Crowdsourcing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mapreduce and Beyond
MapReduce and Beyond Steve Ko 1 Trivia Quiz: What’s Common? Data-intensive compung with MapReduce! 2 What is MapReduce? • A system for processing large amounts of data • Introduced by Google in 2004 • Inspired by map & reduce in Lisp • OpenSource implementaMon: Hadoop by Yahoo! • Used by many, many companies – A9.com, AOL, Facebook, The New York Times, Last.fm, Baidu.com, Joost, Veoh, etc. 3 Background: Map & Reduce in Lisp • Sum of squares of a list (in Lisp) • (map square ‘(1 2 3 4)) – Output: (1 4 9 16) [processes each record individually] 1 2 3 4 f f f f 1 4 9 16 4 Background: Map & Reduce in Lisp • Sum of squares of a list (in Lisp) • (reduce + ‘(1 4 9 16)) – (+ 16 (+ 9 (+ 4 1) ) ) – Output: 30 [processes set of all records in a batch] 4 9 16 f f f returned iniMal 1 5 14 30 5 Background: Map & Reduce in Lisp • Map – processes each record individually • Reduce – processes (combines) set of all records in a batch 6 What Google People Have NoMced • Keyword search Map – Find a keyword in each web page individually, and if it is found, return the URL of the web page Reduce – Combine all results (URLs) and return it • Count of the # of occurrences of each word Map – Count the # of occurrences in each web page individually, and return the list of <word, #> Reduce – For each word, sum up (combine) the count • NoMce the similariMes? 7 What Google People Have NoMced • Lots of storage + compute cycles nearby • Opportunity – Files are distributed already! (GFS) – A machine can processes its own web pages (map) CPU CPU CPU CPU CPU CPU CPU CPU -
Combating Attacks and Abuse in Large Online Communities
University of California Santa Barbara Combating Attacks and Abuse in Large Online Communities Adissertationsubmittedinpartialsatisfaction of the requirements for the degree Doctor of Philosophy in Computer Science by Gang Wang Committee in charge: Professor Ben Y. Zhao, Chair Professor Haitao Zheng Professor Christopher Kruegel September 2016 The Dissertation of Gang Wang is approved. Professor Christopher Kruegel Professor Haitao Zheng Professor Ben Y. Zhao, Committee Chair July 2016 Combating Attacks and Abuse in Large Online Communities Copyright c 2016 ⃝ by Gang Wang iii Acknowledgements I would like to thank my advisors Ben Y.Zhao and Haitao Zheng formentoringmethrough- out the PhD program. They were always there for me, giving me timely and helpful advice in almost all aspects of both research and life. I also want to thank my PhD committee member Christopher Kruegel for his guidance in my research projects and job hunting. Finally, I want to thank my mentors in previous internships: Jay Stokes, Cormac Herley, Weidong Cui and Helen Wang from Microsoft Research, and Vicente Silveira fromLinkedIn.Specialthanksto Janet Kayfetz, who has helped me greatly with my writing and presentation skills. Iamverymuchthankfultomycollaboratorsfortheirhardwork, without which none of this research would have been possible. First and foremost, to the members of SAND Lab at UC Santa Barbara: Christo Wilson, Bolun Wang, Tianyi Wang, Manish Mohanlal, Xiaohan Zhao, Zengbin Zhang, Xia Zhou, Ana Nika, Xinyi Zhang, Shiliang Tang, Alessandra Sala, Yibo Zhu, Lin Zhou, Weile Zhang, Konark Gill, Divya Sambasivan, Xiaoxiao Yu, Troy Stein- bauer, Tristan Konolige, Yu Su and Yuanyang Zhang. Second, totheemployeesatMicrosoft: Jack Stokes, Cormac Herley and David Felstead. Third, to Miriam Metzger from the Depart- ment of Communications at UC Santa Barbara, and Sarita Y. -
Integrating Crowdsourcing with Mapreduce for AI-Hard Problems ∗
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence CrowdMR: Integrating Crowdsourcing with MapReduce for AI-Hard Problems ∗ Jun Chen, Chaokun Wang, and Yiyuan Bai School of Software, Tsinghua University, Beijing 100084, P.R. China [email protected], [email protected], [email protected] Abstract In this paper, we propose CrowdMR — an extended MapReduce model based on crowdsourcing to handle AI- Large-scale distributed computing has made available hard problems effectively. Different from pure crowdsourc- the resources necessary to solve “AI-hard” problems. As a result, it becomes feasible to automate the process- ing solutions, CrowdMR introduces confidence into MapRe- ing of such problems, but accuracy is not very high due duce. For a common AI-hard problem like classification to the conceptual difficulty of these problems. In this and recognition, any instance of that problem will usually paper, we integrated crowdsourcing with MapReduce be assigned a confidence value by machine learning algo- to provide a scalable innovative human-machine solu- rithms. CrowdMR only distributes the low-confidence in- tion to AI-hard problems, which is called CrowdMR. In stances which are the troublesome cases to human as HITs CrowdMR, the majority of problem instances are auto- via crowdsourcing. This strategy dramatically reduces the matically processed by machine while the troublesome number of HITs that need to be answered by human. instances are redirected to human via crowdsourcing. To showcase the usability of CrowdMR, we introduce an The results returned from crowdsourcing are validated example of gender classification using CrowdMR. For the in the form of CAPTCHA (Completely Automated Pub- lic Turing test to Tell Computers and Humans Apart) instances whose confidence values are lower than a given before adding to the output. -
High Converting Email Marketing Templates
High Converting Email Marketing Templates Unwithering Rochester madder: he promulging his layings biographically and debatingly. Regan never foins any Jefferson geometrize stirringly, is Apostolos long and pinnatipartite enough? Isodimorphous Dylan always bloused his caddice if Bear is Iroquoian or motorises later. Brooks sports and the middleware can adjust your website very possibly be wonderful blog, email marketing templates here to apply different characteristics and Email apps you use everyday to automate your business and be more productive. For best results, go beyond just open and click rates to understand exactly how your newsletters impact your customer acquisition. Another favorite amongst most email designers, there had been a dip in the emails featuring illustrations. Turnover is vanity; profit is sanity. These people love your brand, so they would happy to contribute. Outlook, Gmail, Yahoo is not supporting custom fonts and ignore media query, it will be replaced by standard web font. Once Jack explained your background in greater detail, I immediately realized you would be the perfect person to speak with. Search for a phrase that your audience cares about. Drip marketing is easy to grasp and implement. These techniques include segmentation, mapping out email flows for your primary segments, and consolidating as much as possible into one app or platform. Typically, newsletters are used as a way to nurture customer relationships and educate your readership as opposed to selling a product. What problem do you solve? SPF authentication detects malicious emails from false email addresses. My sellers love the idea and the look you produce. Keep things fresh for your audience. -
Mapreduce: Simplified Data Processing On
MapReduce: Simplified Data Processing on Large Clusters Jeffrey Dean and Sanjay Ghemawat [email protected], [email protected] Google, Inc. Abstract given day, etc. Most such computations are conceptu- ally straightforward. However, the input data is usually MapReduce is a programming model and an associ- large and the computations have to be distributed across ated implementation for processing and generating large hundreds or thousands of machines in order to finish in data sets. Users specify a map function that processes a a reasonable amount of time. The issues of how to par- key/value pair to generate a set of intermediate key/value allelize the computation, distribute the data, and handle pairs, and a reduce function that merges all intermediate failures conspire to obscure the original simple compu- values associated with the same intermediate key. Many tation with large amounts of complex code to deal with real world tasks are expressible in this model, as shown these issues. in the paper. As a reaction to this complexity, we designed a new Programs written in this functional style are automati- abstraction that allows us to express the simple computa- cally parallelized and executed on a large cluster of com- tions we were trying to perform but hides the messy de- modity machines. The run-time system takes care of the tails of parallelization, fault-tolerance, data distribution details of partitioning the input data, scheduling the pro- and load balancing in a library. Our abstraction is in- gram's execution across a set of machines, handling ma- spired by the map and reduce primitives present in Lisp chine failures, and managing the required inter-machine and many other functional languages. -
The Scam Filter That Fights Back Final Report
The scam filter that fights back Final Report by Aurél Bánsági (4251342) Ruben Bes (4227492) Zilla Garama (4217675) Louis Gosschalk (4214528) Project Duration: April 18, 2016 – June 17, 2016 Project Owner: David Beijer, Peeeks Project Coach: Geert-Jan Houben, TU Delft Preface This report concludes the project comprising of the software development of a tool that makes replying to scam mails fast and easy. This project was part of the course TI3806 Bachelor Project in the fourth quarter of the acadamic year of 2015-2016 and was commissioned by David Beijer, CEO of Peeeks. The aim of this report is documenting the complete development process and presenting the results to the Bachelor Project Committee. During the past ten weeks, research was conducted and assessments were made to come to a design and was then followed by an implementation. We would like to thank our coach, Geert-Jan Houben, for his advice and supervision during the project. Aurél Bánsági (4251342) Ruben Bes (4227492) Zilla Garama (4217675) Louis Gosschalk (4214528) June 29, 2016 i Abstract Filtering out scam mails and deleting them does not hurt a scammer in any way, but wasting their time by sending fake replies does. As the amount of replies grows, the amount of time a scammer has to spend responding to e-mails increases. This bachelor project has created a revolutionary system that recommends replies that can be sent to answer a scam mail. This makes it very easy for users to waste a scammer’s time and destroy their business model. The project has a unique adaptation of the Elo rating system, which is a very popular algorithm used by systems ranging from chess to League of Legends. -
Overview of Mapreduce and Spark
Overview of MapReduce and Spark Mirek Riedewald This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Key Learning Goals • How many tasks should be created for a job running on a cluster with w worker machines? • What is the main difference between Hadoop MapReduce and Spark? • For a given problem, how many Map tasks, Map function calls, Reduce tasks, and Reduce function calls does MapReduce create? • How can we tell if a MapReduce program aggregates data from different Map calls before transmitting it to the Reducers? • How can we tell if an aggregation function in Spark aggregates locally on an RDD partition before transmitting it to the next downstream operation? 2 Key Learning Goals • Why do input and output type have to be the same for a Combiner? • What data does a single Mapper receive when a file is the input to a MapReduce job? And what data does the Mapper receive when the file is added to the distributed file cache? • Does Spark use the equivalent of a shared- memory programming model? 3 Introduction • MapReduce was proposed by Google in a research paper. Hadoop MapReduce implements it as an open- source system. – Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. OSDI'04: Sixth Symposium on Operating System Design and Implementation, San Francisco, CA, December 2004 • Spark originated in academia—at UC Berkeley—and was proposed as an improvement of MapReduce. – Matei Zaharia, Mosharaf Chowdhury, Michael J. -
Social Turing Tests: Crowdsourcing Sybil Detection
Social Turing Tests: Crowdsourcing Sybil Detection Gang Wang, Manish Mohanlal, Christo Wilson, Xiao Wang‡, Miriam Metzger†, Haitao Zheng and Ben Y. Zhao Department of Computer Science, U. C. Santa Barbara, CA USA †Department of Communications, U. C. Santa Barbara, CA USA ‡Renren Inc., Beijing, China Abstract The research community has produced a substantial number of techniques for automated detection of Sybils [4, As popular tools for spreading spam and malware, Sybils 32,33]. However, with the exception of SybilRank [3], few (or fake accounts) pose a serious threat to online communi- have been successfully deployed. The majority of these ties such as Online Social Networks (OSNs). Today, sophis- techniques rely on the assumption that Sybil accounts have ticated attackers are creating realistic Sybils that effectively difficulty friending legitimate users, and thus tend to form befriend legitimate users, rendering most automated Sybil their own communities, making them visible to community detection techniques ineffective. In this paper, we explore detection techniques applied to the social graph [29]. the feasibility of a crowdsourced Sybil detection system for Unfortunately, the success of these detection schemes is OSNs. We conduct a large user study on the ability of hu- likely to decrease over time as Sybils adopt more sophis- mans to detect today’s Sybil accounts, using a large cor- ticated strategies to ensnare legitimate users. First, early pus of ground-truth Sybil accounts from the Facebook and user studies on OSNs such as Facebook show that users are Renren networks. We analyze detection accuracy by both often careless about who they accept friendship requests “experts” and “turkers” under a variety of conditions, and from [2]. -
Finding Connected Components in Huge Graphs with Mapreduce
CC-MR - Finding Connected Components in Huge Graphs with MapReduce Thomas Seidl, Brigitte Boden, and Sergej Fries Data Management and Data Exploration Group RWTH Aachen University, Germany fseidl, boden, [email protected] Abstract. The detection of connected components in graphs is a well- known problem arising in a large number of applications including data mining, analysis of social networks, image analysis and a lot of other related problems. In spite of the existing very efficient serial algorithms, this problem remains a subject of research due to increasing data amounts produced by modern information systems which cannot be handled by single workstations. Only highly parallelized approaches on multi-core- servers or computer clusters are able to deal with these large-scale data sets. In this work we present a solution for this problem for distributed memory architectures, and provide an implementation for the well-known MapReduce framework developed by Google. Our algorithm CC-MR sig- nificantly outperforms the existing approaches for the MapReduce frame- work in terms of the number of necessary iterations, communication costs and execution runtime, as we show in our experimental evaluation on synthetic and real-world data. Furthermore, we present a technique for accelerating our implementation for datasets with very heterogeneous component sizes as they often appear in real data sets. 1 Introduction Web and social graphs, chemical compounds, protein and co-author networks, XML databases - graph structures are a very natural way for representing com- plex data and therefore appear almost everywhere in data processing. Knowledge extraction from these data often relies (at least as a preprocessing step) on the problem of finding connected components within these graphs. -
Read a Sample
Intelligent Computing for Interactive System Design provides a comprehensive resource on what has become the dominant paradigm in designing novel interaction methods, involving gestures, speech, text, touch and brain-controlled interaction, embedded in innovative and emerging human-computer interfaces. These interfaces support ubiquitous interaction with applications and services running on smartphones, wearables, in-vehicle systems, virtual and augmented reality, robotic systems, the Internet of Things (IoT), and many other domains that are now highly competitive, both in commercial and in research contexts. This book presents the crucial theoretical foundations needed by any student, researcher, or practitioner working on novel interface design, with chapters on statistical methods, digital signal processing (DSP), and machine learning (ML). These foundations are followed by chapters that discuss case studies on smart cities, brain-computer interfaces, probabilistic mobile text entry, secure gestures, personal context from mobile phones, adaptive touch interfaces, and automotive user interfaces. The case studies chapters also highlight an in-depth look at the practical application of DSP and ML methods used for processing of touch, gesture, biometric, or embedded sensor inputs. A common theme throughout the case studies is ubiquitous support for humans in their daily professional or personal activities. In addition, the book provides walk-through examples of different DSP and ML techniques and their use in interactive systems. Common terms are defined, and information on practical resources is provided (e.g., software tools, data resources) for hands-on project work to develop and evaluate multimodal and multi-sensor systems. In a series of in-chapter commentary boxes, an expert on the legal and ethical issues explores the emergent deep concerns of the professional community, on how DSP and ML should be adopted and used in socially appropriate ways, to most effectively advance human performance during ubiquitous interaction with omnipresent computers. -
Large-Scale Graph Mining @ Google NY
Large-scale Graph Mining @ Google NY Vahab Mirrokni Google Research New York, NY DIMACS Workshop Large-scale graph mining Many applications Friend suggestions Recommendation systems Security Advertising Benefits Big data available Rich structured information New challenges Process data efficiently Privacy limitations Google NYC Large-scale graph mining Develop a general-purpose library of graph mining tools for XXXB nodes and XT edges via MapReduce+DHT(Flume), Pregel, ASYMP Goals: • Develop scalable tools (Ranking, Pairwise Similarity, Clustering, Balanced Partitioning, Embedding, etc) • Compare different algorithms/frameworks • Help product groups use these tools across Google in a loaded cluster (clients in Search, Ads, Youtube, Maps, Social) • Fundamental Research (Algorithmic Foundations and Hybrid Algorithms/System Research) Outline Three perspectives: • Part 1: Application-inspired Problems • Algorithms for Public/Private Graphs • Part 2: Distributed Optimization for NP-Hard Problems • Distributed algorithms via composable core-sets • Part 3: Joint systems/algorithms research • MapReduce + Distributed HashTable Service Problems Inspired by Applications Part 1: Why do we need scalable graph mining? Stories: • Algorithms for Public/Private Graphs, • How to solve a problem for each node on a public graph+its own private network • with Chierchetti,Epasto,Kumar,Lattanzi,M: KDD’15 • Ego-net clustering • How to use graph structures and improve collaborative filtering • with EpastoLattanziSebeTaeiVerma, Ongoing • Local random walks for conductance -
Mapreduce Indexing Strategies: Studying Scalability and Efficiency ⇑ Richard Mccreadie , Craig Macdonald, Iadh Ounis
Information Processing and Management xxx (2011) xxx–xxx Contents lists available at ScienceDirect Information Processing and Management journal homepage: www.elsevier.com/locate/infoproman MapReduce indexing strategies: Studying scalability and efficiency ⇑ Richard McCreadie , Craig Macdonald, Iadh Ounis Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, United Kingdom article info abstract Article history: In Information Retrieval (IR), the efficient indexing of terabyte-scale and larger corpora is Received 11 February 2010 still a difficult problem. MapReduce has been proposed as a framework for distributing Received in revised form 17 August 2010 data-intensive operations across multiple processing machines. In this work, we provide Accepted 19 December 2010 a detailed analysis of four MapReduce indexing strategies of varying complexity. Moreover, Available online xxxx we evaluate these indexing strategies by implementing them in an existing IR framework, and performing experiments using the Hadoop MapReduce implementation, in combina- Keywords: tion with several large standard TREC test corpora. In particular, we examine the efficiency MapReduce of the indexing strategies, and for the most efficient strategy, we examine how it scales Indexing Efficiency with respect to corpus size, and processing power. Our results attest to both the impor- Scalability tance of minimising data transfer between machines for IO intensive tasks like indexing, Hadoop and the suitability of the per-posting list MapReduce indexing strategy, in particular for indexing at a terabyte-scale. Hence, we conclude that MapReduce is a suitable framework for the deployment of large-scale indexing. Ó 2010 Elsevier Ltd. All rights reserved. 1. Introduction The Web is the largest known document repository, and poses a major challenge for Information Retrieval (IR) systems, such as those used by Web search engines or Web IR researchers.