MINERALS POLICY a Reality

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Making a NATIONAL MINERALS POLICY a Reality National Mining Association th 1130 17 St., N.W., Washington, D.C. 20036 (202) 463-2621 • www.nma.org Last Updated: March 12, 2002 1 Making a NATIONAL MINERALS POLICY a Reality -- Contents -- 1 Overview 2 Mining is Vital for America 3 The Mining & Minerals Policy Act Passed by Congress in 1970 Recognizes the Importance of Mining and Minerals. 4 Yet . U.S. Mining Activity in Recent Years has Declined Rather than Increased. 5 Exploration for New Resources, an Investment Toward Future Mineral Production and Supplies, is being Increasingly Directed Away from the United States. 6 Mine Development is Being Impacted. 7 There are Fewer Operating U.S. Hardrock Mines. 8 Meanwhile, Foreign Governments have Encouraged Mine Exploration and Development. 9 U.S. Policy, in Contrast, has Discouraged, Not Encouraged, its Mining Industry. 10 Repeating the Energy Mistake -- Increased U.S. Reliance on Imported Minerals. 11 Increased Dependency on Imports is not in the National Interest. 12 Minerals/Metals Provide Essential Products. 13 How a National Minerals Policy can Help. 2 Overview A 1970 federal law -- the Mining and Minerals Policy Act -- formally recognized the importance of mining and domestic minerals production as a policy of the United States. Yet, the domestic mining industry has declined. While various factors (including market conditions, more favorable operating possibilities and higher grade ore prospects overseas) have played a role in this trend, several analyses of America's hardrock mining industry have reached the same conclusion: . the complexities, uncertainties and time delays associated with permitting of operations on public lands have resulted in significant reductions in investment in the U.S. and greater reliance on foreign sources of minerals vital to our nation's economic well-being. Unless reaffirmation of a National Minerals Policy becomes a reality, the U.S. will continue to lose its mining industry to other nations who actively recruit and desire this important economic asset. The net result: A growing need for mineral imports, loss of highly skilled and high wage jobs, deepening economic consequences. 1 3 Mining is Vital for America t provides nearly a half- I trillion dollars ($491.8 billion) annually in direct and indirect economic impact -- nearly 5 percent of the U.S. (Source: "Mining and the American Economy," using 1998 data, prepared by the Western Economic Analysis Center for the National Mining Gross Domestic Product. Association, published in 2000.) very American uses an Eaverage of 48,000 pounds of newly mined minerals each year (Source: NMA extrapolation based on U.S. Geological Survey (minerals) and -- and about 7,600 pounds of Energy Information Administration (coal) data.) coal annually. ne out of 43 Americans is Oemployed in a job that depends -- directly or indirectly -- on mining. (Source: NMA calculation based on data from Western Economic Analysis Center, U.S. Bureau of Labor Statistics and U.S. Department of Agriculture.) 2 4 The Mining & Minerals Policy Act Passed by Congress in 1970 recognizes the importance of mining and minerals. "The Congress declares that it is the continuing policy of the Federal Government in the national interest to foster and encourage private enterprise in the development of economically sound and stable domestic mining . (and) the orderly and economic development of domestic mineral resources . " Mining & Minerals Policy Act of 1970 U.S. Code Title 30, Chapter 2, Section 21A 3 5 Yet . U.S. mining activity in recent years has declined rather than increased. 1. Expenditures for exploration, an activity essential for developing new mines, have steadily decreased in the U.S., and increased in Latin America and the Pacific. 2. U.S. mine development expenditures and metals/nonmetal "plans of operation" on federally owned land dropped drastically over the past decade. 3. The number of U.S. metal/nonmetal mines has declined 61 percent since 1980. 4. U.S. reliance on mineral imports has risen nearly sevenfold in terms of value since 1993. A Key Reason: An increasingly difficult, unbalanced federal regulatory policy has achieved an effect opposite the intent of the Mining & Minerals Policy Act -- discouraging, rather than U.S. Explorationencouraging, the Activity U.S. mining is industry. Decreasing. 4 6 Exploration for new resources, an investment toward future mineral production and supplies, is being increasingly directed away from the United States. 70 60 50 40 Percent 30 Trend in Exploration Spending Favoring New Mining Areas, 1993-98 (Traditional: Includes the U.S., Canada, Australia and Europe; New: Includes Latin America, the Pacific, Asia and Africa). 20 Taken from U.S. Metal Mining: Recent Trends and Uncertainty Discourage Domestic Exploration and Investment, page 3. Original source 10 based on Metals Economics Group estimates, reported in Mining Engineering, May 2000. 0 1993 1994 1995 1996 1997 1998 Traditio nal New North American Precious Metals Precious metal producers, an important Producers' U.S. Exploration segment of the hardrock mining industry, Expenditures, 1996-99 decreased U.S. exploration expenditures 66 1996: $113,304,000 percent between 1996-99. 1997: $153,046,000 Down 1998: $ 89,160,000 66% 1999: $ 39,143,000 Worldwide Exploration Budgets, 2001 (Million $) Source: 1998 Gold Institute Survey conducted by Dr. John Dobra, University of Nevada-Reno. 1. Latin America $575.8 2. Australia $349.4 3. Canada $332.9 Although currently a major producer 4. Africa $276.9 5. Other Nations Combined $175.0 of some 78 important mined minerals, 6. United States $158.2 the U.S. ranks only sixth (according 7. Pacific/SE Asia $133.0 to a recent survey of 679 companies' budgets) in 2001 allocations for Total $2.001.2 commercial precious and nonferrous metals exploration -- since 1998, the (Source: Survey by Metals Economics Group, as reported in December 2001 Mining Engineering). U.S. figure has declined nearly $85 million, or 35 percent. 5 7 MineMine Develo Developmentpment is is BeinBeingg Impacted. Impacted. Lands administered by the Bureau of Land Management (BLM) and the U.S. Forest Service (USFS) comprise 38 percent of the combined land area of western states, where most hardrock mining occurs. National policy affecting the availability and use of these lands has significant implications for the mineral extraction industry as a whole. Federal Lands in the United States In a 1999 study, Hardrock Mining on Federal Lands, the National Plans of Research Council reported to Congress that total "plans of operations" Operations on federally owned land in the United States declined by 50 percent down between 1992-99. Under current law, "plans of operation" must be 50% submitted to BLM by mining exploration that is over 5 acres or near critical environmental areas, and operations that disturb any acreage. 6 8 There are fewer operating U.S. Hardrock Mines. 2500 1980 = 2,305 2000 1500 2000 = 893 1000 Total Metal, Non-Metal Mines The total number of U.S. metal/nonmetal 500 mines has declined 61 percent since 1980. (SOURCE: Mine Safety & Health Administration data; NMA website, www.nma.org) 0 1980 1985 1990 1995 2000 (Factors impacting this trend include exhaustion of resources; closing of less profitable, more inefficient operations; commodity price fluctuations; and the impact of an increasingly strict and costly federal regulatory regime.) Between 1996 and 1999, a nearly 88 percent drop occurred in U.S. development expenditures by precious metals producers, an important segment of the hardrock mining industry. This coincided with a nearly 452 percent rise in such expenditures by these companies in South America. North American Precious Metals Producers' Development Expenditures, 1996-99 (000 Dollars) Country 1996 1997 1998 1999 %Change 1996-99 United States 239,772 211,375 162,129 29,200 - 87.8 Australia 490 717 13,757 800 + 63.3 South America 109,527 234,128 420,721 604,000 + 451.5 Other 95,300 76,531 63,206 170,000 + 78.4 Total 445,089 519,781 659,813 804,000 + 80.6 Source: 1998 Gold Institute Survey conducted by Dr. John Dobra, University of Nevada-Reno. The Bottom Line: Areas of the world once considered too risky politically and economically for mine exploration and development are now viewed as more attractive than the unpredictable, overly restrictive regulatory climate in the U.S. -- where permitting a mine can take 4 to 8 years. 9 7 Meanwhile . foreign governments have encouraged mine exploration and development. In contrast to decreasing activity in the U.S., many governments in areas currently experiencing robust mining activity have instituted policies and procedures with the specific aim of encouraging exploration and development. Since 1985, more than 95 countries have instituted reforms of their laws to attract new mines by either amending existing statutes and regulations or adopting new regulatory frameworks entirely. (Source: James M. Otto, "Global Changes in Mining Laws, agreements and Tax Systems," Resources Policy, Vol. 24, No. 2, 1998, pp. 79-86, as reported in U.S. Metal Mining: Recent Trends and Uncertainty Discourage Domestic Exploration and Development, by Yvette Alt and David Lundy, Industry Trade and Technology Review, January 2001). Minera Yanacocha in Peru, the largest gold prodcer in Latin America. In general, these mining law changes have embraced regulatory reform, free-markets and privatization. They also include stringent environmental safeguards similar to those in the U.S., including
Recommended publications
  • Adits, Caves, Karizi-Qanats, and Tunnels in Afghanistan: an Annotated Bibliography by R

    Adits, Caves, Karizi-Qanats, and Tunnels in Afghanistan: an Annotated Bibliography by R

    Adits, Caves, Karizi-Qanats, and Tunnels in Afghanistan: An Annotated Bibliography by R. Lee Hadden Topographic Engineering Center November 2005 US Army Corps of Engineers 7701 Telegraph Road Alexandria, VA 22315-3864 Adits, Caves, Karizi-Qanats, and Tunnels In Afghanistan Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE 30-11- 2. REPORT TYPE Bibliography 3. DATES COVERED 1830-2005 2005 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER “Adits, Caves, Karizi-Qanats and Tunnels 5b. GRANT NUMBER In Afghanistan: An Annotated Bibliography” 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER HADDEN, Robert Lee 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT US Army Corps of Engineers 7701 Telegraph Road Topographic Alexandria, VA 22315- Engineering Center 3864 9.ATTN SPONSORING CEERD / MONITORINGTO I AGENCY NAME(S) AND ADDRESS(ES) 10.
  • Mining Engineering 1

    Mining Engineering 1

    Mining Engineering 1 Learn more about the bachelor’s degree in mining engineering (https:// MINING ENGINEERING uaf.edu/academics/programs/bachelors/mining-engineering.php), including an overview of the program, career opportunities and more. B.S. Degree College of Engineering and Mines As the nation’s northernmost accredited mining engineering program, Department of Mining and Geological Engineering (https://cem.uaf.edu/ our mission is to advance and disseminate knowledge for exploration, mingeo/) evaluation, development and efficient production of mineral and energy 907-474-7388 resources with assurance of the health and safety of persons involved and protection of the environment, through creative teaching, research Programs and public service with an emphasis on Alaska, the North and its diverse peoples. Degree • B.S., Mining Engineering (http://catalog.uaf.edu/bachelors/ The mining engineering program emphasizes engineering as it applies bachelors-degree-programs/mining-engineering/bs/) to the exploration and development of mineral resources and the economics of the business of mining. The program offers specializations in exploration, mining or mineral beneficiation. Minor • Minor, Mining Engineering (http://catalog.uaf.edu/bachelors/ Students are prepared for job opportunities with mining and construction bachelors-degree-programs/mining-engineering/minor/) companies, consulting and research firms, equipment manufacturers, investment and commodity firms in the private sector, as well as with state and federal agencies. The mining engineering program educational objectives are to graduate competent engineers who: • apply their engineering skills and knowledge with consideration to health, safety and the environment, • pursue careers in mineral-related industries, • are active among the local and professional mining communities, and • seek professional advancement of mining engineering technology and practices.
  • Education Roadmap for Mining Professionals

    Education Roadmap for Mining Professionals

    Education Roadmap for Mining Professionals December 2002 Mining Industry of the Future Mining Industry of the Future Education Roadmap for Mining Professionals FOREWORD In June 1998, the Chairman of the National Mining Association and the Secretary of Energy entered into a compact to pursue a collaborative technology research partnership, the Mining Industry of the Future. Following the compact signing, the mining industry developed The Future Begins with Mining: A Vision of the Mining Industry of the Future. That document, completed in September 1998, describes a positive and productive vision of the U.S. mining industry in the year 2020. It also establishes long-term goals for the industry. One of those goals is: "Improved Communication and Education: Attract the best and the brightest by making careers in the mining industry attractive and promising. Educate the public about the successes in the mining industry of the 21st century and remind them that everything begins with mining." Using the Vision as guidance, the Mining Industry of the Future is developing roadmaps to guide it in achieving industry’s goals. This document represents the roadmap for education in the U.S. mining industry. It was developed based on the results of an Education Roadmap Workshop sponsored by the National Mining Association in conjunction with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of Industrial Technologies. The Workshop was held February 23, 2002 in Phoenix, Arizona. Participants at the workshop included individuals from universities, the mining industry, government agencies, and research laboratories. They are listed below: Workshop Participants: Dr.
  • Career Center Annual Report

    Career Center Annual Report

    CAREER CENTER ANNUAL REPORT 2019–2020 th Best Return on 5Investment 1 73 % Students Utilized Mines % Career Services 95 Positive Outcomes Rate2,3 IN A YEAR OF UNPRECEDENTED CHALLENGES, 1,200 Organizations THE STUDENTS, FACULTY, AND STAFF OF Recruited or MINES HAVE RISEN TO THE OCCASION, Hired at Mines REFLECTING THE INDOMITABLE OREDIGGER SPIRIT OF RESILIENCE THAT IS AT THE HEART OF THE MINES EXPERIENCE. THE CAREER Average CENTER HAS BEEN NIMBLE IN ADAPTING TO Starting $ Salary 3 NEW CIRCUMSTANCES AND CHANGING NEEDS. k 1 Among public universities nationwide 2 Employed79 in industry, government, military, www.payscale.com/college-salary-report/best-schools-by- continuing education, or international students type/bachelors/public-schools returning to their home countries. 3 Combined BS, MS, and PhD grads “IT IS ABSOLUTELY AMAZING TO BE ABLE TO PUT ON GLOVES AND TOUCH A VEHICLE THAT IS GOING INTO SPACE, LET ALONE CONTRIBUTE TO A TEAM OF INCREDIBLY SMART INDIVIDUALS TO HELP BUILD THIS VEHICLE AND GET IT INTO SPACE.” NADIA SMITH Mechanical Engineering REACHING BS, Class of 2021 FOR THE STARS GR ADUATED $ STUDENT 79K Average Starting OUTCOMES Salary 1 % A Record 22 Graduates Continue with 1,548 Advanced Education3 Total Graduates The Class of 2020 graduated into a labor market unlike any in recent history with a pandemic impacting course delivery and an unexpected, % sudden shift in the economy. Despite these Positive challenges, Mines graduates saw positive outcomes, Outcomes similar to prior years—a testament to their enduring 95 1,2 Rate value as professionals and graduates. 2 Employed in industry, government, military, continuing education, 1 BS, MS, and PhD grads or international students returning to their home countries.
  • National Register Bulletin 42

    National Register Bulletin 42

    NATIONAL REGISTER BULLETIN Technical information on the the National Register of Historic Places: survey, evaluation, registration, and preservation of cultural resources U.S. Department of the Interior National Park Service Cultural Resources National Register, History and Education Guidelines for Identifying, Evaluating, and Registering Historic Mining Properties The mission of the Department of the Interior is to protect and provide access to our Nation'snatural and cultural heritage and honor our trust responsibilities to tribes. The NationalPark Service preserves unimpaired the natural and cultural resources and values of the NationalPark System for the enjoyment, education, and inspiration of this and future generations. The Park Service cooperates with partners to extend the benefits of natural and cultural resource conservation and outdoor recreation throughout this country and the world. This material is partially based upon work conducted under a cooperative agreement withthe National Conference of State Historic Preservation Officers and the U.S. Department of the Interior. Cover Photo: This photograph of Lead Historic District in South Dakota illustrates the complex array of mineral extraction facilities, mills, worker housing, and tailings piles which typify the industrial nature of many historic mining properties. (Scott Gerloff) NATIONAL REGISTER BULLETIN GUIDELINES FOR IDENTIFYING, EVALUATING, AND REGISTERING HISTORIC MINING PROPERTIES BY BRUCE J. NOBLE, JR. AND ROBERT SPUDE U.S. DEPARTMENT OF THE INTERIOR NATIONAL PARK
  • 2017 Chicxulub Revealed

    2017 Chicxulub Revealed

    THE UNIVERSITY TEXAS OF AUSTIN AT JACKSON• SCHOOL GEOSCIENCES OF 2017 NEWSLETTER• Newsletter2 017 Chicxulub Revealed A first look at rocks from the crater left by the asteroid that wiped out non-avian dinosaurs WELCOME Dear Alumni and Friends he devastation that Hurricane Harvey brought to Texas communities in August was a tragic reminder of how vital it is to understand our planet and T its processes. Shortly after the hurricane struck, our scientists, through our Rapid Response program, began to conduct research to understand how Harvey has impacted the coast and offshore Gulf of Mexico. This research will help determine the best ways to deal with many coastal issues in the aftermath of the storm, and how we might better prepare for such events in the future. You can read more about the mission on page 18. Rapid response efforts on the effects of abrupt, catastrophic geoscience events COVER: GRANITE FROM THE PEAK RING OF provide critical science that can benefit society. This is what we strive to do here at the THE CHICXULUB CRATER FORMED BY THE Jackson School of Geosciences. This year’s Newsletter holds some tremendous examples. ASTEROID STRIKE THAT WIPED OUT ALL NON- AVIAN DINOSAURS I’d like to draw your attention to the story on page 58 about the scientific coring mission led by Peter Flemings to bring back samples of methane hydrate from ABOVE: MEMBERS OF THE JACKSON beneath the Gulf of Mexico. This is a cutting-edge research project on a potential SCHOOL-LED TEAM CORING FOR SAMPLES OF METHANE HYDRATE IN THE GULF OF MEXICO future energy source that very few schools in the world would be able to mount.
  • The Mining Engineer the First MS&T-UMR-MSM Engineer Newsletter for the Mining Engineering Program October 2010

    The Mining Engineer the First MS&T-UMR-MSM Engineer Newsletter for the Mining Engineering Program October 2010

    The Mining Engineer The first MS&T-UMR-MSM Engineer Newsletter for the Mining Engineering Program October 2010 Experimental Mine on Fire: The #1 Awesome College Lab in the United States according to Popular Science. Story on Page 19 A Message from the Chair Rolla Mining Engineering currently has 9 full-time tenured/tenure track faculty members, one short of the critical 10 required to carry out the research and education mandate of the growing programs. The faculty members continue to distinguish themselves in their research, education and service mandate. Faculty research awards averaged between $2 and $4 million a year for the past five years. Dr. Awuah-Offei received the 2009 Outstanding Teaching Award from the Department. Dr. Baird received the Mines and Metallurgy Academy’s Senior Faculty Award and the Department Research Award in 2009. Dr. Frimpong is currently serving as a Member of the Board of Natural Resources and as a Co- Chair for the ASCE-UNESCO Committee on Emerging Energy Technologies. Dr. Ge received the 2010 Acoustic Emissions Working Group Fellow Award. Dr. Gillies was the Invited Keynote Speaker at Mine Diesel Emission Conference in th Toronto (2008), Queensland Seals Workshop (2009), 9 International Mine Fall 2010 marks the end of the Ventilation Congress in Delhi (2009) and as the 2005/09 Chair of Int. Mine 2006-10 Strategic Plan for S&T Ventilation Congress Committee. Dr. Worsey received the 2009 S&T’s Faculty Mining Engineering. The vision Service Award for his outstanding public education on safe explosive use. was to be recognized as a global leader in mining engineering Mining Engineering continues to be served by a strong Development Board education and research.
  • Integral Groundwater Management Integral Groundwater Management Civil & Mining Engineering Civil & Mining Engineering

    Integral Groundwater Management Integral Groundwater Management Civil & Mining Engineering Civil & Mining Engineering

    Civil & Mining Engineering Further selected projects ■ Overall assessment of the water cycle of the East Rand Basin in South Africa, on behalf of the Council for Geoscience (2012-2014): Development of a fore- casting system for water quantity and quality when coupling groundwater and surface water ■ Groundwater inflow in the diamond mine in Mirny, Russia, on behalf of ALROSA (2018): monitoring, numerical modelling and evaluation of the effectiveness Integral of measures to prevent water inflow groundwater management Infrastructure. Water supply. Mining. About DMT DMT is a group of independent global engineering services companies operating in more than 30 locations. We carry Selected projects out a large number of projects all over the world every year. ■ Groundwater drawdown for the enhancement of main station Berlin - Ostkreuz (Germany), on behalf of Being a leader in engineering, DMT is part of TÜV NORD DB Netz AG (2007-2018): monitoring, numerical flow GROUP, with markets in plant construction and pro- modelling and management of technical measures cess engineering, infrastructure and construction, and ■ Groundwater inflow into the mine during the exploita- raw materials. tion of lead & zinc in Ain Azel, Algeria, on behalf of ENOF (since 2013): exploration, analysis and numeri- cal modelling ■ Planning and optimisation of a protection for water discharge on the site of the wastewater treatment plant in Bottrop, Germany, on behalf of the Emscher- genossenschaft Essen (2016-2019): Groundwater DMT GmbH & Co. KG modelling and development
  • Underground Mining Methods and Equipment - S

    Underground Mining Methods and Equipment - S

    CIVIL ENGINEERING – Vol. II - Underground Mining Methods and Equipment - S. Okubo and J. Yamatomi UNDERGROUND MINING METHODS AND EQUIPMENT S. Okubo and J. Yamatomi University of Tokyo, Japan Keywords: Mining method, underground mining, room-and-pillar mining, sublevel stoping, cut-and-fill, longwall mining, sublevel caving, block caving, backfill, support, ventilation, mining machinery, excavation, cutting, drilling, loading, hauling Contents 1. Underground Mining Methods 1.1. Classification of Underground Mining Methods 1.2. Underground Operations in General 1.3. Room-and-pillar Mining 1.4. Sublevel Stoping 1.5. Cut-and-fill Stoping 1.6. Longwall Mining 1.7. Sublevel Caving 1.8. Block Caving 2. Underground Mining Machinery Glossary Bibliography Biographical Sketches Summary The first section gives an overview of underground mining methods and practices as used commonly in underground mines, including classification of underground mining methods and brief explanations of the techniques of room-and-pillar mining, sublevel stoping, cut-and-fill, longwall mining, sublevel caving, and block caving. The second section describes underground mining equipment, with particular focus on excavation machinery such as boomheaders, coal cutters, continuous miners and shearers. 1. UndergroundUNESCO Mining Methods – EOLSS 1.1. Classification of Underground Mining Methods Mineral productionSAMPLE in which all extracting operations CHAPTERS are conducted beneath the ground surface is termed underground mining. Underground mining methods are usually employed when the depth of the deposit and/or the waste to ore ratio (stripping ratio) are too great to commence a surface operation. Once the economic feasibility has been verified, the most appropriate mining methods must be selected according to the natural/geological conditions and spatial/geometric characteristics of mineral deposits.
  • Department of Mining Engineering Mining.Mines.Edu

    Department of Mining Engineering Mining.Mines.Edu

    DEPARTMENT OF MINING ENGINEERING MINING.MINES.EDU Mines has been ranked as the #1 mining school in the world by the QS World University Rankings since 2015. Stewards of Earth resources degrees offered The Department of Mining Engineering focuses on training engineers w ith a strong Courses include hands-on labs and engineering background w ho understand the geology of ore deposits and best presentations by industry partners. methods for safe and environmentally sound extraction of minerals. As stewards of Mining Engineering natural resources, graduates learn to provide supply of critical resources, minerals and Bachelor?s, master's and raw materials for economic grow th and sustainability of society in a circular economy. PhD offered Underground Const ruct ion student-led organizations and Tunnel Engineering Master?s and PhD offered - Society for Mining, Metallurgy and Exploration (SME) Eart h Resource - International Society of Explosives Development Engineering Engineers (ISEE) Master?s and PhD offered - Society of Women Engineers (SW E) - Women In Mining (W IM) minors - Mine Rescue Team featuring national Mining Engineering competitions + - International Mining Games featuring Explosives Engineering international competitions + Underground Const ruct ion + and Tunnel Engineering Mineral Processing and research opportunities for undergrad students + Eart h Mechanics There are several world-renow ned research centers and institutes w ithin the (Coming in AY 20 21) department that offer hands-on experience and research activities for students. Space Mining + Coming soon! - Kroll Institute for Extractive Metallurgy (KIEM) - Underground Construction and Tunneling (UCT) - Earth Mechanics Institute (EMI) 40+ industry partners - Center for Critical Minerals - Center for Sustainable Mining - Edgar Experimental Mine - Virtual and Augmented Reality Lab $65K - Mine Automation and Robotics Average salary for - Rock Mechanics Lab 20 18-19 BS graduates - Mineral Processing Lab (10 0 % placement - Mine Ventilation Lab rate reported) .
  • 2.2 Fall 2010

    2.2 Fall 2010

    News from Holden Hall Department of Mining and Minerals Engineering Virginia Polytechnic Institute and State University Volume 2, Issue 2 Fall 2010 The Mill Report —Dr. Greg Adel, Professor and Department Head As we near the end of the fall semester, it is time for another issue of News from Holden Hall. Thanks to all the alumni who continue to express their appreciation for this publication. It is very gratifying to know that so many of you remain interested in your old alma mater. I am happy to report that the Department continues to flourish in spite of the economic downturn. Over the past two years, we have been able to place 95% of our seniors prior to May commencement while graduating two of the largest classes in the history of our program (54 in 2009 and 39 in 2010). Although jobs in the aggregates industry have been severely impacted by the recession, the coal industry has more than taken up the slack, not to mention job opportunities in other sectors such as gold, industrial minerals, phosphates, salt, technical sales, and consulting. In fact, you may be surprised to learn that the leading employer of our graduates over the past ten years has been Cargill at their salt operations in Ohio, New York, and Louisiana. The size of our program continues to grow with 140 undergraduates and a record 32 graduate students enrolled in the 2010 Fall Semester. In fact, we had to remodel our graduate office space over the summer in order to accommodate the increased graduate enrollment. Of course, the credit for this growth goes to the faculty who have worked tirelessly to secure funded research projects and produced research expenditures of approximately $3.7 million in Fiscal Year 2010.
  • Cascade Caver

    Cascade Caver

    • •I :�':-er g. McLellan, Editor Published intermittently by 22J6 �rescen� Drive CASCADE CAVE REPORT No. 6 The Cascade Grotto, N.s.s. :::3 -?.·;:;"·13 2, Washington 2u July 1953 Rep·)rt on a Grotto Field Trip to THESIS CAVE b:r Warren Gibson, Chairman Buried daeply i :i a mining engineering thesis, written in 1910, is a picture of a limes t::me quarry showing two cave entrances. The cap­ t:i�n of the picture :nentions the name of the quarry. On another page of the ·;;hesis is a brief description of the quarry. From this description we knew: 1. 1�e qu�rry had baen abandoned before 1910. 2. An overhead cableway had been used to transport the lime­ s tone c:cross tt 3 Stillagurunish River where it was loaded on cars of the no,; abandon::::d Monte Cristo Railroad. The limestone was then _,hipped a mile Jr so West to tl).e kiln discovered by Peter McLellan and WarreH GibsJn, and described in Cascade Cave Report No. 5. 3< Tha quarry was within half a mile of a tunnel on the Mon­ ·�e Cr·is ;.,o Railr::>ad. After co 1sidera::ilH study, Tom Steinburn, our newest member, reached c:ie conclusi.on that the quarry we soug!1t must be the SE most of three snowi1 on a USED quadrangle r..ap of the Granite Falls areao This one quar­ -7 ,.'�., c.:cross the river from the :ca:!..lroad, and about half a mile SE from ,.:. tu:,:1sI'tt.1e qur.:.rz7 had previously been reported to be SH f:rom the tu.'1- nal).