Genome by Yu Zhang a Dissertat

Total Page:16

File Type:pdf, Size:1020Kb

Genome by Yu Zhang a Dissertat Identification and analysis of recently duplicated genes in Channel Catfish (Ictalurus punctatus) genome by Yu Zhang A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama December 14, 2013 Keywords: gene duplication, catfish, genome, teleost Copyright 2013 by Yu Zhang Approved by Zhanjiang Liu, Chair, Alumni Professor of Fisheries and Allied Aquacultures Eric Peatman, Assistant Professor of Fisheries and Allied Aquacultures Rex Dunham, Professor of Fisheries and Allied Aquacultures Nannan Liu, Professor of Entomology and Plant Pathology Abstract Gene duplication is an important source of genetic innovation and structure and usually associated to the lineage-specific adaptive trait during evolution, such as genes related to immunity, development and reproduction. Channel catfish (Ictalurus punctatus) is the primary aquaculture species in the United States, which represents 70% of the total aquaculture production. However, the set size of duplicated genes and duplication pattern in channel catfish are still less well understood. In this study, a total of 2,130 duplicated gene sets were identified by using predicted mRNA in channel catfish. Similar overall distribution patterns of duplication size were observed among catfish and model fish species (zebrafish, medaka, stickle and Tetraodon) under comparison, significant differences were noted, with catfish harboring the highest percentage (69.4%) of duplicated gene sets with only two copies. A total of 1,128 duplication sets can be characterized with their duplication types with Intra-chromosomal duplications accounting for most proportion. The large number of duplicated genes with low Ks indicated that most of duplicated genes predicted in this study were recently duplicated genes. GO enrichment analysis indicated that GO terms associated to various metabolic and catabolic processes, response to stimuli and signal transduction were over-represented in duplicated genes. When compared with the four model fish species, a total of 239 catfish specific duplicated genes were identified, with 71.1% of duplication sets containing 2 copies and 59.4% of duplicated genes (pairwise) had small Ks values of ≤ 1. These results suggested that catfish species-specific duplicated genes were ii mostly recent. The catfish species-specific duplicated genes included a set of genes related to immune and stress responses suggesting a mechanism for catfish to adapt to its environment. This study is the first study on surveying genome-wide duplicated genes in channel catfish. This research is not only useful for further catfish whole genome annotation, but also useful for understanding environmental adaption in channel catfish. iii Acknowledgments First and foremost, I would like to express my deep and sincere gratitude to my advisor Dr. Zhanjiang Liu for his constant guidance, support and patience throughout my degree program. His scientific attitude and philosophy have had a profound influence on me. Under his supervision, I learned how to do scientific research. Without him, it would be impossible for me to finish this dissertation. I would like to express my gratitude to my committee: Dr. Nannan Liu, Dr. Eric Peatman, Dr. Dunham and my dissertation outside reader, Dr. Bernhard Kaltenboeck for their advice and critical reading of my dissertation. Sincere thanks will also go to Huseyin Kucuktas and Ludmilla Kaltenboeck for technical help, and the colleagues in the laboratory for their help, collaboration, and friendship. I would like to express my gratitude to the Chinese Scholarship Council for the financial support through my PhD study. Finally, I would like to thank my parents and all my family members for their love and support. iv Table of Contents Abstract ......................................................................................................................................... ii Acknowledgments........................................................................................................................ iv List of Tables .............................................................................................................................. vii List of Illustrations ..................................................................................................................... viii List of Abbreviations ................................................................................................................... ix I. INTRODUCTION AND LITERATURE REVIEW ....................................................................1 Mechanism of gene duplication .................................................................................................1 The fate of duplicated genes .......................................................................................................3 Tandem duplication .....................................................................................................................4 Segmental duplications ................................................................................................................5 Copy number variation ................................................................................................................7 Fish-specific genome duplication (FSGD) and Hox gene cluster .........................................9 Identification of gene duplication ........................................................................................... 11 II. MATERIALS AND METHODS ................................................................................................. 15 mRNA prediction, clustering and identification of duplicated gene sets .......................... 15 Analysis for the nature of duplicated genes in catfish .......................................................... 16 Identification of the catfish species-specific duplicated genes ........................................... 17 Analysis of synonymous substitution (Ks) for duplicated gene pairs ................................ 17 Gene enrichment analysis of duplicated genes ...................................................................... 18 III. RESULT .......................................................................................................................................... 18 v Generation of the duplicated gene pool ....................................................................................... 18 Analysis of duplicated copy numbers .......................................................................................... 19 Characterization of duplicated genes ........................................................................................... 22 Distribution of duplicated genes on the 29 chromosomes ........................................................ 23 Analysis of Ks distance in duplicated genes .............................................................................. 24 Evolutionary conservation of duplicated genes among teleost species .................................. 26 Catfish species-specific duplicated genes ................................................................................... 28 Functional enrichment analysis of the catfish duplication genes ............................................ 31 IV. DISCUSSIONS .............................................................................................................................. 40 V. CONCLUSION .............................................................................................................................. 45 REFERENCE ........................................................................................................................................ 103 vi List of Tables Table 1 ....................................................................................................................................... 19 Table 2 ....................................................................................................................................... 20 Table 3 ....................................................................................................................................... 22 Table 4 ....................................................................................................................................... 28 Table 5 ....................................................................................................................................... 29 Table 6 ....................................................................................................................................... 30 Table 7 ....................................................................................................................................... 33 Table 8 ....................................................................................................................................... 35 Table 9 ....................................................................................................................................... 37 Table 10 ..................................................................................................................................... 38 Table 11 ..................................................................................................................................... 39 Supplement Table 1 ..................................................................................................................
Recommended publications
  • Identification of Potential Autoantigens in Anti-CCP-Positive and Anti-CCP-Negative Rheumatoid Arthritis Using Citrulline-Specific Protein Arrays
    www.nature.com/scientificreports OPEN Identifcation of potential autoantigens in anti‑CCP‑positive and anti‑CCP‑negative rheumatoid arthritis using citrulline‑specifc protein arrays Thomas B. G. Poulsen 1,2, Dres Damgaard 3, Malene M. Jørgensen 4,5, Ladislav Senolt6, Jonathan M. Blackburn 7, Claus H. Nielsen 3,8 & Allan Stensballe 1,8* The presence or absence of autoantibodies against citrullinated proteins (ACPAs) distinguishes two main groups of rheumatoid arthritis (RA) patients with diferent etiologies, prognoses, disease severities, and, presumably, disease pathogenesis. The heterogeneous responses of RA patients to various biologics, even among ACPA‑positive patients, emphasize the need for further stratifcation of the patients. We used high‑density protein array technology for fngerprinting of ACPA reactivity. Identifcation of the proteome recognized by ACPAs may be a step to stratify RA patients according to immune reactivity. Pooled plasma samples from 10 anti‑CCP‑negative and 15 anti‑CCP‑positive RA patients were assessed for ACPA content using a modifed protein microarray containing 1631 diferent natively folded proteins citrullinated in situ by protein arginine deiminases (PADs) 2 and PAD4. IgG antibodies from anti‑CCP‑positive RA plasma showed high‑intensity binding to 87 proteins citrullinated by PAD2 and 99 proteins citrullinated by PAD4 without binding signifcantly to the corresponding native proteins. Curiously, the binding of IgG antibodies in anti‑CCP‑negative plasma was also enhanced by PAD2‑ and PAD4‑mediated citrullination of 29 and 26 proteins, respectively. For only four proteins, signifcantly more ACPA binding occurred after citrullination with PAD2 compared to citrullination with PAD4, while the opposite was true for one protein.
    [Show full text]
  • A Field Guide to Eukaryotic Transposable Elements
    GE54CH23_Feschotte ARjats.cls September 12, 2020 7:34 Annual Review of Genetics A Field Guide to Eukaryotic Transposable Elements Jonathan N. Wells and Cédric Feschotte Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; email: [email protected], [email protected] Annu. Rev. Genet. 2020. 54:23.1–23.23 Keywords The Annual Review of Genetics is online at transposons, retrotransposons, transposition mechanisms, transposable genet.annualreviews.org element origins, genome evolution https://doi.org/10.1146/annurev-genet-040620- 022145 Abstract Annu. Rev. Genet. 2020.54. Downloaded from www.annualreviews.org Access provided by Cornell University on 09/26/20. For personal use only. Copyright © 2020 by Annual Reviews. Transposable elements (TEs) are mobile DNA sequences that propagate All rights reserved within genomes. Through diverse invasion strategies, TEs have come to oc- cupy a substantial fraction of nearly all eukaryotic genomes, and they rep- resent a major source of genetic variation and novelty. Here we review the defining features of each major group of eukaryotic TEs and explore their evolutionary origins and relationships. We discuss how the unique biology of different TEs influences their propagation and distribution within and across genomes. Environmental and genetic factors acting at the level of the host species further modulate the activity, diversification, and fate of TEs, producing the dramatic variation in TE content observed across eukaryotes. We argue that cataloging TE diversity and dissecting the idiosyncratic be- havior of individual elements are crucial to expanding our comprehension of their impact on the biology of genomes and the evolution of species. 23.1 Review in Advance first posted on , September 21, 2020.
    [Show full text]
  • Tandemly Arrayed Genes in Vertebrate Genomes
    Tandemly Arrayed Genes in Vertebrate Genomes Deng Pan1 and Liqing Zhang2∗ 1Department of Computer Science, Virginia Tech, 2050 Torgerson Hall, Blacksburg, VA 24061-0106, USA 2Program in Genetics, Bioinformatics, and Computational Biology ∗To whom correspondence should be addressed; E-mail: [email protected] July 9, 2008 Abstract Tandemly arrayed genes (TAGs) are duplicated genes that are linked as neighbors on a chromosome, many of which have important physio- logical and biochemical functions. Here we performed a survey of these genes in 11 available vertebrate genomes. TAGs account for an average of about 14% of all genes in these vertebrate genomes, and about 25% of all duplications. The majority of TAGs (72-94%) have parallel tran- scription orientation (i.e. are encoded on the same strand), in contrast to the genome, which has about 50% of its genes in parallel transcrip- tion orientation. The majority of tandem arrays have only two members. In all species, the proportion of genes that belong to TAGs tends to be higher in large gene families than in small ones; together with our re- cent finding that tandem duplication played a more important role than retroposition in large families, this fact suggests that among all types of duplication mechanisms, tandem duplication is the predominant mecha- nism of duplication, especially in large families. Species-specific tandem arrays (SSTAs) are identified and results of statistical tests suggest that natural selection played a role in maintaining some of the SSTAs. Our 1 work will provide more insight into the evolutionary history of TAGs in vertebrates. 2 1 Introduction Although the importance of duplicated genes in providing raw materials for genetic innovation has been recognized since the 1930s and is highlighted in Ohno’s book Evolution by gene duplication (Ohno, 1970), it is only recently that the availability of numerous genomic sequences has made it possible to quantitatively estimate how many genes in a genome are generated by gene duplication.
    [Show full text]
  • Evolution of Orthologous Tandemly Arrayed Gene Clusters
    Tremblay Savard et al. BMC Bioinformatics 2011, 12(Suppl 9):S2 http://www.biomedcentral.com/1471-2105/12/S9/S2 PROCEEDINGS Open Access Evolution of orthologous tandemly arrayed gene clusters Olivier Tremblay Savard1*, Denis Bertrand2*, Nadia El-Mabrouk1* From Ninth Annual Research in Computational Molecular Biology (RECOMB) Satellite Workshop on Com- parative Genomics Galway, Ireland. 8-10 October 2011 Abstract Background: Tandemly Arrayed Gene (TAG) clusters are groups of paralogous genes that are found adjacent on a chromosome. TAGs represent an important repertoire of genes in eukaryotes. In addition to tandem duplication events, TAG clusters are affected during their evolution by other mechanisms, such as inversion and deletion events, that affect the order and orientation of genes. The DILTAG algorithm developed in [1] makes it possible to infer a set of optimal evolutionary histories explaining the evolution of a single TAG cluster, from an ancestral single gene, through tandem duplications (simple or multiple, direct or inverted), deletions and inversion events. Results: We present a general methodology, which is an extension of DILTAG, for the study of the evolutionary history of a set of orthologous TAG clusters in multiple species. In addition to the speciation events reflected by the phylogenetic tree of the considered species, the evolutionary events that are taken into account are simple or multiple tandem duplications, direct or inverted, simple or multiple deletions, and inversions. We analysed the performance of our algorithm on simulated data sets and we applied it to the protocadherin gene clusters of human, chimpanzee, mouse and rat. Conclusions: Our results obtained on simulated data sets showed a good performance in inferring the total number and size distribution of duplication events.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Correlated Variation and Population Differentiation in Satellite DNA Abundance Among Lines of Drosophila Melanogaster
    Correlated variation and population differentiation in satellite DNA abundance among lines of Drosophila melanogaster Kevin H.-C. Wei, Jennifer K. Grenier, Daniel A. Barbash, and Andrew G. Clark1 Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703 Contributed by Andrew G. Clark, November 18, 2014 (sent for review October 1, 2014; reviewed by Giovanni Bosco and Keith A. Maggert) Tandemly repeating satellite DNA elements in heterochromatin repeats of simple sequences (≤10 bp); the most abundant include occupy a substantial portion of many eukaryotic genomes. Al- AAGAG (aka GAGA-satellite), AACATAGAAT (aka 2L3L), though often characterized as genomic parasites deleterious to and AATAT (11, 14, 15). In comparison, the genome of its sister the host, they also can be crucial for essential processes such as species Drosophila simulans,fromwhichD. melanogaster di- chromosome segregation. Adding to their interest, satellite DNA verged ∼2.5 mya, is estimated to have only 5% satellite DNA, elements evolve at high rates; among Drosophila, closely related more than 10-fold less AAGAG, and little to no AACATA- species often differ drastically in both the types and abundances GAAT (16). For further contrast, nearly 50% of the Drosophila of satellite repeats. However, due to technical challenges, the evo- virilis and less than 0.5% of Drosophila erecta genomes are sat- lutionary mechanisms driving this rapid turnover remain unclear. ellite DNA (16, 17). Strikingly, such rapid changes in genomes have been implicated in postzygotic isolation of species in the Here we characterize natural variation in simple-sequence repeats – of 2–10 bp from inbred Drosophila melanogaster lines derived form of hybrid incompatibility in several species of flies (18 20), from multiple populations, using a method we developed called demonstrating the critical role satellite DNA has on the evolu- k-Seek that analyzes unassembled Illumina sequence reads.
    [Show full text]
  • Genome Analysis of Protozoan Parasites: Proceedings of a Workshop Held at ILRAD, Nairobi, Kenya, 11–13 November 1992, Ed
    G E N O M E A N A L Y S I S OF PROTOZOAN PARASITES PROCEEDINGS OF A WORKSHOP HELD AT ILRAD NAIROBI, KENYA 11–13 NOVEMBER 1992 Edited by S.P. Morzaria THE INTERNATIONAL LABORATORY FOR RESEARCH ON ANIMAL DISEASES BOX 30709 • NAIROBI • KENYA The International Laboratory for Research on Animal Diseases (ILRAD) was established in 1973 with a global mandate to develop effective control measures for livestock diseases that seriously limit world food production. ILRAD’s research program focuses on animal trypanosomiasis and tick-borne diseases, particularly theileriosis (East Coast fever). ILRAD is one of 18 centres in a worldwide agricultural research network sponsored by the Consultative Group on International Agricultural Research. In 1992 ILRAD received funding from the United Nations Development Programme, the World Bank and the governments of Australia, Belgium, Canada, Denmark, Finland, France, Germany, Italy, Japan, the Netherlands, Norway, Sweden, Switzerland, the United Kingdom and the United States of America. Production Editor: Peter Werehire This publication was typeset on a microcomputer and the final pages produced on a laser printer at ILRAD, P.O. Box 30709, Nairobi, Kenya, telephone 254 (2) 632311, fax 254 (2) 631499, e-mail BT GOLD TYMNET CGI017. Colour separations for cover were done by PrePress Productions, P.O. Box 41921, Nairobi, Kenya. Printed by English Press Ltd., P.O. Box 30127, Nairobi, Kenya. Copyright © 1993 by the International Laboratory for Research on Animal Diseases. ISBN 92-9055-296-4 The correct citation for this book is Genome Analysis of Protozoan Parasites: Proceedings of a Workshop Held at ILRAD, Nairobi, Kenya, 11–13 November 1992, ed.
    [Show full text]
  • First Efficient CRISPR-Cas9-Mediated Genome Editing in Leishmania Parasites
    First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites. Lauriane Sollelis, Mehdi Ghorbal, Cameron Ross Macpherson, Rafael Miyazawa Martins, Nada Kuk, Lucien Crobu, Patrick Bastien, Artur Scherf, Jose-Juan Lopez-Rubio, Yvon Sterkers To cite this version: Lauriane Sollelis, Mehdi Ghorbal, Cameron Ross Macpherson, Rafael Miyazawa Martins, Nada Kuk, et al.. First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites.. Cellular Mi- crobiology, Wiley, 2015, 17 (10), pp.1405-1412. 10.1111/cmi.12456. hal-01992713 HAL Id: hal-01992713 https://hal.umontpellier.fr/hal-01992713 Submitted on 2 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites Lauriane Sollelis1,2, Mehdi Ghorbal1,2, Cameron Ross MacPherson3, Rafael Miyazawa Martins3, Nada Kuk1, Lucien Crobu2, Patrick Bastien1,2,4, Artur Scherf3, Jose-Juan Lopez- Rubio1,2 and Yvon Sterkers1,2,4# Running title: CRISPR-Cas9 for genome editing in Leishmania 1 University of Montpellier, Faculty of Medicine, Laboratory of Parasitology-Mycology, 2 CNRS 5290 - IRD 224 – University of Montpellier (UMR "MiVEGEC"), 3 Institut Pasteur - INSERM U1201 - CNRS ERL9195, "Biology of Host-Parasite Interactions" Unit, Paris, France, 4 CHRU (Centre Hospitalier Universitaire de Montpellier), Department of Parasitology-Mycology, Montpellier, France #To whom correspondence should be addressed.
    [Show full text]
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
    [Show full text]
  • Applying CRISPR/Cas for Genome Engineering in Plants
    Available online at www.sciencedirect.com ScienceDirect Applying CRISPR/Cas for genome engineering in plants: the best is yet to come Holger Puchta Less than 5 years ago the CRISPR/Cas nuclease was first zinc finger nucleases (ZFNs) and transcription activator- introduced into eukaryotes, shortly becoming the most efficient like effector nucleases (TALENs), which allow the tar- and widely used tool for genome engineering. For plants, geting of most genomic sites, have been developed and efforts were centred on obtaining heritable changes in most applied for a long period of time in plants (for reviews see transformable crop species by inducing mutations into open [6–8]). Although with the advent of ZFNs the basic reading frames of interest, via non-homologous end joining. problem of targeting DSBs to specific site in the genome Now it is important to take the next steps and further develop was solved, the system revealed numerous drawbacks. the technology to reach its full potential. For breeding, besides The construction of the enzymes is time consuming and using DNA-free editing and avoiding off target effects, it will be expensive and their specificity is limited, resulting in desirable to apply the system for the mutation of regulatory DSB at genomic site that very similar but nor identical elements and for more complex genome rearrangements. to the target site. Thus, unwanted secondary, ‘off-target’ Targeting enzymatic activities, like transcriptional regulators or mutations were introduced regularly. After their intro- DNA modifying enzymes, will be important for plant biology in duction TALENs outcompeted ZFNs in specificity as the future.
    [Show full text]
  • A Broad Analysis of Tandemly Arrayed Genes in the Genomes of Human, Mouse, and Rat
    A Broad Analysis of Tandemly Arrayed Genes in the Genomes of Human, Mouse, and Rat Valia Shoja Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science in Computer Science and Application Liqing Zhang, Ph.D. Chair Lenwood S. Heath, Ph.D. Zhijian Tu, Ph.D. November 10, 2006 Blacksburg, Virginia Keywords: Comparative Genomics, Gene Duplication, Tandemly Arrayed Genes, Gene Expression. Copyright 2006, Valia Shoja A Broad Analysis of Tandemly Arrayed Genes in the Genomes of Human, Mouse, and Rat Valia Shoja (ABSTRACT) Tandemly arrayed genes (TAG) play an important functional and physiological role in the genome. Most previous studies have focused on individual TAG families in a few species, yet a broad characterization of TAGs is not available. We identified all the TAGs in the genomes of human, chimp, mouse, and rat and performed a comprehensive analysis of TAG distribution, TAG sizes, TAG gene orientations and intergenic distances, and TAG gene functions. TAGs account for about 14-17% of all the genomic genes and nearly one third of all the duplicated genes in the four genomes, highlighting the predominant role that tandem duplication plays in gene duplication. For all species, TAG distribution is highly heterogeneous along chromosomes and some chromosomes are enriched with TAG forests while others are enriched with TAG deserts. The majority of TAGs are of size two for all genomes, similar to the previous findings in C. elegans, A. thaliana, and O. sativa, suggesting that it is a rather general phenomenon in eukaryotes.
    [Show full text]
  • Efficient Inversions and Duplications of Mammalian
    284 | Journal of Molecular Cell Biology (2015), 7(4), 284–298 doi:10.1093/jmcb/mjv016 Published online March 10, 2015 Article Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9 Jinhuan Li1,2,3,4,†, Jia Shou1,2,3,4,†, YaGuo1,2,3,4, Yuanxiao Tang1,2,3,4, Yonghu Wu1,2,3,4, Zhilian Jia1,2,3,4, Yanan Zhai1,2,3,4, Zhifeng Chen1,2,3,4, Quan Xu1,2,3,4, and Qiang Wu1,2,3,4,* 1 Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China 2 State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China 3 Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Center, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China 4 Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China † These authors contributed equally to this work. * Correspondence to: Qiang Wu, E-mail: [email protected] The human genome contains millions of DNA regulatory elements and a large number of gene clusters, most of which have not been tested experimentally. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) programed with a synthetic single-guide RNA (sgRNA) emerges as a method for genome editing in virtually any organisms. Here we report that targeted DNA fragment inversions and duplications could easily be achieved in human and mouse genomes by CRISPR with two sgRNAs.
    [Show full text]