Epigenetic Re-Wiring of Breast Cancer by Pharmacological Targeting of C-Terminal Binding Protein Jung S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chemoresistance in Human Ovarian Cancer: the Role of Apoptotic
Reproductive Biology and Endocrinology BioMed Central Review Open Access Chemoresistance in human ovarian cancer: the role of apoptotic regulators Michael Fraser1, Brendan Leung1, Arezu Jahani-Asl1, Xiaojuan Yan1, Winston E Thompson2 and Benjamin K Tsang*1 Address: 1Department of Obstetrics & Gynecology and Cellular & Molecular Medicine, University of Ottawa, Ottawa Health Research Institute, Ottawa, Canada K1Y 4E9, Canada and 2Department of Obstetrics & Gynecology and Cooperative Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, GA 30310, USA Email: Michael Fraser - [email protected]; Brendan Leung - [email protected]; Arezu Jahani-Asl - [email protected]; Xiaojuan Yan - [email protected]; Winston E Thompson - [email protected]; Benjamin K Tsang* - [email protected] * Corresponding author Published: 07 October 2003 Received: 26 June 2003 Accepted: 07 October 2003 Reproductive Biology and Endocrinology 2003, 1:66 This article is available from: http://www.RBEj.com/content/1/1/66 © 2003 Fraser et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. Abstract Ovarian cancer is among the most lethal of all malignancies in women. While chemotherapy is the preferred treatment modality, chemoresistance severely limits treatment success. Recent evidence suggests that deregulation of key pro- and anti-apoptotic pathways is a key factor in the onset and maintenance of chemoresistance. Furthermore, the discovery of novel interactions between these pathways suggests that chemoresistance may be multi-factorial. Ultimately, the decision of the cancer cell to live or die in response to a chemotherapeutic agent is a consequence of the overall apoptotic capacity of that cell. -
TLR3-Dependent Activation of TLR2 Endogenous Ligands Via the Myd88 Signaling Pathway Augments the Innate Immune Response
cells Article TLR3-Dependent Activation of TLR2 Endogenous Ligands via the MyD88 Signaling Pathway Augments the Innate Immune Response 1 2, 1 3 Hellen S. Teixeira , Jiawei Zhao y, Ethan Kazmierski , Denis F. Kinane and Manjunatha R. Benakanakere 2,* 1 Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19004, USA; [email protected] (H.S.T.); [email protected] (E.K.) 2 Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19004, USA; [email protected] 3 Periodontology Department, Bern Dental School, University of Bern, 3012 Bern, Switzerland; [email protected] * Correspondence: [email protected] Present address: Department of Pathology, Wayne State University School of Medicine, y 541 East Canfield Ave., Scott Hall 9215, Detroit, MI 48201, USA. Received: 30 June 2020; Accepted: 12 August 2020; Published: 17 August 2020 Abstract: The role of the adaptor molecule MyD88 is thought to be independent of Toll-like receptor 3 (TLR3) signaling. In this report, we demonstrate a previously unknown role of MyD88 in TLR3 signaling in inducing endogenous ligands of TLR2 to elicit innate immune responses. Of the various TLR ligands examined, the TLR3-specific ligand polyinosinic:polycytidylic acid (poly I:C), significantly induced TNF production and the upregulation of other TLR transcripts, in particular, TLR2. Accordingly, TLR3 stimulation also led to a significant upregulation of endogenous TLR2 ligands mainly, HMGB1 and Hsp60. By contrast, the silencing of TLR3 significantly downregulated MyD88 and TLR2 gene expression and pro-inflammatory IL1β, TNF, and IL8 secretion. The silencing of MyD88 similarly led to the downregulation of TLR2, IL1β, TNF and IL8, thus suggesting MyD88 / to somehow act downstream of TLR3. -
High KDM1A Expression Associated with Decreased CD8+T Cells Reduces the Breast Cancer Survival Rate in Patients with Breast Cancer
Journal of Clinical Medicine Article High KDM1A Expression Associated with Decreased CD8+T Cells Reduces the Breast Cancer Survival Rate in Patients with Breast Cancer Hyung Suk Kim 1 , Byoung Kwan Son 2 , Mi Jung Kwon 3, Dong-Hoon Kim 4,* and Kyueng-Whan Min 5,* 1 Department of Surgery, Division of Breast Surgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri 11923, Korea; [email protected] 2 Department of Internal Medicine, Eulji Hospital, Eulji University School of Medicine, Seoul 03181, Korea; [email protected] 3 Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea; [email protected] 4 Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea 5 Department of Pathology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri 11923, Korea * Correspondence: [email protected] (D.-H.K.); [email protected] (K.-W.M.); Tel.: +82-2-2001-2392 (D.-H.K.); +82-31-560-2346 (K.-W.M.); Fax: +82-2-2001-2398 (D.-H.K.); Fax: +82-2-31-560-2402 (K.-W.M.) Abstract: Background: Lysine-specific demethylase 1A (KDM1A) plays an important role in epige- netic regulation in malignant tumors and promotes cancer invasion and metastasis by blocking the immune response and suppressing cancer surveillance activities. The aim of this study was to analyze Citation: Kim, H.S.; Son, B.K.; Kwon, survival, genetic interaction networks and anticancer immune responses in breast cancer patients M.J.; Kim, D.-H.; Min, K.-W. High with high KDM1A expression and to explore candidate target drugs. -
A Pathogenic Ctbp1 Missense Mutation Causes Altered Cofactor Binding and Transcriptional Activity
neurogenetics (2019) 20:129–143 https://doi.org/10.1007/s10048-019-00578-1 ORIGINAL ARTICLE A pathogenic CtBP1 missense mutation causes altered cofactor binding and transcriptional activity David B. Beck1 & T. Subramanian2 & S. Vijayalingam2 & Uthayashankar R. Ezekiel3 & Sandra Donkervoort4 & Michele L. Yang5 & Holly A. Dubbs6 & Xilma R. Ortiz-Gonzalez7 & Shenela Lakhani8 & Devorah Segal9 & Margaret Au10 & John M. Graham Jr10 & Sumit Verma11 & Darrel Waggoner12 & Marwan Shinawi13 & Carsten G. Bönnemann4 & Wendy K. Chung14 & G. Chinnadurai2 Received: 23 October 2018 /Revised: 18 March 2019 /Accepted: 9 April 2019 /Published online: 30 April 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract We previously reported a pathogenic de novo p.R342W mutation in the transcriptional corepressor CTBP1 in four independent patients with neurodevelopmental disabilities [1]. Here, we report the clinical phenotypes of seven additional individuals with the same recurrent de novo CTBP1 mutation. Within this cohort, we identified consistent CtBP1-related phenotypes of intellectual disability, ataxia, hypotonia, and tooth enamel defects present in most patients. The R342W mutation in CtBP1 is located within a region implicated in a high affinity-binding cleft for CtBP-interacting proteins. Unbiased proteomic analysis demonstrated reduced interaction of several chromatin-modifying factors with the CtBP1 W342 mutant. Genome-wide transcriptome analysis in human glioblastoma cell lines expressing -CtBP1 R342 (wt) or W342 mutation revealed changes in the expression profiles of genes controlling multiple cellular processes. Patient-derived dermal fibroblasts were found to be more sensitive to apoptosis during acute glucose deprivation compared to controls. Glucose deprivation strongly activated the BH3-only pro-apoptotic gene NOXA, suggesting a link between enhanced cell death and NOXA expression in patient fibroblasts. -
CRKL As a Lung Cancer Oncogene and Mediator Of
views in The spotliGhT CRKL as a Lung Cancer Oncogene and Mediator of Acquired Resistance to eGFR inhibitors: is it All That it is Cracked Up to Be? Marc Ladanyi summary: Cheung and colleagues demonstrate that amplified CRKL can function as a driver oncogene in lung adeno- carcinoma, activating both RAS and RAP1 to induce mitogen-activated protein kinase signaling. In addition, they show that CRKL amplification may be another mechanism for primary or acquired resistance to epidermal growth factor re- ceptor kinase inhibitors. Cancer Discovery; 1(7); 560–1. ©2011 AACR. Commentary on Cheung et al., p. 608 (1). In this issue of Cancer Discovery, Cheung and colleagues (1) mutual exclusivity. Cheung and colleagues (1) report that present extensive genomic and functional data supporting focal CRKL amplification is mutually exclusive with EGFR focal amplification of the CRKL gene at 22q11.21 as a driver mutation and EGFR amplification. However, of the 6 lung oncogene in lung adenocarcinoma. The report expands on cancer cell lines found in this study to have focal gains of data previously presented by Kim and colleagues (2). CRKL CRKL, 2 contain other major driver oncogenes (KRAS G13D is a signaling adaptor protein that contains SH2 and SH3 in HCC515, BRAF G469A in H1755; refs. 7, 8). Interestingly, domains that mediate protein–protein interactions linking both cell lines demonstrated clear dependence on CRKL in tyrosine-phosphorylated upstream signaling molecules (e.g., functional assays. Perhaps CRKL amplification is more akin BCAR1, paxillin, GAB1) to downstream effectors (e.g., C3G, to PIK3CA mutations, which often, but not always, are con- SOS) (3). -
MYD88 L265P Is a Marker Highly Characteristic Of, but Not Restricted To, Waldenstro¨M’S Macroglobulinemia
Leukemia (2013) 27, 1722–1728 & 2013 Macmillan Publishers Limited All rights reserved 0887-6924/13 www.nature.com/leu ORIGINAL ARTICLE MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenstro¨m’s macroglobulinemia C Jime´ nez1, E Sebastia´n1, MC Chillo´n1,2, P Giraldo3, J Mariano Herna´ndez4, F Escalante5, TJ Gonza´lez-Lo´ pez6, C Aguilera7, AG de Coca8, I Murillo3, M Alcoceba1, A Balanzategui1, ME Sarasquete1,2, R Corral1, LA Marı´n1, B Paiva1,2, EM Ocio1,2, NC Gutie´ rrez1,2, M Gonza´lez1,2, JF San Miguel1,2 and R Garcı´a-Sanz1,2 We evaluated the MYD88 L265P mutation in Waldenstro¨m’s macroglobulinemia (WM) and B-cell lymphoproliferative disorders by specific polymerase chain reaction (PCR) (sensitivity B10 À 3). No mutation was seen in normal donors, while it was present in 101/117 (86%) WM patients, 27/31 (87%) IgM monoclonal gammapathies of uncertain significance (MGUS), 3/14 (21%) splenic marginal zone lymphomas and 9/48 (19%) non-germinal center (GC) diffuse large B-cell lymphomas (DLBCLs). The mutation was absent in all 28 GC-DLBCLs, 13 DLBCLs not subclassified, 35 hairy cell leukemias, 39 chronic lymphocyticleukemias(16withM-component), 25 IgA or IgG-MGUS, 24 multiple myeloma (3 with an IgM isotype), 6 amyloidosis, 9 lymphoplasmacytic lymphomas and 1 IgM-related neuropathy. Among WM and IgM- MGUS, MYD88 L265P mutation was associated with some differences in clinical and biological characteristics, although usually minor; wild-type MYD88 cases had smaller M-component (1.77 vs 2.72 g/dl, P ¼ 0.022), more lymphocytosis (24 vs 5%, P ¼ 0.006), higher lactate dehydrogenase level (371 vs 265 UI/L, P ¼ 0.002), atypical immunophenotype (CD23 À CD27 þþFMC7 þþ), less Immunoglobulin Heavy Chain Variable gene (IGHV) somatic hypermutation (57 vs 97%, P ¼ 0.012) and less IGHV3–23 gene selection (9 vs 27%, P ¼ 0.014). -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Neuro-Oncology Advances 1 1(1), 1–14, 2019 | Doi:10.1093/Noajnl/Vdz042 | Advance Access Date 5 November 2019
applyparastyle "fig//caption/p[1]" parastyle "FigCapt" applyparastyle "fig" parastyle "Figure" Neuro-Oncology Advances 1 1(1), 1–14, 2019 | doi:10.1093/noajnl/vdz042 | Advance Access date 5 November 2019 PELP1 promotes glioblastoma progression by enhancing Wnt/β-catenin signaling Gangadhara R. Sareddy, Uday P. Pratap, Suryavathi Viswanadhapalli, Prabhakar Pitta Venkata, Binoj C. Nair, Samaya Rajeshwari Krishnan, Siyuan Zheng, Andrea R. Gilbert, Andrew J. Brenner, Darrell W. Brann, and Ratna K. Vadlamudi Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas (G.R.S., U.P.P., S.V., P.P.V., B.C.N., S.R.K., R.K.V.); Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas (S.Z.); Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas (A.R.G.); Hematology & Oncology, University of Texas Health San Antonio, San Antonio, Texas (A.J.B.); Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas (G.R.S., S.Z., A.J.B., R.K.V.); Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia (D.W.B.) Correspondence Author: Ratna K. Vadlamudi, Department of Obstetrics and Gynecology, 7703 Floyd Curl Drive, University of Texas Health San Antonio, San Antonio, TX 78229 ([email protected]). Abstract Background: Glioblastoma (GBM) is a deadly neoplasm of the central nervous system. The molecular mechanisms and players that contribute to GBM development is incompletely understood. Methods: The expression of PELP1 in different grades of glioma and normal brain tissues was analyzed using immunohistochemistry on a tumor tissue array. -
4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4). -
Evidence for an Interaction Between the Insulin Receptor and Grb7. a Role for Two of Its Binding Domains, PIR and SH2
Oncogene (2000) 19, 2052 ± 2059 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc Evidence for an interaction between the insulin receptor and Grb7. A role for two of its binding domains, PIR and SH2 Anne Kasus-Jacobi1,2,3,Ve ronique Be re ziat1,3, Dominique Perdereau1, Jean Girard1 and Anne-FrancËoise Burnol*,1 1Endocrinologie MeÂtabolisme et DeÂveloppement, CNRS, UPR 1524, 9 rue Jules Hetzel, 92190 Meudon, France The molecular adapter Grb7 is likely to be implicated in new family of adapters has recently emerged, the Grb7 the development of certain cancer types. In this study we family of proteins, comprising Grb7, Grb10 and show that Grb7 binds the insulin receptors, when they Grb14. The members of this family were originally are activated and tyrosine phosphorylated. This interac- cloned by interaction with EGF receptor, using the tion is documented by two-hybrid experiments, GST CORT (cloning of receptor target) system (Daly et al., pull-down assays and in vivo coimmunoprecipitations. In 1996; Margolis, 1994; Ooi et al., 1995), and the use of addition, our results argue in favor of a preferential the yeast two-hybrid technology has emphasized their association between Grb7 and the insulin receptors when implication in signal transduction (Daly, 1998). These compared to other tyrosine kinase receptors like the adapters bind also other tyrosine kinase receptors, like EGF receptor, the FGF receptor and Ret. Interestingly, erbB2, Ret, Elk, PDGF receptors, insulin receptors and Grb7 is not a substrate of the insulin receptor tyrosine IGF-1 receptors (Daly et al., 1996; Dey et al., 1996; kinase activity. -
MYD88 and Beyond: Novel Opportunities for Diagnosis, Prognosis and Treatment in Waldenstro¨M’S Macroglobulinemia
Leukemia (2014) 28, 1799–1803 & 2014 Macmillan Publishers Limited All rights reserved 0887-6924/14 www.nature.com/leu CONCISE REVIEW MYD88 and beyond: novel opportunities for diagnosis, prognosis and treatment in Waldenstro¨m’s Macroglobulinemia O Landgren and N Tageja Waldenstro¨m’s Macroglobulinemia (WM) is a rare disease of the elderly with a median age of 63–68 years at diagnosis. Despite recent progress in biological insights and therapeutics, WM remains clinically challenging to diagnose and is difficult to manage with significant morbidity and lack of established curative therapies. Recently, the use of whole-genome sequencing has helped to identify a highly recurrent somatic mutation, myeloid differentiation factor 88 [MYD88] L265P in WM. This has fueled major interest in the field and as newer evidence accumulates, it is clear that that discovery of MYD88 L265P mutation may represent an important breakthrough in understanding the pathogenesis of WM and lymphoproliferative disorders. Recent scientific work in this field has also guided the identification of new targets such as CXCR4 and PI3K-delta that may have major implications in the future treatment of WM. This review discusses the role of MYD88 L265P mutations as well as targets beyond MYD88 in the setting of pathogenesis and development of future rational therapeutic trials focusing on patients diagnosed with WM. Leukemia (2014) 28, 1799–1803; doi:10.1038/leu.2014.88 INTRODUCTION transduces signals to the NF-kB transcription factors in response to Waldenstro¨m’s Macroglobulinemia (WM) is a rare hematological IL-1R1 signaling. MYD88 has a modular structure with a Toll/IL-1R malignancy with a reported age-adjusted incidence rate of 3.4 per (TIR) domain at its COOH terminus and a death domain at its 12 11 million among men and 1.7 per million among women in the NH2 terminus. -
Proline-, Glutamic Acid-, and Leucine-Rich Protein 1 Mediates
Proline-, glutamic acid-, and leucine-rich protein 1 PNAS PLUS mediates estrogen rapid signaling and neuroprotection in the brain Gangadhara R. Sareddya,1, Quanguang Zhangb,1, Ruimin Wangb,c, Erin Scottb, Yi Zoud, Jason C. O’Connore,f, Yidong Chend, Yan Dongb, Ratna K. Vadlamudia,2, and Darrell Brannb,g,2 aDepartment of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX 78229; bDepartment of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; cNeurobiology Institute of Medical Research Center, North China University of Science and Technology, Tangshan, People’s Republic of China 063000; dDepartment of Epidemiology & Biostatistics, University of Texas Health Science Center, San Antonio, TX 78229; eDepartment of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229; fSouth Texas Veterans Health System, Audie L. Murphy VA Hospital, San Antonio, TX 78229; and gCharlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904 Edited by Bruce S. McEwen, The Rockefeller University, New York, NY, and approved October 1, 2015 (received for review August 21, 2015) 17-β estradiol (E2) has been implicated as neuroprotective in a vari- E2 signaling is thought to be primarily mediated by the classical ety of neurodegenerative disorders. However, the underlying mech- estrogen receptors, estrogen receptor alpha (ERα) and estrogen anism remains unknown. Here, we provide genetic evidence, using receptor beta (ERβ). Both subtypes are expressed in the brain forebrain-specific knockout (FBKO) mice, that proline-, glutamic and have been shown to mediate various neural actions of E2, acid-, and leucine-rich protein 1(PELP1),anestrogenreceptor including neuroprotection (4, 12–14).