Mesenchymal Stem Cell Modulation of TH17 Cells Justin D Glenn1 and Katharine a Whartenby1,2*

Total Page:16

File Type:pdf, Size:1020Kb

Mesenchymal Stem Cell Modulation of TH17 Cells Justin D Glenn1 and Katharine a Whartenby1,2* Glenn et al. Int J Stem Cell Res Ther 2016, 3:035 DOI: 10.23937/2469-570X/1410035 International Journal of Volume 3 | Issue 1 Stem Cell Research & Therapy ISSN: 2469-570X Short Review: Open Access Mesenchymal Stem Cell Modulation of TH17 Cells Justin D Glenn1 and Katharine A Whartenby1,2* 1Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America 2Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America *Corresponding author: Katharine A Whartenby, PhD, Departments of Neurology and Oncology, Johns Hopkins School of Medicine, 601 N. Wolfe Street, Baltimore, Maryland, MD 21287, United States of America, Tel: +1-410- 5023290, Fax: +1-443-2874062, E-mail: [email protected] remarkably were able to undergo adipogenesis, chondrogenesis and Abstract osteogenesis under inducible conditions in culture [9]. Furthermore Mesenchymal stem cells (MSCs) are multi-faceted cells capable dermal skin-derived fibroblasts display similar MSC marker surface of tissue regeneration, wound healing, and immunosuppression. antigen phenotypes, can differentiate into bone, cartilage, and fat, Their immunosuppressive actions extend to most innate and and have high proliferation potential [10]. Other reports have since adaptive immune cells, including T 17 cells, which have recently H shown many similarities and very few differences between the two been discovered to be important pathogenic cells in a variety of disease settings, including many autoimmune diseases. As various cell populations [11-13]. Covas and colleagues even revealed that long-standing treatments and therapies in autoimmune disease fibroblasts and MSCs share a global gene expression pattern [14]. Thus may face limitations and result in dangerous side effects, the field there is still controversy concerning whether MSCs and fibroblasts has searched for safer immunosuppressive therapies, and MSC- are the same cell population, are derived from a common or similar based therapy may hold great potential in controlling chronic TH17- progenitor, or represent a diverse continuum of different cells along based inflammatory conditions. a differentiation pathway that retain fundamental phenotypic and Keywords functional characteristics. For the purpose of this review, we will focus on primary literature based on investigation with cells with Mesenchymal stem cells (MSCs), Inflammation, T 17 H MSC nomenclature. MSCs were initially evaluated for their potential to stimulate Short Review regenerative cellular and molecular pathways in degenerative Mesenchymal stem cells disorders of mesenchymal origin [15]. Early studies demonstrated that the presence of MSCs greatly improved bone marrow transplantation Mesenchymal stem cells compose a heterogeneous stem cell and engraftment, and revealed another action of MSCs which population of the mesenchyme that exhibit multiple functions that contributed to decreased graft rejection-immunosuppression [16,17]. make them appealing to different fields of biomedical and clinical The basis of MSC immunosuppression stems from their physiological research and application. Despite heterogeneity, they have some role of maintaining homeostasis of the hematopoietic stem cell distinctive, shared features including phenotypic characteristics such (HSC)niche in the bone marrow, as inflammatory events may cause as the lack of key hematopoietic molecular markers but expression unsuspected HSC activation, differentiation, and depletion of HSC of cluster of differentiation (CD) 90, CD105, CD44, CD73, CD9 reservoirs [1]. In the HSC niche, MSC-derived fibroblasts have been and low levels of CD80 [1-3]. They were initially identified as self- shown to eliminate survival factors important for immune cells and renewing cells with fibroblastic appearance found in various organs to re-calibrate chemokine gradients, which may limit the presence of and tissues, especially in the bone marrow, where they are thought T cells, when studied in fibroblast dysfunction in the autoimmune to function physiologically as regulators of hematopoietic stem cell disease rheumatoid arthritis [18]. MSCs also migrate from their proliferation and differentiation [4-6]. These cells produce numerous normal anatomical sites to areas of inflammation to suppress growth factors and promote wound healing and angiogenesis [1,7]. In activated T cell proliferation and cytokine production [19,20]. the presence of different molecular milieus, MSCs may differentiate In line with the ultimate MSC physiological goal of maintaining into adipocytes, chondrocytes and osteoblasts. homeostasis, suppression of inflammation permits the proliferation of tissue-resident stromal and stem cells of parenchymal tissue, In the 1970s, Friedenstein and colleagues described the ability of production of extracellular matrix molecules for extracellular tissue splenic fibroblasts to support hematopoietic microenvironments in reconstruction, and wound healing. transplantation experiments [8], suggesting some overlap between fibroblasts and MSCs. Fibroblast cells (which express vimentin, TH17 cells collagen prolyl 4-hydroxylase, and fibronectin) derived from + human adult bronchi strongly express the MSC markers CD73, CD4 T cells are principle adaptive immune cells that function CD105 and CD166, lack expression of CD31, CD34, and CD45, and to coordinate and optimize multi-cellular immune responses and are Citation: Glenn JD, Whartenby KA (2016) Mesenchymal Stem Cell Modulation of TH17 Cells. Int J Stem Cell Res Ther 3:035. doi.org/10.23937/2469-570X/1410035 ClinMed Received: April 28, 2016: Accepted: June 22, 2016: Published: June 26, 2016 International Library Copyright: © 2016 Glenn JD, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. DOI: 10.23937/2469-570X/1410035 ISSN: 2469-570X activated as a function of events perceived as dangerous by the body. via IL-35 production [34]. Although these cell groups are usually Antigen-presenting cells (APCs) such as dendritic cells (DCs) express presented as stable, static effector populations, considerable overlap many classes of pattern recognition receptors that bind endogenous, in master transcription factor expression and cytokine production usually intracellular molecules released from cells during stress and has been demonstrated. Effector populations also exhibit plasticity, necrosis and molecules derived from foreign, non-self-agents such in which one effector population may be converted into another; this as viruses, bacteria, and fungi [21]. In response to “dangerous” phenomenon has mostly been attributed to epigenetic modifications molecule-receptor binding and signaling, DCs up-regulate major that modify gene transcription when T cells are transferred into a histocompatibility complex (MHC) molecules for increased peptide different phenotype-skewing milieu [30]. binding and presentation, enhance T cell co-stimulatory molecule T 17 are important mediators of inflammation in many expression, and produce cytokines that, depending on composition H inflammatory diseases, especially chronic autoimmune diseases and concentration, determine the effector function of the cognate such as rheumatoid arthritis, pancreatitis, autoimmune diabetes, CD4+ T cell. However, they may also mount inappropriate responses and multiple sclerosis (MS). Pre-clinical models of many of these against self-tissue, as is the case in autoimmune pathogenesis. autoimmune diseases show that these cells are important in the Historically, CD4+ T cells were considered to adopt one of two effector pathogenesis. Some of their functions that have been identified include phenotypes that were thought to tailor the ensuing immune response the mobilization of cells and induction of cytokine and chemokine to eliminate pathogens based on location in relation the very cells production, in large part from cells of the innate immune system, [22]. T 1 cells are generated in the presence of the pro-proliferative H including neutrophils and monocytes. An additional critical function cytokine interleukin (IL)-2 and the inflammatory cytokine IL-12 and for central nervous system (CNS) pathology is their association with promote immunity to intracellular pathogens such as bacteria or permeabilization of the blood-brain barrier [26]. For example, people viruses, while T 2 cells develop in the presence of IL-4 and promote H with MS have been shown to have a higher frequency of T 17 cells in immunity to extracellular pathogens including protozoa and fungi. H cerebrospinal fluid than matched counterparts without MS [35,36], The molecules that favor the effector phenotype of each antagonize indicating a flow into and/or expansion of these cells within the CNS. the adoption of the other, and this axis was believed to be exclusive As a further indication of potential pathology the frequency of these until the discovery of CD4+ T cells producing the highly inflammatory T 17 cells is also higher during relapses than during remissions. cytokine IL-17A, now known as T 17 cells [23]. T 17 cells are distinct H H H People with other autoimmune diseases such as systemic lupus from the aforementioned T cell populations at the transcriptional level erythematosus (SLE) have also been shown to have similar patterns, by the expression of the transcription
Recommended publications
  • Regulatory T Cells Promote a Protective Th17-Associated Immune Response to Intestinal Bacterial Infection with C
    ARTICLES nature publishing group Regulatory T cells promote a protective Th17-associated immune response to intestinal bacterial infection with C. rodentium Z Wang1, C Friedrich1, SC Hagemann1, WH Korte1, N Goharani1, S Cording2, G Eberl2, T Sparwasser1,3 and M Lochner1,3 Intestinal infection with the mouse pathogen Citrobacter rodentium induces a strong local Th17 response in the colon. Although this inflammatory immune response helps to clear the pathogen, it also induces inflammation-associated pathology in the gut and thus, has to be tightly controlled. In this project, we therefore studied the impact of Foxp3 þ regulatory T cells (Treg) on the infectious and inflammatory processes elicited by the bacterial pathogen C. rodentium. Surprisingly, we found that depletion of Treg by diphtheria toxin in the Foxp3DTR (DEREG) mouse model resulted in impaired bacterial clearance in the colon, exacerbated body weight loss, and increased systemic dissemination of bacteria. Consistent with the enhanced susceptibility to infection, we found that the colonic Th17-associated T-cell response was impaired in Treg-depleted mice, suggesting that the presence of Treg is crucial for the establishment of a functional Th17 response after the infection in the gut. As a consequence of the impaired Th17 response, we also observed less inflammation-associated pathology in the colons of Treg-depleted mice. Interestingly, anti-interleukin (IL)-2 treatment of infected Treg-depleted mice restored Th17 induction, indicating that Treg support the induction of a protective
    [Show full text]
  • Regulation of Type 17 Helper T-Cell Function by Nitric Oxide During Inflammation
    Regulation of type 17 helper T-cell function by nitric oxide during inflammation Wanda Niedbalaa,1, Jose C. Alves-Filhoa,b,1, Sandra Y. Fukadaa,c,1, Silvio Manfredo Vieirab, Akio Mitania,d, Fabiane Sonegoa, Ananda Mirchandania, Daniele C. Nascimentoa, Fernando Q. Cunhab, and Foo Y. Liewa,2 aInstitute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow G12 8TA, Scotland; bDepartment of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo,14049-900, Ribeirão Preto, Brazil; cDepartment of Physics and Chemistry, Faculty of Pharmaceutical Sciences, University of São Paulo, 14040-903, Ribeirão Preto, Brazil; and dDepartment of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, 464-8651 Japan Edited by Yoichiro Iwakura, Institute of Medical Science, University of Tokyo, Tokyo, Japan, and accepted by the Editorial Board April 19, 2011 (received for review January 13, 2011) − Type 17 helper T (Th17) cells are implicated in the pathogenesis suppressed the proliferation of freshly purified CD4+CD25 many of human autoimmune diseases. Development of Th17 can effector cells in vitro and ameliorated the effector T cell-mediated be enhanced by the activation of aryl hydrocarbon receptor (AHR) colitis and collagen-induced arthritis in the mouse in an IL-10– whose ligands include the environmental pollutant dioxin, poten- dependent manner. Both Th1 and Treg cells are pivotal to auto- tially linking environmental factors to the increased prevalence of immune diseases, indicating that NO may be a key player in mod- autoimmune disease. We report here that nitric oxide (NO) can ulating inflammatory disease. suppress the proliferation and function of polarized murine and Th17 cell differentiation is dependent on IL-6, IL-1, and TGF- β (with potential species-specific differences) and is enhanced human Th17 cells.
    [Show full text]
  • Type 2 Immunity in Tissue Repair and Fibrosis
    REVIEWS Type 2 immunity in tissue repair and fibrosis Richard L. Gieseck III1, Mark S. Wilson2 and Thomas A. Wynn1 Abstract | Type 2 immunity is characterized by the production of IL‑4, IL‑5, IL‑9 and IL‑13, and this immune response is commonly observed in tissues during allergic inflammation or infection with helminth parasites. However, many of the key cell types associated with type 2 immune responses — including T helper 2 cells, eosinophils, mast cells, basophils, type 2 innate lymphoid cells and IL‑4- and IL‑13‑activated macrophages — also regulate tissue repair following injury. Indeed, these cell populations engage in crucial protective activity by reducing tissue inflammation and activating important tissue-regenerative mechanisms. Nevertheless, when type 2 cytokine-mediated repair processes become chronic, over-exuberant or dysregulated, they can also contribute to the development of pathological fibrosis in many different organ systems. In this Review, we discuss the mechanisms by which type 2 immunity contributes to tissue regeneration and fibrosis following injury. Type 2 immunity is characterized by increased pro‑ disorders remain unclear, although persistent activation duction of the cytokines IL‑4, IL‑5, IL‑9 and IL‑13 of tissue repair pathways is a major contributing mech‑ (REF. 1) . The T helper 1 (TH1) and TH2 paradigm was anism in most cases. In this Review, we provide a brief first described approximately three decades ago2, and overview of fibrotic diseases that have been linked to for many of the intervening years, type 2 immunity activation of type 2 immunity, discuss the various mech‑ was largely considered as a simple counter-­regulatory anisms that contribute to the initiation and maintenance mechanism controlling type 1 immunity3 (BOX 1).
    [Show full text]
  • Review Article Pivotal Roles of T-Helper 17-Related Cytokines, IL-17, IL-22, and IL-23, in Inflammatory Diseases
    Hindawi Publishing Corporation Clinical and Developmental Immunology Volume 2013, Article ID 968549, 13 pages http://dx.doi.org/10.1155/2013/968549 Review Article Pivotal Roles of T-Helper 17-Related Cytokines, IL-17, IL-22, and IL-23, in Inflammatory Diseases Ning Qu,1 Mingli Xu,2 Izuru Mizoguchi,3 Jun-ichi Furusawa,3 Kotaro Kaneko,3 Kazunori Watanabe,3 Junichiro Mizuguchi,4 Masahiro Itoh,1 Yutaka Kawakami,2 and Takayuki Yoshimoto3 1 DepartmentofAnatomy,TokyoMedicalUniversity,6-1-1Shinjuku,Shinjuku-ku,Tokyo160-8402,Japan 2 Division of Cellular Signaling, Institute for Advanced Medical Research School of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan 3 Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo160-8402, Japan 4 Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan Correspondence should be addressed to Takayuki Yoshimoto; [email protected] Received 12 April 2013; Accepted 25 June 2013 Academic Editor: William O’Connor Jr. Copyright © 2013 Ning Qu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. T-helper 17 (Th17) cells are characterized by producing interleukin-17 (IL-17, also called IL-17A), IL-17F, IL-21, and IL-22 and potentially TNF- and IL-6 upon certain stimulation. IL-23, which promotes Th17 cell development, as well as IL-17 and IL-22 produced by the Th17 cells plays essential roles in various inflammatory diseases, such as experimental autoimmune encephalomyelitis, rheumatoid arthritis, colitis, and Concanavalin A-induced hepatitis.
    [Show full text]
  • HP Turns 17: T Helper 17 Cell Response During Hypersensitivity
    University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 5-2012 HP Turns 17: T helper 17 cell response during hypersensitivity pneumonitis (HP) and factors controlling it Hossam Abdelsamed University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Medical Immunology Commons, Medical Microbiology Commons, and the Medical Molecular Biology Commons Recommended Citation Abdelsamed, Hossam , "HP Turns 17: T helper 17 cell response during hypersensitivity pneumonitis (HP) and factors controlling it" (2012). Theses and Dissertations (ETD). Paper 6. http://dx.doi.org/10.21007/etd.cghs.2012.0002. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. HP Turns 17: T helper 17 cell response during hypersensitivity pneumonitis (HP) and factors controlling it Document Type Dissertation Degree Name Doctor of Philosophy (Medical Science) Program Microbiology, Molecular Biology and Biochemistry Track Microbial Pathogenesis, Immunology, and Inflammation Research Advisor Elizabeth A. Fitzpatrick, Ph.D. Committee David D. Brand, Ph.D. Fabio C. Re, Ph.D. Susan E. Senogles, Ph.D. Christopher M. Waters, Ph.D. DOI 10.21007/etd.cghs.2012.0002 This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/6 HP TURNS 17: T HELPER 17 CELL RESPONSE DURING HYPERSENSITIVITY PNEUMONITIS (HP) AND FACTORS CONTROLLING IT A Dissertation Presented for The Graduate Studies Council The University of Tennessee Health Science Center In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy From The University of Tennessee By Hossam Abdelsamed May 2012 Portions of Chapter 3 © 2012 by BioMed Central Ltd.
    [Show full text]
  • Genetic Controls of Th17 Cell Differentiation and Plasticity
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 43, No. 1, 1-6, January 2011 Genetic controls of Th17 cell differentiation and plasticity Chen Dong1 Th cell differentiation is instructed by distinct environmental cytokines, which signals through Department of Immunology and Center for Inflammation and Cancer STAT or other inducible but generally ubiquitous MD Anderson Cancer Center transcription factors. These factors then upregulate Houston, TX, USA the expression of lineage-specific transcription fa- 1Correspondence: Tel, 1-713-563-3203; ctors, which function not only to promote its own Fax, 1-713-563-0604; E-mail, [email protected] lineage differentiation but also to inhibit the al- DOI 10.3858/emm.2011.43.1.007 ternate differentiation pathways. There are exten- sive cross-regulations of lineage-determining trans- cription factors. Moreover, there is growing evi- Accepted 22 December 2010 Available Online 23 December 2010 dence that Th cell lineage commitment can be plastic in certain circumstances. Here, I summarize Abbreviation: Th cells, T helper cells our current understanding on the genetic controls of Th17 cell lineage differentiation and discuss on the evidence and mechanisms underlying their Abstract plasticity. CD4+ T lymphocytes play a major role in regulation of adaptive immunity. Upon activation, naïve T cells dif- Transcriptional control of Th17 cell ferentiate into different functional subsets. In addition differentiation to the classical Th1 and Th2 cells, several novel effector T cell subsets have been recently identified, including Th17 cell differentiation can be induced by the Th17 cells. There has been rapid progress in character- combination of TGFβ and IL-6 or IL-21 (Dong, izing the development and function of Th17 cells.
    [Show full text]
  • Commitment to the Th17 Lineage IL-23 Promotes Maintenance But
    IL-23 Promotes Maintenance but Not Commitment to the Th17 Lineage Gretta L. Stritesky, Norman Yeh and Mark H. Kaplan This information is current as J Immunol 2008; 181:5948-5955; ; of September 27, 2021. doi: 10.4049/jimmunol.181.9.5948 http://www.jimmunol.org/content/181/9/5948 Downloaded from References This article cites 31 articles, 14 of which you can access for free at: http://www.jimmunol.org/content/181/9/5948.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 27, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology IL-23 Promotes Maintenance but Not Commitment to the Th17 Lineage1 Gretta L. Stritesky,2 Norman Yeh,2 and Mark H. Kaplan3 IL-23 plays a critical role establishing inflammatory immunity and enhancing IL-17 production in vivo. However, an understand- ing of how it performs those functions has been elusive.
    [Show full text]
  • Microbiome- and Diet-Derived Signals Within
    Development and Survival of Th17 Cells within the Intestines: The Influence of Microbiome- and Diet-Derived Signals This information is current as Joseph H. Chewning and Casey T. Weaver of September 26, 2021. J Immunol 2014; 193:4769-4777; ; doi: 10.4049/jimmunol.1401835 http://www.jimmunol.org/content/193/10/4769 Downloaded from References This article cites 133 articles, 40 of which you can access for free at: http://www.jimmunol.org/content/193/10/4769.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 26, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Th eJournal of Brief Reviews Immunology Development and Survival of Th17 Cells within the Intestines: The Influence of Microbiome- and Diet-Derived Signals Joseph H. Chewning* and Casey T. Weaver† Th17 cells have emerged as important mediators of host is achieved, at least in in part, through the dual role of TGF-b defense and homeostasis at barrier sites, particularly the in promoting developmental pathways of both of these im- intestines, where the greatest number and diversity of portant T cell subsets.
    [Show full text]
  • Th17 Cells in Viral Infections—Friend Or Foe?
    cells Review Th17 Cells in Viral Infections—Friend or Foe? Iury Amancio Paiva, Jéssica Badolato-Corrêa, Débora Familiar-Macedo and Luzia Maria de-Oliveira-Pinto * Laboratory of Viral Immunology, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; [email protected] (I.A.P.); [email protected] (J.B.-C.); [email protected] (D.F.-M.) * Correspondence: lpinto@ioc.fiocruz.br Abstract: Th17 cells are recognized as indispensable in inducing protective immunity against bacteria and fungi, as they promote the integrity of mucosal epithelial barriers. It is believed that Th17 cells also play a central role in the induction of autoimmune diseases. Recent advances have evaluated Th17 effector functions during viral infections, including their critical role in the production and induction of pro-inflammatory cytokines and in the recruitment and activation of other immune cells. Thus, Th17 is involved in the induction both of pathogenicity and immunoprotective mechanisms seen in the host’s immune response against viruses. However, certain Th17 cells can also modulate immune responses, since they can secrete immunosuppressive factors, such as IL-10; these cells are called non-pathogenic Th17 cells. Here, we present a brief review of Th17 cells and highlight their involvement in some virus infections. We cover these notions by highlighting the role of Th17 cells in regulating the protective and pathogenic immune response in the context of viral infections. In addition, we will be describing myocarditis and multiple sclerosis as examples of immune diseases triggered by viral infections, in which we will discuss further the roles of Th17 cells in the induction of tissue damage.
    [Show full text]
  • Producers Thymus-Derived Naturally Occurring IL-17 T Cells As Fetal Δγ
    The Journal of Immunology Identification of CD25؉ ␥␦ T Cells As Fetal Thymus-Derived Naturally Occurring IL-17 Producers1 Kensuke Shibata, Hisakata Yamada,2 Risa Nakamura, Xun Sun, Momoe Itsumi, and Yasunobu Yoshikai We previously reported that resident ␥␦ T cells in the peritoneal cavity rapidly produced IL-17 in response to Escherichia coli infection to mobilize neutrophils. We found in this study that the IL-17-producing ␥␦ T cells did not produce IFN-␥ or IL-4, similar to Th17 cells. IL-17-producing ␥␦ T cells specifically express CD25 but not CD122, whereas CD122؉ ␥␦ T cells produced IFN-␥. IL-17-producing ␥␦ T cells were decreased but still present in IL-2- or CD25-deficient mice, suggesting a role of IL-2 for their maintenance. IFN-␥-producing CD122؉ ␥␦ T cells were selectively decreased in IL-15-deficient mice. Surprisingly, IL-17- producing ␥␦ T cells were already detected in the thymus, although CD25 was not expressed on the intrathymic IL-17-producing ␥␦ T cells. The number of thymic IL-17-producing ␥␦ T cells was peaked at perinatal period and decreased thereafter, coincided with the developmental kinetics of V␥6؉V␦1؉ ␥␦ T cells. The number of IL-17-producing ␥␦ T cells was decreased in fetal thymus of V␦1-deficient mice, whereas V␥5؉ fetal thymocytes in normal mice did not produce IL-17. Thus, it was revealed that the fetal thymus-derived V␥6؉V␦1؉ T cells functionally differentiate to produce IL-17 within thymus and thereafter express CD25 to be maintained in the periphery. The Journal of Immunology, 2008, 181: 5940–5947.
    [Show full text]
  • The Fate of Th17 Cells Is Shaped by Epigenetic Modifications
    International Journal of Molecular Sciences Review The Fate of Th17 Cells is Shaped by Epigenetic Modifications and Remodeled by the Tumor Microenvironment Elodie Renaude 1,2, Marie Kroemer 1,3, Romain Loyon 1,2,4, Delphine Binda 1,2, Christophe Borg 1,2,4, Michaël Guittaut 1,5, Eric Hervouet 1,5,6 and Paul Peixoto 1,6,* 1 University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; [email protected] (E.R.); [email protected] (M.K.); [email protected] (R.L.); [email protected] (D.B.); [email protected] (C.B.); [email protected] (M.G.); [email protected] (E.H.) 2 Centre Hospitalier Universitaire de Besançon, Centre d’Investigation Clinique, INSERM CIC 1431, 25030 Besançon, France 3 Department of Pharmacy, University Hospital of Besançon, F-25000 Besançon, France 4 Department of Medical Oncology, University Hospital of Besançon, F-25000 Besançon, France 5 DImaCell Platform, University of Bourgogne Franche-Comté, F-25000 Besançon, France 6 EPIGENEXP Platform, University of Bourgogne Franche-Comté, F-25000 Besançon, France * Correspondence: [email protected] Received: 7 February 2020; Accepted: 27 February 2020; Published: 29 February 2020 Abstract: Th17 cells represent a subset of CD4+ T cells characterized by the master transcription factor RORγt and the production of IL-17. Epigenetic modifications such as post-translational histone modifications and DNA methylation play a key role in Th17 cell differentiation and high plasticity. Th17 cells are highly recruited in many types of cancer and can be associated with good or bad prognosis.
    [Show full text]
  • T Helper 17 Cell Activation in Response to Candida Albicans in Autoimmune Polyendocrine Syndrome Type 1
    T helper 17 cell activation in response to Candida albicans in autoimmune polyendocrine syndrome type 1 Iulia Karlsson Degree project in biology, Master of science (2 years), 2010 Examensarbete i biologi 45 hp till masterexamen, 2010 Biology Education Centre and Biology Education Centre and Department of Medical Sciences, Uppsala University, Uppsala University Supervisor: As. Prof. Anna Lobell Table of Contents Abbreviations.........................................................................................................................2 Abstract..................................................................................................................................3 Introduction Autoimmune polyendocrine syndrome type 1 .....................................................................4 Chronic mucocutaneous candidiasis....................................................................................4 Th17 cells...........................................................................................................................5 Previous findings................................................................................................................5 Hypothesis and goals ..........................................................................................................6 Methods Cell purification..................................................................................................................7 Cell culture.........................................................................................................................7
    [Show full text]