Lectures on Holomorphic Curves in Symplectic and Contact Geometry (Work in Progress—Version 3.3)

Total Page:16

File Type:pdf, Size:1020Kb

Lectures on Holomorphic Curves in Symplectic and Contact Geometry (Work in Progress—Version 3.3) Lectures on Holomorphic Curves in Symplectic and Contact Geometry (Work in progress—Version 3.3) May 7, 2015 Chris Wendl Department of Mathematics, University College London E-mail address: [email protected] c 2015 by Chris Wendl Paper or electronic copies for noncommercial use may be made freely without explicit permission from the author. All other rights reserved. Contents Preface v Version history ix A Note on Terminology xi Chapter 1. Introduction 1 1.1. Warm up: Holomorphic curves in Cn 1 1.2. Hamiltonian systems and symplectic manifolds 3 1.3. Some favorite examples 5 1.4. Darboux’stheoremandtheMoserdeformationtrick 7 1.5. From symplectic geometry to symplectic topology 10 1.6. Contact geometry and the Weinstein conjecture 13 1.7. Symplectic fillings of contact manifolds 19 Chapter 2. Fundamentals 25 2.1. Almost complex manifolds and J-holomorphic curves 25 2.2. Compatible and tame almost complex structures 29 2.3. Linear Cauchy-Riemann type operators 41 2.4. The linearization of ∂¯J and critical points 43 2.5. Review of distributions and Sobolev spaces 48 2.6. Linear elliptic regularity 55 2.7. Local existence of holomorphic sections 68 2.8. The similarity principle 69 2.9. Unique continuation 71 2.10. Intersections with holomorphic hypersurfaces 75 2.11. Nonlinear regularity 77 2.12. Some tools of global analysis 83 2.13. Local existence of J-holomorphic curves 88 2.14. A representation formula for intersections 94 2.15. Simple curves and multiple covers 102 2.16. Positivity of intersections 104 2.A. Appendix: Singular integral operators 110 2.B. Appendix: Elliptic operators in general 117 Chapter 3. Fredholm Theory 125 3.1. Some Banach spaces and manifolds 125 3.2. Formal adjoints 130 3.3. The Fredholm property 136 iii 3.4. The Riemann-Roch formula and transversality criteria 139 Chapter 4. Moduli Spaces 145 4.1. The moduli space of closed J-holomorphic curves 145 4.2. Classification of pointed Riemann surfaces 152 4.3. Fredholm regularity and the implicit function theorem 163 4.4. Transversality for generic J 170 4.5. Generic families 181 4.6. Transversality of the evaluation map 188 4.7. Generic J-holomorphic curves are immersed 191 Chapter 5. Bubbling and Nonsqueezing 197 5.1. Gromov’s nonsqueezing theorem 197 5.2. Monotonicity in the integrable case 205 5.3. Bubbling off 208 Bibliography 215 Preface The present book-in-progress began as a set of lecture notes written at a furious pace to accompany a graduate course on holomorphic curves that I taught at ETH Z¨urich in Spring 2009, and repeated at the Humboldt-Universit¨at zu Berlin in the 2009-10 Winter semester. In both iterations of the course, it quickly became clear that my conceived objectives for the notes were not really attainable within the length of the semester, but the project nonetheless took on a life of its own. I have written these notes with the following specific goals in mind: (1) To give a solid but readable presentation of the analytical foundations of closed holomorphic curves from a modern perspective; (2) To use the above foundation to explain a few of the classic applications to symplectic topology, such as Gromov’s nonsqueezing theorem [Gro85] and McDuff’s results on rational and ruled symplectic 4-manifolds [McD90]; (3) To use the aforementioned “modern perspective” to generalize everything as cleanly as possible to the case of punctured holomorphic curves, and then explain some applications to contact geometry such as the Weinstein conjecture [Hof93] and obstructions to symplectic fillings [Wen10b]. The choice of topics covered and their presentation is partly a function of my own preferences, as well as my perception of which gaps in the existing literature seemed most in need of filling. In particular, I have devoted special attention to a few topics that seem fundamental but are not covered in the standard book on this subject by McDuff and Salamon [MS04], e.g. the structure of Teichm¨uller space and of the moduli space of unparametrized holomorphic curves of arbitrary genus, existence results for local J-holomorphic curves, and regularity for moduli spaces with constrained derivatives. My choice of applications is biased toward those which I personally find the most beautiful and which admit proofs with a very geometric flavor. For most such results, there are important abstract invariants lurking in the background, but one need not develop them fully in order to understand the proofs, and for that reason I have left out topics such as gluing analysis and Gromov-Witten theory, on which I would in any case have nothing to add to the superb coverage in [MS04]. In order to save space and energy, I have also included nothing about holomorphic curves with boundary, but aimed to make up for this by devoting the last third of the book to punctured holomorphic curves, a topic on which there are still very few available expositions aimed at graduate students. My personal attitude toward technical details is essentially that of a non-analyst who finds analysis important: what this means is that I’ve tried very hard to create an accessible presentation that is as complete as possible without boring readers v who don’t enjoy analysis for its own sake. In contrast to [MS04], I have not put the discussion of elliptic regularity in an appendix but rather integrated it into the main exposition, where it is (I hope) less likely to be ignored. On the other hand, I have presented such details in less generality than would be theoretically possible, in most places only as much as seems essential for the geometric applications. One example of this is the discussion in Chapter 2 of a local representation formula that is both weaker and easier to prove than the famous result of Micallef and White [MW95], but still suffices for crucial applications such as positivity of intersections. If some hardcore analysts find this approach lazy, my hope is that at least as many hardcore topologists may benefit from it. About the current version. This book has been growing gradually for several years, and the current version contains a little over half of what I hope to include in the finished product: there is not yet any serious material on contact geometry (only a few main ideas sketched in the introduction), but the development of the technical apparatus for closed holomorphic curves is mostly complete. The main thing still missing from this technical development is Gromov’s compactness theorem, though a simple case of it is covered in Chapter 5 in order to prove the nonsqueezing theorem. I hope to add the chapter on Gromov compactness in the next major revision, along with further chapters covering the special analytical properties of closed holomorphic curves in dimension four, and applications to symplectic 4-manifolds. It should be mentioned that in the time since this project was begun, a substan- tial portion of the material that I eventually plan to include in later chapters has appeared in other (shorter) sets of lecture notes that were written for various mini- courses. In particular, a comprehensive exposition of my perspective on McDuff’s characterization of symplectic rational and ruled surfaces now appears in [Wena], and some of the extensions of these ideas to punctured holomorphic curves and contact 3-manifolds are covered in [Wenb]. Both are written with similar target audiences in mind and should be readable by anyone who has made it through the existing chapters of this book—in fact they assume less technical background, but provide brief reviews of analytical material that is treated here in much more detail. It remains a long-term goal that the main topics covered in [Wena, Wenb] should eventually be integrated into the present manuscript in some form. Acknowledgments. I’d like to thank a number of people who have contributed useful comments, ideas, explanations and encouragement on this project, including Peter Albers, Jonny Evans, Joel Fish, Paolo Ghiggini, Janko Latschev, Sam Lisi, Klaus Mohnke, and Dietmar Salamon. I would also like to thank Urs Fuchs for pointing out errors in the original version, and particular gratitude goes to Patrick Massot, who has recently been testing these notes on Master’s students at the Ecole´ Polytechnique and has suggested many valuable improvements as a result. A very large portion of what I know about this subject was originally imparted to me by Helmut Hofer, whose unpublished manuscript with Casim Abbas [AH] has also been an invaluable resource for me. Other invaluable resources worth mention- ing include of course [MS04], as well as the expository article [Sik94] by Sikorav. Most of the revision work for Version 3.3 was undertaken during a two-month research visit to the Ecole´ Polytechnique, and I would like to thank them for their hospitality. Request. As should by now be obvious, these notes are work in progress, and as such I welcome comments, questions, suggestions and corrections from anyone making the effort to read them. These may be sent to [email protected]. Version history Versions 1 and 2 of these notes were the versions written to accompany the lec- ture courses I gave at ETH and the HU Berlin in 2009 and 2010 respectively; both included preliminary versions of what are now Chapters 1 through 4, though those chapters have undergone considerable expansion since then. The first revision to appear on the arXiv at http://arxiv.org/abs/1011.1690 was Version 3.1 (No- vember 2010), which included the additional fifth chapter on Gromov’s nonsqueezing theorem. Here is an overview of what has been added since then.
Recommended publications
  • FLOER HOMOLOGY and MIRROR SYMMETRY I Kenji FUKAYA 0
    FLOER HOMOLOGY AND MIRROR SYMMETRY I Kenji FUKAYA Abstract. In this survey article, we explain how the Floer homology of Lagrangian submanifold [Fl1],[Oh1] is related to (homological) mirror symmetry [Ko1],[Ko2]. Our discussion is based mainly on [FKO3]. 0. Introduction. This is the first of the two articles, describing a project in progress to study mirror symmetry and D-brane using Floer homology of Lagrangian submanifold. The tentative goal, which we are far away to achiev, is to prove homological mirror symmetry conjecture by M. Kontsevich (see 3.) The final goal, which is yet very § very far away from us, is to find a new concept of spaces, which is expected in various branches of mathematics and in theoretical physics. Together with several joint authors, I wrote several papers on this project [Fu1], [Fu2], [Fu4], [Fu5], [Fu6], [Fu7], [FKO3], [FOh]. The purpose of this article and part II, is to provide an accesible way to see the present stage of our project. The interested readers may find the detail and rigorous proofs of some of the statements, in those papers. The main purose of Part I is to discribe an outline of our joint paper [FKO3] which is devoted to the obstruction theory to the well-definedness of Floer ho- mology of Lagrangian submanifold. Our emphasis in this article is its relation to mirror symmetry. So we skip most of its application to the geometry of Lagrangian submanifolds. In 1, we review Floer homology of Lagrangian submanifold in the form intro- § duced by Floer and Oh. They assumed various conditions on Lagrangian subman- ifold and symplectic manifold, to define Floer homology.
    [Show full text]
  • Floer Homology of Lagrangian Submanifolds Are Ex- Pected to Enjoy Can Be Summarized As Follows
    FLOER HOMOLOGY OF LAGRANGIAN SUBMANIFOLDS KENJI FUKAYA Abstract. This paper is a survey of Floer theory, which the author has been studying jointly with Y.-G. Oh, H. Ohta, K. Ono. A general idea of the construction is outlined. We also discuss its relation to (homological) mirror symmetry. Especially we describe various conjectures on (homological) mirror symmetry and various partial results towards those conjectures. 1. Introduction This article is a survey of Lagrangian Floer theory, which the author has been studying jointly with Y.-G. Oh, H. Ohta, K. Ono. A major part of our study was published as [28]. Floer homology is invented by A. Floer in 1980’s. There are two areas where Floer homology appears. One is symplectic geometry and the other is topology of 3-4 dimensional manifolds (more specifically the gauge theory). In each of the two areas, there are several different Floer type theories. In symplectic geometry, there are Floer homology of periodic Hamiltonian system ([18]) and Floer homology of Lagrangian submanifolds. Moreover there are two different kinds of Floer theories of contact manifolds ([15, 78]). In gauge theory, there are three kinds of Floer homologies: one based on Yang-Mills theory ([17]), one based on Seiberg-Witten theory ([55, 51]), and Heegard Floer homology ([63]). Those three are closely related to each other. All the Floer type theories have common feature that they define some kinds of homology theory of /2 degree in dimensional space, based on Morse theory. There are many interesting∞ topics∞ to discuss on the general feature of Floer type theories.
    [Show full text]
  • Arxiv:Math/0701246V1 [Math.AG] 9 Jan 2007 Suoooopi Curve Pseudoholomorphic Ihvrie (0 Vertices with a Curves Obtain Singular) to Points, Singular Hccurves
    A NON-ALGEBRAIC PATCHWORK BenoˆıtBertrand Erwan Brugall´e Abstract Itenberg and Shustin’s pseudoholomorphic curve patchworking is in principle more flexible than Viro’s original algebraic one. It was natural to wonder if the former method allows one to construct non-algebraic objects. In this paper we construct the first examples of patchworked real pseudoholomorphic curves in Σn whose position with respect to the pencil of lines cannot be realised by any homologous real algebraic curve. 1 Introduction Viro’s patchworking has been since the seventies one of the most important and fruitful methods in topology of real algebraic varieties. It was applied in the proof of a lot of meaningful results in this field (e.g. [Vir84], [Vir89], [Shu99], [LdM],[Ite93], [Ite01], [Haa95],[Bru06], [Bih], [IV], [Ber06], [Mik05], and [Shu05]). Here we will only consider the case of curves in CP 2 and in rational geomet- rically ruled surfaces Σn. Viro Method allows to construct an algebraic curve A out of simpler curves Ai so that the topology of A can be deduced from the topology of the initial curves Ai. Namely one gets a curve with Newton polytope ∆ out of curves whose Newton polytopes are the 2-simplices of a subdivision σ of ∆, and one can see the curve A as a gluing of the curves Ai. Moreover, if all the curves Ai are real, so is the curve A. For a detailed account on the Viro Method we refer to [Vir84] and [Vir89] for example. One of the hypotheses of the Viro Method is that σ should be convex (i.e.
    [Show full text]
  • Lecture 1: Basic Concepts, Problems, and Examples
    LECTURE 1: BASIC CONCEPTS, PROBLEMS, AND EXAMPLES WEIMIN CHEN, UMASS, SPRING 07 In this lecture we give a general introduction to the basic concepts and some of the fundamental problems in symplectic geometry/topology, where along the way various examples are also given for the purpose of illustration. We will often give statements without proofs, which means that their proof is either beyond the scope of this course or will be treated more systematically in later lectures. 1. Symplectic Manifolds Throughout we will assume that M is a C1-smooth manifold without boundary (unless specific mention is made to the contrary). Very often, M will also be closed (i.e., compact). Definition 1.1. A symplectic structure on a smooth manifold M is a 2-form ! 2 Ω2(M), which is (1) nondegenerate, and (2) closed (i.e. d! = 0). (Recall that a 2-form ! 2 Ω2(M) is said to be nondegenerate if for every point p 2 M, !(u; v) = 0 for all u 2 TpM implies v 2 TpM equals 0.) The pair (M; !) is called a symplectic manifold. Before we discuss examples of symplectic manifolds, we shall first derive some im- mediate consequences of a symplectic structure. (1) The nondegeneracy condition on ! is equivalent to the condition that M has an even dimension 2n and the top wedge product !n ≡ ! ^ ! · · · ^ ! is nowhere vanishing on M, i.e., !n is a volume form. In particular, M must be orientable, and is canonically oriented by !n. The nondegeneracy condition is also equivalent to the condition that M is almost complex, i.e., there exists an endomorphism J of TM such that J 2 = −Id.
    [Show full text]
  • Computations with Pseudoholomorphic Curves
    COMPUTATIONS WITH PSEUDOHOLOMORPHIC CURVES J. EVANS 1. Introduction Symplectic topology is renowned for its invariants which are either incomputable or only conjecturally well-defined. For algebraic geometers this is something of an anaethema. The aim of this talk is to give a sketch of why we can prove anything in symplectic topology, using friendly words like \Dolbeaut cohomology" and \positivity of intersections". By the end of the talk we should be able to prove (amongst other things) that there is a unique line through two points in the (complex projective) plane. Everything I will say is a) due to Gromov [Gro85] and b) explained more thoroughly and clearly in the big book by McDuff and Salamon [MS04]. 2. Some linear algebra Recall that a symplectic vector space is a 2n-dimensional vector space with a non-degenerate alternating form !. The group Spn(R) of symplectic matrices (which preserve this form) is a non-compact Lie group containing the unitary group U(n) as a maximal compact subgroup. In fact, there is a homotopy equivalence 2n ∼ n Spn(R) ! U(n). Identifying the vector space with R = C , this unitary group is the subgroup of symplectic matrices which additionally commute with the complex structure (multiplication by i). The point is that together ! and i define a metric by g(v; w) = !(v; iw). The unitary group can then be thought of as the complex (or symplectic) isometries of this metric. This is known as the 3-in-2 property of the unitary group: Spn(R) \ O(2n) = Spn(R) \ GLn(C) = GLn(C) \ O(2n) = U(n) If one considers the set J of all possible matrices J such that J 2 = −1 and such that !(v; Jw) defines a (J-invariant) metric, it turns out to be a homogeneous space J = Spn(R)=U(n) This is quite easy to see: if one picks a vector v, then v and Jv span a symplectic subspace, and passing to its symplectic orthogonal complement one obtains a lower- dimensional space and (by induction) symplectic coordinates on the whole space for which J and ! look like the standard complex and symplectic structures.
    [Show full text]
  • Research Statement for Daniel Pomerleano 1. Background And
    Research statement for Daniel Pomerleano 1. Background and motivating questions My research centers around algebraic and geometric structures arising in mirror symmetry. Mirror symmetry originates in string theory and predicts astonishing and intricate relationships between seemingly disparate notions such as coherent sheaves, which originate in algebraic geometry and Lagrangian submanifolds, which are native to symplectic geometry. More precisely, let X be a smooth projective (or affine) variety. The variety X inherits a natural symplectic structure by n n restriction of the usual symplectic form on P (or C ). Kontsevich's Homological Mirror Symmetry conjecture applied to X proposes that there exists a mirror to X,(X;ˇ w), with Xˇ a smooth variety 1 and w : Xˇ ! A a regular function, such that symplectic invariants on X are exchanged with algebraic invariants on (X;ˇ w). The richest version of this conjecture asserts that we have an equivalence of categories: F uk(X) =∼ MF (X;ˇ w) Here F uk(X) denotes a suitable Fukaya category and MF (X;ˇ w) denotes a category of matrix factorizations of w. This conjecture serves as a powerful guiding light for taking structures which are transparent on one side of the mirror and revealing new, unexpected structures on the mirror side. This has lead to the development of tools in both fields that would otherwise have been difficult to imagine (for notable examples see [Bri, GroHacKeeKon, SeiTho]). My two main research projects to date aim to exploit mirror symmetry to develop new structures in both algebraic and symplectic geometry. The first concerns the symplectic cohomology ring, SH∗(X), of affine varieties X.
    [Show full text]
  • Integrable Systems and Moduli Spaces of Curves Paolo Rossi
    Integrable systems and moduli spaces of curves Paolo Rossi To cite this version: Paolo Rossi. Integrable systems and moduli spaces of curves. Algebraic Geometry [math.AG]. uni- versité de bourgogne, 2016. tel-01444750 HAL Id: tel-01444750 https://hal.archives-ouvertes.fr/tel-01444750 Submitted on 31 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. INTEGRABLE SYSTEMS AND MODULI SPACES OF CURVES PAOLO ROSSI Mémoire d’Habilitation à Diriger des Recherches soutenue le 28/11/2016 à l’Université de Bourgogne Ecole doctorale Carnot-Pasteur Composition du Jury: Vladimir Roubtsov, président du Jury, Professeur, Ugo Bruzzo, Professeur, Alessandro Chiodo, Professeur, Boris Dubrovin, Professeur, Daniele Faenzi, Professeur, Nikolai Kitanine, Professeur, Dimitri Zvonkine, Chargé de Recherches Rapporteurs: Alessandro Chiodo, Professeur, Yakov Eliashberg, Professeur, Rahul Pandharipande, Professeur, Dimitri Zvonkine, Chargé de Recherches 1 2 PAOLO ROSSI Abstract This document has the purpose of presenting in an organic way my research on integrable systems originating from the geometry of moduli spaces of curves, with applications to Gromov-Witten theory and mirror symmetry. The text contains a short introduction to the main ideas and prerequisites of the subject from geome- try and mathematical physics, followed by a synthetic review of some of my papers (listed below) starting from my PhD thesis (October 2008), and with some open questions and future developements.
    [Show full text]
  • Arxiv:Math/0107073V6
    ANALOGUES OF COMPLEX GEOMETRY BENJAMIN MCKAY Abstract. We prove that there are no pseudoholomorphic theories of any- thing other than curves, even if one allows more general spaces than almost complex manifolds. The proof is elementary, except for theories of pseudoholo- morphic hypersurfaces, where topological techniques are needed. Surprisingly, hypersurface theories exist “microlocally” (in great abundance) to all orders perturbatively, but not “locally.” Contents 1. Introduction 1 1.1. The problem 2 1.2. The solution 2 1.3. The big picture 3 2. Constructing G-structures on the Grassmann bundles 3 2.1. Reconstructing the Grassmannian from the structure equations 8 2.2. Complex notation 8 3. Complex geometry 9 4. Analogues of complex geometry 9 4.1. Immediate corollaries of the structure equations 12 5. High dimension and codimension 16 6. Small dimension and codimension 16 7. Hypersurfaces 16 7.1. Contact geometry 17 7.2. Geometry of the characteristic line bundle 19 7.3. A great circle fibration 22 7.4. A Chern class 24 8. Moduli of hypersurface equations 25 9. Directions for further research 26 arXiv:math/0107073v6 [math.DG] 10 May 2006 References 26 1. Introduction Misha Gromov, asked to point to the future directions of geometry, responded [3] that the geometry of solutions of first-order systems of partial differential equations, generalizing (1) the Cauchy–Riemann equations of almost complex manifolds and (2) the equations of calibrated submanifolds in exceptional holonomy manifolds, is Date: October 30, 2018. MSC: 53D99; 35F20. 1 2 BENJAMIN MCKAY one of the key directions to follow. This paper is the first attempt since Gromov’s paper to follow that direction.
    [Show full text]
  • Lecture XIV: Pseudoholomorphic Curves II
    Lecture XIV: Pseudoholomorphic curves II Jonathan Evans 23rd December 2010 Jonathan Evans () Lecture XIV: Pseudoholomorphic curves II 23rd December 2010 1 / 22 In today's lecture, being the last of this course, we'll pull out all the stops and demonstrate some of the enormous power of the pseudoholomorphic curve machinery introduced last time. Our aim will be to prove the following things: Gromov's theorem that the (infinite-dimensional) symplectomorphism group of (S2 × S2;! ⊕ !) retracts onto the finite-dimensional subgroup of isometries for the K¨ahlermetric (product of round metrics). McDuff's construction of two symplectic forms on S2 × S2 × T 2 which are deformation equivalent (through non-cohomologous forms) but not isotopic (through cohomologous forms). The first is extraordinarily powerful, illustrates how useful curves can be in 4-d and uses many techniques we've now learned. The second is slightly off-the wall, doesn't rely on 4-d, illustrates how hard things get in higher dimensions and is an extremely beautiful proof. Jonathan Evans () Lecture XIV: Pseudoholomorphic curves II 23rd December 2010 2 / 22 First I will quickly recap the pseudoholomorphic curve existence proof from last time because I rushed it. The aim was to prove Theorem 1 Let (X ;!) = (CP × V ;!FS ⊕ !V ) be a product symplectic manifold of dimension 2n where the minimal area of a homology class in V is at least R ! = 1. Then for any !-compatible almost complex structure J and CP1 FS any point p there is a J-holomorphic sphere in the homology class A = [S2 × f?g] passing through p.
    [Show full text]
  • Lecture XIII: Pseudoholomorphic Curves I
    Lecture XIII: Pseudoholomorphic curves I Jonathan Evans 16th December 2010 Jonathan Evans () Lecture XIII: Pseudoholomorphic curves I 16th December 2010 1 / 18 It's finally time to introduce the theory of pseudoholomorphic curves. Today we will define pseudoholomorphic curves and discuss and motivate some of their properties. My aim in this lecture is not to prove anything, rather to give you the idea of how J-holomorphic curves behave and then how to use them to prove things. If you want to see proofs, go and look at the big book by McDuff-Salamon. Jonathan Evans () Lecture XIII: Pseudoholomorphic curves I 16th December 2010 2 / 18 Definition Let (X ; J) be an almost complex manifold. A J-holomorphic curve in X is a map u :Σ ! X from a Riemann surface (Σ; j) to X such that J ◦ du = du ◦ j Equivalently, in local complex coordinates z = x + iy on Σ and local real coordinates xj on X @uj @ui + Jj = 0 @x i @y We restrict to a 2-dimensional source because it turns out that for a non-integrable J there are even local obstructions (coming from the Nijenhuis tensor) to the existence of higher-dimensional J-holomorphic submanifolds. In contrast there are many local J-holomorphic curves through any given point. Jonathan Evans () Lecture XIII: Pseudoholomorphic curves I 16th December 2010 3 / 18 The differential equation governing J-holomorphic curves is \elliptic" and so they share many of the nice properties of holomorphic curves in an integrable complex manifold. For instance: (Unique continuation:) Suppose u and v are two J-holomorphic curves Σ ! X for which there exists z 2 Σ at which u and v and all their derivatives agree.
    [Show full text]
  • Lefschetz Fibrations and Pseudoholomorphic Curves
    Fields Institute Communications Volume 00, 0000 Lefschetz fibrations and pseudoholomorphic curves Michael Usher Harvard University Department of Mathematics One Oxford Street Cambridge, MA 02138 [email protected] Abstract. This survey of the main results of [13] and [14] discusses how, using constructions of S. Donaldson and I. Smith [3], one can exploit the existence of Lefschetz fibrations on symplectic 4-manifolds to deduce facts about the Gromov{Taubes invariants of such manifolds. 1 Gromov{Witten and Gromov{Taubes invariants Let (X; !) be a symplectic 4-manifold, α H 2(X; Z), and A = P D(α). For some time, it has been realized that counting pseudoholomorphic2 curves represent- ing the class A should give rise to interesting symplectic invariants of (X; !). When one sets about carefully defining such invariants, though, one inevitably runs into certain technical difficulties, the most serious of which arises from the fact that the moduli space of pseudoholomorphic curves in class A can have an undesirably-large boundary component consisting of multiple covers. If one attempts to restrict to embedded curves representing A, all such curves will (by the adjunction formula) have genus g(α) = 1 + 1 (α2 + κ α), and the 2 X · expected complex dimension of the space of such curves is d(α) = 1 (α2 κ α). 2 − X · (Here κX denotes the canonical class of (X; !), i.e., the first Chern class of T ∗X considered as a complex vector bundle using any almost complex structure j on X tamed by !.) From these formulas, one can verify that, for generic j, the only source of noncompactness of the moduli spaces arises from the fact that, for some T H2(X; Z) and m > 1, a sequence of embedded square-zero tori representing a class2 mT might converge to a double cover of a torus in class T .
    [Show full text]
  • Articles on Symplectic Topology, Including: Symplectomorphism, Pseudoholomorphic Curve, Stable Map, Gromovã¢Â "Witten Invariant, Floer
    [PDF] Articles On Symplectic Topology, including: Symplectomorphism, Pseudoholomorphic Curve, Stable Map, Gromovââ "witten Invariant, Floer Homology,... Articles On Symplectic Topology, including: Symplectomorphism, Pseudoholomorphic Curve, Stable Map, Gromovââ "witten Invariant, Floer Homology, Equivariant Cohomology, Taubes's Gromov Invariant, Rel Book Review Extensive guideline! Its this kind of good go through. Yes, it really is play, continue to an interesting and amazing literature. I am just pleased to inform you that this is basically the greatest book we have go through inside my own life and could be he greatest pdf for possibly. (Mad ison A rm st rong ) A RTICLES ON SYMPLECTIC TOPOLOGY, INCLUDING: SYMPLECTOMORPHISM, PSEUDOHOLOMORPHIC CURV E, STA BLE MA P, GROMOV â&A CIRC; "W ITTEN INVA RIA NT, FLOER HOMOLOGY, EQUIVA RIA NT COHOMOLOGY, TA UBES'S GROMOV INVA RIA NT, REL - To download A rticles On Symplectic Topolog y, including : Symplectomorphism, Pseudoholomorphic Curve, Stable Map, Gromovà ¢â "witten Invariant, Floer Homolog y, Equivariant Cohomolog y, Taubes's Gromov Invariant, Rel eBook, please follow the button listed below and save the document or get access to additional information which are highly relevant to Articles On Symplectic Topology, including: Symplectomorphism, Pseudoholomorphic Curve, Stable Map, Gromovââ "witten Invariant, Floer Homology, Equivariant Cohomology, Taubes's Gromov Invariant, Rel book. » Download A rticles On Symplectic Topolog y, including : Symplectomorphism, Pseudoholomorphic Curve, Stable Map, Gromovà ¢â "witten Invariant, Floer Homolog y, Equivariant Cohomolog y, Taubes's Gromov Invariant, Rel PDF « Our professional services was released using a aspire to function as a comprehensive on-line digital local library that provides usage of multitude of PDF file document assortment.
    [Show full text]