A new two-component integrable system with peakon solutions 1 2 Baoqiang Xia ∗, Zhijun Qiao † 1School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China 2Department of Mathematics, University of Texas-Pan American, Edinburg, Texas 78541, USA Abstract A new two-component system with cubic nonlinearity and linear dispersion: 1 1 mt = bux + 2 [m(uv uxvx)]x 2 m(uvx uxv), 1 − −1 − nt = bvx + [n(uv uxvx)]x + n(uvx uxv), 2 − 2 − m = u uxx, n = v vxx, − − where b is an arbitrary real constant, is proposed in this paper. This system is shown integrable with its Lax pair, bi-Hamiltonian structure, and infinitely many conservation laws. Geometrically, this system describes a nontrivial one-parameter family of pseudo-spherical surfaces. In the case b = 0, the peaked soliton (peakon) and multi-peakon solutions to this two-component system are derived. In particular, the two-peakon dynamical system is explicitly solved and their interactions are investigated in details. Moreover, a new integrable cubic nonlinear equation with linear dispersion 1 2 2 1 ∗ ∗ arXiv:1211.5727v4 [nlin.SI] 10 May 2015 mt = bux + [m( u ux )]x m(uux uxu ), m = u uxx, 2 | | − | | − 2 − − is obtained by imposing the complex conjugate reduction v = u∗ to the two-component system. The complex valued N-peakon solution and kink wave solution to this complex equation are also derived. Keywords: Integrable system, Lax pair, Peakon. Mathematics Subject Classifications (2010): 37K10, 35Q51. ∗E-mail address:
[email protected] †Corresponding author, E-mail address:
[email protected] 1 2 1 Introduction In recent years, the Camassa-Holm (CH) equation [1] mt bux + 2mux + mxu = 0, m = u uxx, (1.1) − − where b is an arbitrary constant, derived by Camassa and Holm [1] as a shallow water wave model, has attracted much attention in the theory of soliton and integrable system.