Synthesis of Corannulene-Based Nanographenes.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis of Corannulene-Based Nanographenes.Pdf This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Synthesis of corannulene‑based nanographenes Muzammil, Ezzah M.; Halilovic, Dzeneta; Stuparu, Mihaiela Corina 2019 Muzammil, E. M., Halilovic, D., & Stuparu, M. C. (2019). Synthesis of corannulene‑based nanographenes. Communications Chemistry, 2(1), 58‑. doi:10.1038/s42004‑019‑0160‑1 https://hdl.handle.net/10356/141853 https://doi.org/10.1038/s42004‑019‑0160‑1 © 2019 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Downloaded on 25 Sep 2021 18:40:16 SGT REVIEW ARTICLE https://doi.org/10.1038/s42004-019-0160-1 OPEN Synthesis of corannulene-based nanographenes Ezzah M. Muzammil1,2, Dzeneta Halilovic1,2 & Mihaiela C. Stuparu 1 Corannulene (C20H10) is a polycyclic hydrocarbon in which five six-membered rings surround 1234567890():,; a central five-membered ring to construct a bowl-like aromatic structure. Here we examine the development of synthetic strategies that allow for the growth of the peripheral aromatic rings as a means to extend the aromatic area of the central corannulene nucleus and provide access to unique nanocarbon molecules. p2-hybridised structures of carbon have fascinated the research community for a very long 1 s time. In 1985, buckminsterfullerene, otherwise known as C60, was discovered (Fig. 1a) .In this ball-shaped molecule, the curvature in the structure stems from the presence of five- membered rings. In 1991, carbon nanotubes arrived on the scene2. Here, the structure is cylindrical and composed of only rolled-up six-membered rings. In 2004, a sheet-like single layer from graphite—graphene—was isolated3. All of these materials were shown to have extra- ordinary electronic and mechanical properties due to their unique curved or planar sp2-hybri- dised aromatic structures. Inspired by these discoveries, chemists have been developing strategies to access such aromatic hydrocarbons through rational (‘bottom-up’) synthetic approaches. Scott’s 12-step chemical synthesis of fullerene C60 from a rationally designed precursor is a testament to the ingenuity and resourcefulness of organic chemists4. In planar structures, nanographenes (well-defined cutouts of graphene with nano-scale dimensions) can now be prepared on a regular basis with a very diverse portfolio5. It is expected that combining the planar structure of graphene with the curvature of fullerenes may produce hybrid materials with interesting properties6–8. To induce non-planarity into nanographenes, a practical approach would be to introduce a five- membered ring such as in the case of fullerene, C60. A perfect building block that allows for such a structural arrangement to happen is corannulene (1)—a molecule in which five six-membered rings surround a central five-membered ring to give a bowl-like structure (Fig. 1b)9–20. Cor- annulene also offers many beneficial features as a molecular building block. It has high solubility in common organic solvents. It can be derivatized in a well-defined manner. Due to synthetic ease, the derivatives can be prepared on a multigram scale. These attributes are important as they allow for the scalable preparation of carefully designed corannulene-based building blocks and the subsequent synthesis, purification and structural analysis of the larger (fused) aromatic systems. Recently, therefore, there has been a surge in employment of corannulene as a core molecule in the synthesis of extended aromatic structures. Our aim in this review article is to discuss 1 Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, and School of Materials Science and Engineering, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore. 2These authors contributed equally: Ezzah M Muzammil, Dzenta Halilovic. Correspondence and requests for materials should be addressed to M.C.S. (email: [email protected]) COMMUNICATIONS CHEMISTRY | (2019) 2:58 | https://doi.org/10.1038/s42004-019-0160-1 | www.nature.com/commschem 1 REVIEW ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-019-0160-1 a C60 Carbon nanotube Graphene b c Cl Cl 1 Cl Cl 2 Cl i Cl Cl Cl Cl Cl ii Cl Cl Cl Cl Cl 4 3 Fig. 1 Curved and planar polycyclic aromatic hydrocarbons. a Chemical structures of fullerene, carbon nanotube and graphene. b Chemical structure of corannulene 1. c Synthesis of carbon nanotube end-cap. (i) C38H53ClNO2PPd·CH3OC4H9, 2,6-dichlorophenyl zinc chloride, THF, 100 °C, 5 h; 52%. (ii) Flash vacuum pyrolysis, 1100 °C, 0.25 Torr; 3%. c is partially reprinted with permission from ref. 23. Copyright 2012 American Chemical Society recent advances in this fascinating area of research. In light of the coupling with 2,6-dichlorophenylzinc chloride to present pre- two comprehensive review articles written by the pioneers of the cursor 3. The C–Cl bonds are cleaved during the pyrolysis of 3 to field, Scott9 and Siegel10, we limit our discussion to examples generate aryl radicals that join to form a web of five-membered published after 2006. The discussion is categorised on the basis of rings in polyarene 4. X-ray analysis of crystals of 4 confirm the synthetic method and a chronological order is maintained in each structure and measure a bowl depth of 5.16 Å. A CS2 molecule section. was read in the crystal structure in the ‘basket’ of the polyarene— a sulfur atom hovering above the centre of the structure and the Pyrolytic method carbon atom hovering below the plane of the rim carbons. This Barth and Lawton’s first synthesis of corannulene was a true feat of work demonstrates that the FVP method originally developed for organic synthesis. It comprised 17 synthetic steps and allowed the preparation of corannulene and fullerene C60 is still relevant access to this beautiful molecule in a <1% overall yield21.Following and can be a valuable synthetic tool in the preparation of carbon- this elegant work, the field remained dormant for the next quarter based nano-tubular architectures through rational synthesis of a century until Scott’s group demonstrated flash vacuum pyr- pathways. The reader is referred to a recent conference paper by olysis (FVP) as an alternative to Barth and Lawton’s solution-phase Scott for an insightful discussion on this approach to carbon method. Scott’s method allowed access to corannulene in a nanotubes and its prospects for the future24. remarkably practical fashion (3-step synthesis with an overall yield While FVP has been critical in rejuvenating the field, the high of 26%)22. This work breathed new life into the research area of temperatures limit the range of functionalities on the corannulene non-planar aromatics and rejuvenated the field of corannulene. scaffold. Solution-phase methods alleviate this situation by In FVP, high temperatures are employed to overcome the employing milder reaction conditions. In this regard, the reac- energy barrier of introducing the necessary strain onto the tions may be aided by metal catalysis. Alternatively, metal-free molecular structure. Conversion of the precursor to the desired conditions can be employed to achieve the same purpose. In the product depends on both the heating time and temperature. The following sections, we examine both pathways for the extension power of this synthetic tool can be appreciated in the final syn- of the corannulene nucleus. thetic step of a hemispherical polyarene (C50H10) that could serve as a carbon nanotube end-cap (Fig. 1c)23. The first step of the Reactions involving metal catalysis synthesis is a five-fold chlorination of corannulene with iodine Pd-catalysed coupling.Scott’s group in 2007 reported the synth- monochloride. The pentachloro product 2 follows a Negishi esis of extended corannulene structures; pentaindenocorannulene 2 COMMUNICATIONS CHEMISTRY | (2019) 2:58 | https://doi.org/10.1038/s42004-019-0160-1 | www.nature.com/commschem COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-019-0160-1 REVIEW ARTICLE a Cl Cl Cl Cl Cl B(OH) i ii Cl + 2 Cl Cl Cl Cl Cl 256 b Cl Cl Br Br Cl B(OH) i ii Br Br + 2 Cl Cl 789 c 10 11 12 13 14 d e OTf Ar Ar Cl Cl iii TMS Cl Cl 15 iii Cl Cl iv + Cl Cl 19 i 16 17 Cl Cl vi v Cl Cl 18 20 Fig. 2 Corannulene extension pathways involving palladium catalysis. a Synthesis of pentaindenocorannulene. (i) Pd2(dba)3, 1,3-bis(2,6-diisopropylphenyl) imidazolium chloride, Cs2CO3, dioxane, 80 °C, 48 h; 48%. (ii) Pd(PCy3)2Cl2, DBU, DMAc, 180 °C (microwave), 45 min; 35%. b Synthesis of tetraindenocorannulene. (i) Pd(PPh3)4,K2CO3, toluene/EtOH/H2O, 85 °C, 24 h; 91%. (ii) Pd(PCy3)2Cl2, DBU, DMAc, 170 °C (microwave), 40 min; 13%. c Mono, di, and triindenocorannulenes prepared by palladium-catalysed coupling reaction. d Wu’s synthesis of buckybowls 15–18. (i) Pd(OAc)2,C6H5I, AgOAc, p-xylene, 110 °C, 36 h; 60% (Ar = 2,6-C6H3Cl2). (ii) Pd(PCy3)2Cl2, DBU, DMF, 160 °C, 36 h; 31%. (iii) 2-butyne, Rh(PPh3)3Cl, p-xylene, 110 °C, 60 h; 99%.
Recommended publications
  • Azulene Chemistry
    Azulene Chemistry What follows is a summary of the synthesis reactions related to Azulene, its generation and its derivatives based on the references I was able to review. I hope that this summary will be of help to those who might be interested in this subject. Nozoe, T., Seto, S., & Matsumura, S. (1962). Synthesis of 2-substituted azulenes by nucleophilic substitution reactions of 2-haloazulene derivatives. Bulletin of the Chemical Society of Japan, 35(12), 1990-1998. Nozoe, T., Takase, K., & Tada, M. (1965). The Anionoid Substitution Reaction of Diethyl 6-Bromoazulene-1, 3- dicarboxylate. Bulletin of the Chemical Society of Japan, 38(2), 247-251. Tada, M. (1966). The Anionoid Substitution Reaction of Diethyl 2-Acetamido-6-bromoazulene-1, 3-dicarboxylate. Bulletin of the Chemical Society of Japan, 39(9), 1954-1961. Saito, M., Morita, T., & Takase, K. (1980). Synthesis of 2-Formylazulene and Its Derivatives by Oxidative Cleavage of 2-Styrylazulenes. Bulletin of the Chemical Society of Japan, 53(12), 3696-3700. Asao, T., & Ito, S. (1996). Synthesis and Properties of Novel Azulenic π-Electronic Compounds. Journal of Synthetic Organic Chemistry, Japan, 54(1), 2-14. Kurotobi, K., Tabata, H., Miyauchi, M., Mustafizur, R. A., Migita, K., Murafuji, T., ... & Fujimori, K. (2003). The first generation of azulenyl-lithium and-magnesium: A novel, versatile method of introducing a substituent at the 2- position of an azulene skeleton. Synthesis, 1(01), 0030-0034. Crombie, A. L., Kane, J. L., Shea, K. M., & Danheiser, R. L. (2004). Ring expansion-annulation strategy for the synthesis of substituted azulenes and oligoazulenes. 2. Synthesis of azulenyl halides, sulfonates, and azulenylmetal compounds and their application in transition-metal-mediated coupling reactions.
    [Show full text]
  • May-June 2013 OUTLOOK on Volume 35 No
    CHEMISTRY International The News Magazine of IUPAC May-June 2013 OUTLOOK ON Volume 35 No. 3 LATIN AMERICA Neglected Tropical Diseases INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY Green Chemistry in Teaching From the Editor CHEMISTRY International ay is a month of many celebrations. As we have mentioned several Mtimes before in CI, 20 May is World Metrology Day, which com- The News Magazine of the International Union of Pure and memorates the signing by representatives of 17 nations of The Metre Applied Chemistry (IUPAC) Convention on that day in 1875. This year, the theme is “Measurements in Daily Life”—see more at www.worldmetrologyday.org. www.iupac.org/publications/ci While living in the states, but having grown up in Belgium, I have found that measurements in my daily life can be quite bewildering. A simple Managing Editor: Fabienne Meyers length mentioned in inches, a travel distance Production Editor: Chris Brouwer referred to in miles, a quantity in a cook book Design: pubsimple specified in spoons or cups, or my own weight blurred in pounds on my bathroom scale make All correspondence to be addressed to: no sense to me. And, it is beyond me that this Fabienne Meyers “New World” is stuck in a nonmetric system. If IUPAC, c/o Department of Chemistry on 20 May I can convince just one friend that Boston University SI is the way to go, even for daily usage, it is Metcalf Center for Science and Engineering worth celebrating! 590 Commonwealth Ave. There are many more international and world days in May, several that Boston, MA 02215, USA are even recognized by the UN or UNESCO.
    [Show full text]
  • Molecular Tweezers for Lysine and Arginine –
    Volume 52 Number 76 1 October 2016 Pages 11307–11452 ChemComm Chemical Communications www.rsc.org/chemcomm ISSN 1359-7345 FEATURE ARTICLE Thomas Schrader, Gal Bitan and Frank-Gerrit Klärner Molecular tweezers for lysine and arginine – powerful inhibitors of pathologic protein aggregation ChemComm View Article Online FEATURE ARTICLE View Journal | View Issue Molecular tweezers for lysine and arginine – powerful inhibitors of pathologic protein aggregation Cite this: Chem. Commun., 2016, 52, 11318 a b a Thomas Schrader,* Gal Bitan* and Frank-Gerrit Kla¨rner* Molecular tweezers represent the first class of artificial receptor molecules that have made the way from a supramolecular host to a drug candidate with promising results in animal tests. Due to their unique structure, only lysine and arginine are well complexed with exquisite selectivity by a threading mechanism, which unites electrostatic, hydrophobic and dispersive attraction. However, tweezer design must avoid self-dimerization, self-inclusion and external guest binding. Moderate affinities of molecular tweezers towards sterically well accessible basic amino acids with fast on and off rates protect normal proteins from potential interference with their biological function. However, the early stages of Received 2nd June 2016, abnormal Ab, a-synuclein, and TTR assembly are redirected upon tweezer binding towards the Accepted 27th July 2016 generation of amorphous non-toxic materials that can be degraded by the intracellular and extracellular Creative Commons Attribution-NonCommercial 3.0 Unported Licence. DOI: 10.1039/c6cc04640a clearance mechanisms. Thus, specific host–guest chemistry between aggregation-prone proteins and lysine/arginine binders rescues cell viability and restores animal health in models of AD, PD, and www.rsc.org/chemcomm TTR amyloidosis.
    [Show full text]
  • Annual Progress Report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998
    Ris0-R-1O99(EN) DK9900089 Annual Progress Report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998 Edited by K. Bechgaard, K.N. Clausen, R. Feidenhans'l and I. Johannsen Ris0 National Laboratory, Roskilde, Denmark April 1999 30-31 Ris0-R-1O99(EN) Annual Progress Report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998 Edited by K. Bechgaard, K.N. Clausen, R. Feidenhans'l and I. Johannsen Ris0 National Laboratory, Roskilde, Denmark April 1999 Abstract The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. The readers are invited to contact the department or the authors of the individual contributions for more detailed information than can be given in this report. The postal address is: Condensed Matter Physics and Chemistry Department, Ris0 National Laboratory. P.O. Box 49, DK-4000 Roskilde, Denmark. E-mail addresses may be found on the last page of this report.
    [Show full text]
  • Synthesis and Properties of Corannulene Derivatives: Journey to Materials Chemistry and Chemical Biology
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2008 Synthesis and properties of corannulene derivatives: journey to materials chemistry and chemical biology Hayama, Tomoharu Abstract: Corannulene, also called as [5]-circulene, is a C20H10 fragment of buckminsterfullerene, C60. The most interesting property of corannulene is probably its bowl structure and bowl-to-bowl inversion. The unique curvature has many possiblities for applications in different fields. Today, large-scale synthesis of corannulene is possible and thus, the time has come to exploit its physical properties. This disserta- tion is divided into four areas: 1) efficient synthesis of sym-pentaarylsubstituedcorannulene derivatives, 2) solvent effect on the bowl inversion, 3) development of the method for solution-phase nanotube syn- thesis, and 4) designing a corannulene-based synthetic receptor. sym-pentaarylsubstituedcorannulenes are quite attractive compounds because of their five-fold symmetry and curvature. The efficient synthesis has been accomplished from sym-pentachlorocorannulene with the coupling reaction using N-heterocyclic carbene ligands in a moderately good yield in spite of its five low-reactive chlorides. The inversion energies of some sym-pentaarylsubstituedcorannulenes have been investigated in different types of sol- vent. The variable temperature 1H-NMR spectra were measured, and line shape analysis or coalescence approximation were used to evaluate the rate parameters. This experiment suggested endo-group inter- actions of those compounds and shows influences of solvent polarity or volume on the inversion energies. In addition, the bowl depths will also be compared and discussed using the crystallographic structural data. The high-energy per-ethynylated polynuclear compound decapentynyl-corannulene has been pre- pared via aryl-alkyne coupling chemistry of decachlorocorannulene.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbon Structure Index
    NIST Special Publication 922 Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-0001 December 1997 revised August 2020 U.S. Department of Commerce William M. Daley, Secretary Technology Administration Gary R. Bachula, Acting Under Secretary for Technology National Institute of Standards and Technology Raymond G. Kammer, Director Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 This tabulation is presented as an aid in the identification of the chemical structures of polycyclic aromatic hydrocarbons (PAHs). The Structure Index consists of two parts: (1) a cross index of named PAHs listed in alphabetical order, and (2) chemical structures including ring numbering, name(s), Chemical Abstract Service (CAS) Registry numbers, chemical formulas, molecular weights, and length-to-breadth ratios (L/B) and shape descriptors of PAHs listed in order of increasing molecular weight. Where possible, synonyms (including those employing alternate and/or obsolete naming conventions) have been included. Synonyms used in the Structure Index were compiled from a variety of sources including “Polynuclear Aromatic Hydrocarbons Nomenclature Guide,” by Loening, et al. [1], “Analytical Chemistry of Polycyclic Aromatic Compounds,” by Lee et al. [2], “Calculated Molecular Properties of Polycyclic Aromatic Hydrocarbons,” by Hites and Simonsick [3], “Handbook of Polycyclic Hydrocarbons,” by J. R. Dias [4], “The Ring Index,” by Patterson and Capell [5], “CAS 12th Collective Index,” [6] and “Aldrich Structure Index” [7]. In this publication the IUPAC preferred name is shown in large or bold type.
    [Show full text]
  • Design, Synthesis, and Testing of Bis-Corannulene Receptors for Fullerenes Based On
    Automated Template C: Created by James Nail 2013V2.1 Design, synthesis, and testing of bis-corannulene receptors for fullerenes based on Klärner’s tethers By Peumie Luckshika Abeyratne Kuragama A Dissertation Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry in the Department of Chemistry Mississippi State, Mississippi December 2015 Copyright by Peumie Luckshika Abeyratne Kuragama 2015 Design, synthesis, and testing of bis-corannulene receptors for fullerenes based on Klärner’s tethers By Peumie Luckshika Abeyratne Kuragama Approved: ____________________________________ Andrzej Sygula (Major Professor) ____________________________________ Keith T. Mead (Committee Member) ____________________________________ Todd E. Mlsna (Committee Member) ____________________________________ Dongmao Zhang (Committee Member) ____________________________________ Stephen C. Foster (Graduate Coordinator/Committee Member) ____________________________________ R. Gregory Dunaway Dean College of Arts & Sciences Name: Peumie Luckshika Abeyratne Kuragama Date of Degree: December 11, 2015 Institution: Mississippi State University Major Field: Chemistry Major Professor: Andrzej Sygula Title of Study: Design, synthesis, and testing of bis-corannulene receptors for fullerenes based on Klärner’s tethers Pages in Study: 141 Candidate for Degree of Doctor of Philosophy The discovery of the new allotropic forms of elemental carbon (e.g. fullerenes and carbon nanotubes)
    [Show full text]
  • Π‐Extended Diaza[7]Helicenes by Hybridization of Naphthalene
    Full Paper Chemistry—A European Journal doi.org/10.1002/chem.202003402 & Organic chemistry |HotPaper| p-Extended Diaza[7]helicenes by Hybridization of Naphthalene Diimides and Hexa-peri-hexabenzocoronenes Carolin Dusold,[a] Dmitry I. Sharapa,[b] Frank Hampel,[a] and Andreas Hirsch*[a] Abstract: The synthesis of an unprecedented, p-extended mation of the diaza[7]helicene moiety in the final Scholl oxi- hexabenzocorene (HBC)-based diaza[7]helicene is presented. dation is favoured, affording the symmetric p-extended heli- The target compound was synthesized by an ortho-fusion of cene as the major product as apair of enantiomers. The sep- two naphthalene diimide (NDI) units to aHBC-skeleton. A aration of the enantiomers was successfully accomplished combination of Diels–Alder and Scholl-type oxidation reac- by HPLC involving achiral stationary phase. The absolute tions involving asymmetric di-NDI-tolane precursor were configuration of the enantiomers was assigned by compari- crucial for the very selectiveformation of the helical super- son of circular dichroismspectrawith quantum mechanical structure via ahexaphenyl-benzene (HPB) derivative. The for- calculations. Introduction can notably tune optical, electronical and supramolecular properties.[10] Elongation of the spiral arrangementofthe con- The development of nonplanar PAHs is currently an emerging jugated p-systemrepresents the most common way to pre- field in synthetic organic chemistry.[1] Among the most impor- pare higher helicene derivatives.[11] In contrasttothat, the ex- tant
    [Show full text]
  • Monoradicals and Diradicals of Dibenzofluoreno[3,2-B]Fluorene Isomers: Mechanisms of Electronic Delocalization
    pubs.acs.org/JACS Article Monoradicals and Diradicals of Dibenzofluoreno[3,2‑b]fluorene Isomers: Mechanisms of Electronic Delocalization Hideki Hayashi,○ Joshua E. Barker,○ Abel Cardenaś Valdivia,○ Ryohei Kishi, Samantha N. MacMillan, Carlos J. Gomez-Garć ía, Hidenori Miyauchi, Yosuke Nakamura, Masayoshi Nakano,* Shin-ichiro Kato,* Michael M. Haley,* and Juan Casado* Cite This: J. Am. Chem. Soc. 2020, 142, 20444−20455 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: The preparation of a series of dibenzo- and tetrabenzo-fused fluoreno[3,2-b]fluorenes is disclosed, and the diradicaloid properties of these molecules are compared with those of a similar, previously reported series of anthracene-based diradicaloids. Insights on the diradical mode of delocalization tuning by constitutional isomerism of the external naphthalenes has been explored by means of the physical approach (dissection of the electronic properties in terms of electronic repulsion and transfer integral) of diradicals. This study has also been extended to the redox species of the two series of compounds and found that the radical cations have the same stabilization mode by delocalization that the neutral diradicals while the radical anions, contrarily, are stabilized by aromatization of the central core. The synthesis of the fluorenofluorene series and their characterization by electronic absorption and vibrational Raman spectroscopies, X-ray diffraction, SQUID measurements, electrochemistry, in situ UV−vis−NIR absorption spectroelectro- chemistry, and theoretical calculations are presented. This work attempts to unify the properties of different series of diradicaloids in a common argument as well as the properties of the carbocations and carbanions derived from them.
    [Show full text]
  • Synthesis of an Unsymmetrically Pentafunctionalized Corannulene Derivative (Part I) Synthesis of Platinum and Ethynyl-Platinum Corannulenes (Part II)
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2012 Synthesis of an Unsymmetrically Pentafunctionalized Corannulene Derivative (Part I) Synthesis of Platinum and Ethynyl-Platinum Corannulenes (Part II) Maag, Roman M Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-164179 Dissertation Published Version Originally published at: Maag, Roman M. Synthesis of an Unsymmetrically Pentafunctionalized Corannulene Derivative (Part I) Synthesis of Platinum and Ethynyl-Platinum Corannulenes (Part II). 2012, University of Zurich, Faculty of Science. Part I: Synthesis of an Unsymmetrically Pentafunctionalized Corannulene Derivative and Part II: Synthesis of Platinum and Ethynyl-Platinum Corannulenes Dissertation zur Erlangung der naturwissenschaftlichen Doktorwurde¨ Dr. sc. nat. vorgelegt der Mathematisch-naturwissenschaftlichen Fakult¨at der Universit¨at Zurich¨ von Roman M. Maag von Winkel ZH Promotionskommitee: Prof. Dr. Jay S. Siegel (Vorsitz) Prof. Dr. Kim K. Baldridge Prof. Dr. Cristina Nevado Prof. Dr. Roger Alberto Zurich,¨ 2012 Abstract of the Dissertation Part I: Synthesis of an Unsymmetrically Pentafunctionalized Corannulene Derivative and Part II: Synthesis of Platinum and Ethynyl-Platinum Corannulenes by Roman M. Maag University of Zurich, 2012 Prof. Dr. Jay S. Siegel, Chair Corannulene (C20H10) is a polyaromatic hydrocarbon that can be considered as the smallest fragment of Buckminsterfullerene exhibiting a curved surface. Among the in- teresting properties of corannulene are rapid bowl inversion and esthetically appealing fivefold symmetry (C5v), which is rare in chemistry. Whereas the first synthesis in 1968 only afforded milligram quantities, several improvements in the synthetic strategy finally culminated in the development of an efficient process which today furnishes corannulene in kilogram quantities.
    [Show full text]
  • A DFT Study on Sumanene, Corannulene and Nanosheet As the Anodes in Li−Ion Batteries
    Iran. J. Chem. Chem. Eng. Research Article Vol. 39, No. 6, 2020 Archive of SID A DFT study on Sumanene, Corannulene and Nanosheet as the Anodes in Li−Ion Batteries Gharibzadeh, Fatemeh Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, I.R. IRAN Vessally, Esmail Department of Chemistry, Payame Noor University, Tehran, I.R. IRAN Edjlali, Ladan*+; Es’haghi, Moosa Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, I.R. IRAN Mohammadi, Robab Department of Chemistry, Payame Noor University, Tehran, I.R. IRAN ABSTRACT: Herein, we studied interactions between the Li neutral atom and Li+ ion and three types of nanoparticles including sumanene (Sum), corannulene (Cor), and nanosheet to obtain the cell voltage (V) for Li−ion batteries (LIBs). Total energies, geometry optimizations, Frontier Molecular Orbital (FMO), and Density of States (DOS) analyses have been obtained using M06−2X level of theory and 6−31+G (d,p) basis set. DFT calculations clarified that the changes of energy + adsorption between Li ion and nanoparticles, Ead, are in the order: Sheet > Sum−I > Cor > Cor−I > Sum. However, the Vcell for Sum is the highest. The changes in Vcell of Li−ion batteries (LIBs) are in the order: Sum > Sheet > Sum−i > Cor > Cor−i. This study theoretically indicates the possibility of Li as the anode in the battery field. KEYWORDS: DFT study; Sumanene; Corannulene; Nanosheet; Li−ion Batteries. INTRODUCTION Rechargeable batteries are very important to batteries due to its low density, high specific capacity, generation the electricity. The dry batteries, such as Zn−C, and the lowest electrochemical potential of the periodic table [1].
    [Show full text]
  • Anti‐Aromatic Versus Induced Paratropicity ... -.:. Michael Pittelkow
    Angewandte Forschungsartikel Chemie Deutsche Ausgabe:DOI:10.1002/ange.201913552 Circulenes Internationale Ausgabe:DOI:10.1002/anie.201913552 Anti-Aromatic versus Induced Paratropicity:Synthesis and InterrogationofaDihydro-diazatrioxa[9]circulene with aProton Placed Directly above the Central Ring Stephan K. Pedersen, Kristina Eriksen, Nataliya N. Karaush-Karmazin, Boris Minaev, Hans gren, Gleb V. Baryshnikov* und Michael Pittelkow* Abstract: We present ahigh-yielding intramolecular oxidative coupling within adiazadioxa[10]helicene to give adihydro- diazatrioxa[9]circulene.This is the first [n]circulene contain- ing more than eight ortho-annulated rings (n > 8). The single- crystal X-raystructure reveals atight columnar packing, with aproton from apendant naphthalene moiety centred directly abovethe central nine-membered ring. This distinct environ- ment induces asignificant magnetic deshielding effect on that particular proton as determined by 1HNMR spectroscopy. The origin of the deshielding effect was investigated computation- ally in terms of the NICS values.Itisestablished that the deshielding effect originates from an induced paratropic ring current from the seven aromatic rings of the [9]circulene structure,and is not due to the nine-membered ring being antiaromatic.UV/Vis spectroscopyreveals more efficient Figure 1. Simplified illustration of the influence of diatropic and para- conjugation in the prepared diazatrioxa[9]circulene compared tropic ring currents on the 1Hchemical shift inside and outside of to the parent helical azaoxa[10]helicenes,and
    [Show full text]