 300 m. During Fanapi, the simulated storm surge and coastal inundation near Kaohsiung are not as accurate as those obtained using a smaller coastal domain with finer resolution (40 - 150 m). During Soulik, the model simulations show that wave setup contributed significantly (up to 20%) to the peak storm surge along the northeast coast of Taiwan.
    [Show full text]
  • Hurricane Fact Sheet.Indd
    National Aeronautics and Space Administration NASA’s Role in Hurricane Research Why Does NASA Study Hurricanes? NASA is the world’s leader in developing state-of-the-art remote sensors that study all aspects of weather and climate. NASA uses this technology to study hurricanes and typhoons around the world and to help forecasters make better predictions on the storm’s behavior. Back in 1960, NASA launched the very first weather satellite called TIROS-1. TIROS-1 facts enabled approaching hurricanes that threat- ened the U.S. to be seen approaching from across the Atlantic for the first time. Today, NASA has several satellites circling the Earth look- ing at different aspects of hurricanes, including winds, ocean temperature, humidity, and rain- fall in storms. NASA’s research into hurricanes addresses two key questions: 1) How are global precipitation, evaporation, and the world’s water cycle changing? 2) How can weather forecasts be improved NASA and made more reliable over longer periods of Hurricane Katrina approaching New Orleans time using satellites, unique airborne datasets, in August 2005. Katrina is likely to be the costliest hurricane to strike the U.S. in history. and computer modeling? Assessments from the damage it caused NASA’s satellite instruments also provide along the Gulf Coast, including the city of New unique data for meteorologists at the National Orleans, indicate damages will far surpass Hurricane Center to help them with their hurri- 1992’s deadly Hurricane Andrew, which brought cane forecasts. over $26 billion in damages to south Florida and southeast Louisiana. Credit: NASA What is a Tropical Cyclone? A generic name for a tropical depression (winds up to 36 mph); a tropical storm (winds 37- What Does NASA Provide? 73 mph); and a hurricane or typhoon (winds 74 NASA provides space-based satellite obser- mph to greater than 155 mph).
    [Show full text]
  • HURRICANE IRMA (AL112017) 30 August–12 September 2017
    NATIONAL HURRICANE CENTER TROPICAL CYCLONE REPORT HURRICANE IRMA (AL112017) 30 August–12 September 2017 John P. Cangialosi, Andrew S. Latto, and Robbie Berg National Hurricane Center 1 24 September 2021 VIIRS SATELLITE IMAGE OF HURRICANE IRMA WHEN IT WAS AT ITS PEAK INTENSITY AND MADE LANDFALL ON BARBUDA AT 0535 UTC 6 SEPTEMBER. Irma was a long-lived Cape Verde hurricane that reached category 5 intensity on the Saffir-Simpson Hurricane Wind Scale. The catastrophic hurricane made seven landfalls, four of which occurred as a category 5 hurricane across the northern Caribbean Islands. Irma made landfall as a category 4 hurricane in the Florida Keys and struck southwestern Florida at category 3 intensity. Irma caused widespread devastation across the affected areas and was one of the strongest and costliest hurricanes on record in the Atlantic basin. 1 Original report date 9 March 2018. Second version on 30 May 2018 updated casualty statistics for Florida, meteorological statistics for the Florida Keys, and corrected a typo. Third version on 30 June 2018 corrected the year of the last category 5 hurricane landfall in Cuba and corrected a typo in the Casualty and Damage Statistics section. This version corrects the maximum wind gust reported at St. Croix Airport (TISX). Hurricane Irma 2 Hurricane Irma 30 AUGUST–12 SEPTEMBER 2017 SYNOPTIC HISTORY Irma originated from a tropical wave that departed the west coast of Africa on 27 August. The wave was then producing a widespread area of deep convection, which became more concentrated near the northern portion of the wave axis on 28 and 29 August.
    [Show full text]
  • Subsidence Warming As an Underappreciated Ingredient in Tropical Cyclogenesis
    NOVEMBER 2015 K E R N S A N D C H E N 4237 Subsidence Warming as an Underappreciated Ingredient in Tropical Cyclogenesis. Part I: Aircraft Observations BRANDON W. KERNS AND SHUYI S. CHEN Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida (Manuscript received 15 December 2014, in final form 15 July 2015) ABSTRACT The development of a compact warm core extending from the mid-upper levels to the lower troposphere and related surface pressure falls leading to tropical cyclogenesis (TC genesis) is not well understood. This study documents the evolution of the three-dimensional thermal structure during the early developing stages of Typhoons Fanapi and Megi using aircraft dropsonde observations from the Impact of Typhoons on the Ocean in the Pacific (ITOP) field campaign in 2010. Prior to TC genesis, the precursor disturbances were characterized by warm (cool) anomalies above (below) the melting level (;550 hPa) with small surface pressure perturbations. Onion-shaped skew T–logp profiles, which are a known signature of mesoscale subsidence warming induced by organized mesoscale convective systems (MCSs), are ubiquitous throughout the ITOP aircraft missions from the precursor disturbance to the tropical storm stages. The warming partially erodes the lower-troposphere (850–600 hPa) cool anomalies. This warming results in increased surface pressure falls when superposed with the upper-troposphere warm anomalies associated with the long-lasting MCSs/cloud clusters. Hydrostatic pressure analysis suggests the upper-level warming alone would not result in the initial sea level pressure drop associated with the transformation from a disturbance to a TC.
    [Show full text]
  • Vaisala's Radar Donation Facilitates Extreme Weather Research In
    Meteorology Edition - Spring 2017 Vaisala’s Radar Donation Facilitates Extreme Weather Research in Colorado / Page 9 Advancements in Airline De-icing / Page 10 Better Quality Air Means a Better Quality of Life / Page 20 VN-MET-Spring-2017-C210094EN-210x280.indd 1 17.1.2017 10.32 Vaisala in Brief Vaisala is a global leader in environmental and industrial measurement. Building on 80 years of experience, Vaisala contributes to a better quality of life by providing a comprehensive range of innovative observation and measurement products and services for chosen weather-related and industrial markets. Headquartered in Finland, Vaisala employs approximately 1,600 professionals worldwide and is listed on the NASDAQ Helsinki stock exchange. Events & Webinars www.vaisala.com/events Contents www.vaisala.com/webinars Meteorology Edition - Spring 2017 Publishing Information Published by: Vaisala Oyj P.O. Box 26 3 Getting Ready for Changing Weather FI-00421 Helsinki FINLAND Phone (int.): + 358 9 894 91 4 Improved Weather Forecasting Internet: www.vaisala.com Capabilities for the Bahamas Editor-in-Chief: Tiina Kiianlehto 6 Helping the Sun Shine Brightly on Contributors: Katri Ahlgren, Anne the Global Solar Industry Hänninen (CoComms), Francesca Davidson, Elina Nylund, Melanie Scott, 9 Vaisala’s Radar Donation Facilitates Riika Pikkuvirta, Jon Tarleton, Carrie Tennick (Axonn Media) Extreme Weather Research in Colorado Cover photo: Shutterstock The image Schiaparelli Lander 10 Advancements in Airline De-icing Model at ESOC by Gerbil on page Using Fire Weather Outlooks to Identify 15 is licensed under the Creative 12 Commons Attribution-Share Alike 4.0 Areas of Concern and Help Reduce Incidents International license.
    [Show full text]
  • Downloaded 10/01/21 02:24 PM UTC 4916 JOURNAL of the ATMOSPHERIC SCIENCES VOLUME 72
    DECEMBER 2015 T A N G E T A L . 4915 Horizontal Transition of Turbulent Cascade in the Near-Surface Layer of Tropical Cyclones JIE TANG Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, and Key Laboratory of Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing, China DAVID BYRNE Environmental Physics Group, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich,€ Zurich, Switzerland JUN A. ZHANG National Oceanic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida YUAN WANG Key Laboratory of Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing, China XIAO-TU LEI,DAN WU,PING-ZHI FANG, AND BING-KE ZHAO Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, China (Manuscript received 15 December 2014, in final form 7 July 2015) ABSTRACT Tropical cyclones (TC) consist of a large range of interacting scales from hundreds of kilometers to a few meters. The energy transportation among these different scales—that is, from smaller to larger scales (up- scale) or vice versa (downscale)—may have profound impacts on TC energy dynamics as a result of the associated changes in available energy sources and sinks. From multilayer tower measurements in the low- level (,120 m) boundary layer of several landing TCs, the authors found there are two distinct regions where the energy flux changes from upscale to downscale as a function of distance to the storm center. The boundary between these two regions is approximately 1.5 times the radius of maximum wind. Two-dimensional tur- bulence (upscale cascade) occurs more typically at regions close to the inner-core region of TCs, while 3D turbulence (downscale cascade) mostly occurs at the outer-core region in the surface layer.
    [Show full text]