ASHRAE Standard 154-2003

Total Page:16

File Type:pdf, Size:1020Kb

ASHRAE Standard 154-2003 ANSI/ASHRAE Standard 154-2003 Ventilation for Commercial Cooking Operations Approved by the ASHRAE Standards Committee on June 28, 2003; by the ASHRAE Board of Directors on July 3, 2003; and by the American National Standards Institute on September 25, 2003. ASHRAE Standards are updated on a five-year cycle; the date following the standard number is the year of ASHRAE Board of Directors approval. The latest copies may be purchased from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: [email protected]. Fax: 404-321-5478. Telephone: 404- 636-8400 (worldwide) or toll free 1-800-527-4723 (for or- ders in U.S. and Canada). ©Copyright 2003 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. ISSN 1041-2336 When addenda or interpretations to this standard have been approved, they can be downloaded free of charge from the ASHRAE web site at http://xp20.ashrae.org/stan- dards/addenda.htm or http://xp20.ashrae.org/standards/ intpstd.htm. ASHRAE Standard Project Committee 154 Cognizant TC: TC 5.10, Kitchen Ventilation SPLS Liaison: Waller S. Clements Chris P. Rousseau, Chair* Edward D. Fitts* Daniel P. Restelli* David C. Bixby Eliott B. Gordon William C. Sharp* Stephen L. Brown* John L. Harrod* Chris B. Check Richard D. Hermans* Richard T. Swierczyna* Charles N. Claar* Ronald R. Huffman Louis W. Vogel* Vikram P. Doshi Richard M. Kelso Frank H. Watier* Gary M. Elovitz* Joseph N. Knapp Donald R. Fisher* Phil O. Morton* Bruce Zimmerman *Denotes members of voting status when the document was approved for publication ASHRAE STANDARDS COMMITTEE 2002-2003 Thomas E. Watson, Chair David E. Knebel Van D. Baxter, Vice-Chair Frederick H. Kohloss Charles G. Arnold William J. Landman Dean S. Borges Merle F. McBride Paul W. Cabot Ross D. Montgomery Charles W. Coward, Jr. Cyrus H. Nasseri Brian P. Dougherty Davor Novosel Hakim Elmahdy Dennis A. Stanke Arthur D. Hallstrom Michael H. Tavares Matt R. Hargan Steven T. Taylor Richard D. Hermans David R. Tree Stephen D. Kennedy Terry E. Townsend, CO Maureen Grasso, ExO Claire B. Ramspeck, Manager of Standards SPECIAL NOTE This American National Standard (ANS) is a national voluntary consensus standard developed under the auspices of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). Consensus is defined by the American National Standards Institute (ANSI), of which ASHRAE is a member and which has approved this standard as an ANS, as ìsubstantial agreement reached by directly and materially affected interest categories. This signifies the concurrence of more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that an effort be made toward their resolution.î Compliance with this standard is voluntary until and unless a legal jurisdiction makes compliance mandatory through legislation. ASHRAE obtains consensus through participation of its national and international members, associated societies, and public review. ASHRAE Standards are prepared by a Project Committee appointed specifically for the purpose of writing the Standard. The Project Committee Chair and Vice-Chair must be members of ASHRAE; while other committee members may or may not be ASHRAE members, all must be technically qualified in the subject area of the Standard. Every effort is made to balance the concerned interests on all Project Committees. The Manager of Standards of ASHRAE should be contacted for: a. interpretation of the contents of this Standard, b. participation in the next review of the Standard, c. offering constructive criticism for improving the Standard, d. permission to reprint portions of the Standard. DISCLAIMER ASHRAE uses its best efforts to promulgate Standards and Guidelines for the benefit of the public in light of available information and accepted industry practices. However, ASHRAE does not guarantee, certify, or assure the safety or performance of any products, components, or systems tested, installed, or operated in accordance with ASHRAEís Standards or Guidelines or that any tests conducted under its Standards or Guidelines will be nonhazardous or free from risk. ASHRAE INDUSTRIAL ADVERTISING POLICY ON STANDARDS ASHRAE Standards and Guidelines are established to assist industry and the public by offering a uniform method of testing for rating purposes, by suggesting safe practices in designing and installing equipment, by providing proper definitions of this equipment, and by providing other information that may serve to guide the industry. The creation of ASHRAE Standards and Guidelines is determined by the need for them, and conformance to them is completely voluntary. In referring to this Standard or Guideline and in marking of equipment and in advertising, no claim shall be made, either stated or implied, that the product has been approved by ASHRAE. CONTENTS ANSI/ASHRAE Standard 154-2003, Ventilation for Commercial Cooking Operations SECTION PAGE Foreword................................................................................................................................................................... 2 1 Purpose .......................................................................................................................................................... 2 2 Scope ............................................................................................................................................................. 2 3 Definitions....................................................................................................................................................... 2 4 Exhaust Hoods ............................................................................................................................................... 4 5 Exhaust Systems............................................................................................................................................ 6 6 Replacement Air ............................................................................................................................................. 6 7 References ..................................................................................................................................................... 7 Appendix A: Air Balance Table and Graphic ........................................................................................................ 8 © Copyright 2003 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. 1791 Tullie Circle NE Atlanta, GA 30329 www.ashrae.org All rights reserved. (This foreword is not part of this standard. It is merely ductless hood: a listed packaged system incorporating a hood, informative and does not contain requirements necessary a fan, and air treatment devices designed to remove substan- for conformance to the standard. It has not been pro- tially all grease and particulate matter from the airstream cessed according to the ANSI requirements for a stan- before reintroducing the treated air into the occupied space. dard and may contain material that has not been subject to public review or a consensus process.) equipment, light-duty: equipment with a light duty rating, including FOREWORD • Gas and electric ovens (including standard, bake, roast- The model codes, and the many local amendments to ing, revolving, retherm, convection, combination con- them, are not uniform in dealing with the complicated subject vection/steamer, conveyor, deck or deck-style pizza, and of ventilation for commercial cooking operations. The intent pastry ovens) of this standard is to address this problem by bringing cohe- • Electric and gas steam-jacketed kettles sion and consistency to the issues that arise in providing venti- • Electric and gas compartment steamers (both pressure lation for commercial cooking. While it is not comprehensive, and atmospheric types) this standard does address most of the key concerns surround- • Electric and gas cheesemelters ing the subject of ventilation for commercial cooking. • Electric and gas rethermalizers Special thanks are due to Don Fisher, Joe Knapp, and Dick Kelso. Without their vision and dedication, this standard equipment, medium-duty: equipment with a medium duty would not have been written. rating, including • Electric discrete element ranges (with or without oven) 1. PURPOSE • Electric and gas hot-top ranges • Electric and gas griddles The purpose of this standard is to provide design criteria • Electric and gas double-sided griddles for the performance of commercial cooking ventilation • Electric and gas fryers (including open deep-fat fryers, systems. donut fryers, kettle fryers, and pressure fryers) • Electric and gas pasta cookers 2. SCOPE • Electric and gas conveyor (pizza) ovens 2.1 This standard covers the determination of the following: • Electric and gas tilting skillets/braising pans (a) Airflow rates for exhaust hoods • Electric and gas rotisseries (b) Replacement air configurations equipment, heavy-duty: equipment with a heavy duty rating, (c) Hood types including (d) Fan systems • Electric and gas underfired broilers • Electric and gas chain (conveyor) broilers 2.2 This standard does not address the life safety and health • Gas open-burner ranges (with or without oven) aspects of ventilating commercial cooking operations. • Electric and gas wok ranges • Electric and gas overfired (upright) broilers 3. DEFINITIONS • Salamanders approved: acceptable to the authority having jurisdiction. equipment,
Recommended publications
  • Commercial Kitchen Ventilation- Efficient Exhaust and Heat Recovery
    #331-1 CH-89-9-6 Commercial Kitchen Ventilation­ Efficient Exhaust and Heat Recovery D.K. Black ASHRAE Life Member ABSTRACT ciency and, if it malfunctions, can shut down the entire This paper outlines those considerations and kitchen and restaurant. requirements that are pertinent to the design and opera­ The subject of commercial kitchen ventilation covers tion of a properly functioning exhaust system 'for a a number of factors or considerations that combine to form commercial kitchen. It embraces such subjects as air the basis of a system that will perform satisfactorily, be cost quality, energy conservation, air pollution control, sanita­ effective, and comply with applicable codes. tion, and fire safety. Determination of necessary and These factors include smoke capture, grease extrac­ appropriate exhaust air volumes for various items of cobk· tion and disposal, fire protec1ion. and the maintenance of ing equipment is discussed. The potential for heat acceptable air quality and temperature in the kitchen recovery Is detailed, together with a description of the space. Modern systems may also include air pollutioh con­ technology involved. trol and heat recovery equipment. Efficient grease extraction is extremely important. INTRODUCTION Grease that is hOt exhausted will collect in ductwork and The state of the art in commercial kitchen ventilation create a fire hazard. To such areas, the difference between is indeed essentially an art, accepting certain basic funda­ 90% and 95% efficiency is not 5% but rather 100%. mentals of thermodynamics, environmental control, and air Centrifugal ~rease extraction has proved to be highly movement, but responding largely to experience and effective and is currently employed on most leading logic.
    [Show full text]
  • Kitchen Ventilation Improvement
    Kitchen Ventilation Improvement Course No: M01-003 Credit: 1 PDH Steven Liescheidt, P.E., CCS, CCPR Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 07677 P: (877) 322-5800 [email protected] Design Guide Improving Commercial Kitchen Ventilation System Performance This design guide provides informa- tion that will help achieve optimum Introduction performance and energy efficiency in An effective commercial kitchen ventilation (CKV) system requires bal- commercial kitchen ventilation sys- ance—air balance that is. And as the designer, installer or operator of the kitchen tems. The information presented is applicable to new construction and, in ventilation system, you may be the first person called upon to perform your own many instances, retrofit construction. “balancing act” when the exhaust hood doesn’t work. Unlike a cooking appliance, The audience for this guideline is which can be isolated for troubleshooting, the exhaust hood is only one component kitchen designers, mechanical engi- of the kitchen ventilation system. To further complicate things, the CKV system is a neers, food service operators, prop- subsystem of the overall building heating, ventilating and air-conditioning (HVAC) erty managers, and maintenance people. This guide is intended to system. Fortunately, there is no “magic” to the relationship between an exhaust hood augment comprehensive design in- and its requirement for replacement or makeup air (MUA). The physics are simple: formation published in the Kitchen air that exits the building (through exhaust hoods and fans) must be replaced with Ventilation Chapter in the ASHRAE outside air that enters the building (intentionally or otherwise). The essence of air Handbook on HVAC Applications.
    [Show full text]
  • Introduction to Ventilation & Indoor Air Quality
    INTRODUCTION TO VENTILATION & INDOOR AIR QUALITY INTRODUCTION TO VENTILATION & INDOOR AIR QUALITY PRESENTED BY: Eng. Shehab S. Bekhet INTRODUCTION TO VENTILATION & INDOOR AIR QUALITY How much time - %, do we spend indoors?? 2 INTRODUCTION TO VENTILATION & INDOOR AIR QUALITY We Spend 90% of Our Time Indoors! ! 3 INTRODUCTION TO VENTILATION & INDOOR AIR QUALITY 4 INTRODUCTION TO VENTILATION & INDOOR AIR QUALITY Shehab Bekhet Senior Mechanical Engineer Dar Al Handasah More than 27 years of various experience, gained throughout long career path covers wide and diversified fields and ranges of responsibilities combining design, construction and technical back-up skills. The range of mechanical works cover preliminary & detailed design, preparation of specification and tender documents, follow up, approval of shop drawings and project management and construction supervision of building services including HVAC, plumbing, fire protection, building automation and control systems. Successfully contributed to design and construction of several large projects in more than 12 countries in the Gulf Area, Middle East, and Africa, such as: • Dubai International Airport- UAE • Higher College for Men & Women- UAE • Development of King Abdul Aziz Endowment for the Two Holy Mosques. • Al Hassa & Al Dammam Hospital – Saudi Arabia • Rafik Al Hariri Airport – Lebanon • Sheraton Hotel Rehabilitation – Egypt. A keynote speaker and administered many of training courses and seminars in various topics of HVAC systems. INTRODUCTION TO VENTILATION & INDOOR AIR QUALITY 6 INTRODUCTION TO VENTILATION & INDOOR AIR QUALITY Introductory Film Indoor Ar Quality INTRODUCTION TO VENTILATION & INDOOR AIR QUALITY 8 INTRODUCTION TO VENTILATION & INDOOR AIR QUALITY The presentation covers the following main items: Indoor Air Quality, (IAQ): . Definition. Common Pollutants and health effect.
    [Show full text]
  • Key Factors and Problems in the Performance of Kitchen Ventilation Systems Explorative Review Study
    FACULTY OF ENGINEERING AND SUSTAINABLE DEVELOPMENT Department of Building Engineering, Energy Systems and Sustainability Science Key factors and problems in the performance of kitchen ventilation systems Explorative review study Álvaro Ros Hueda 2020 Student thesis, Advanced level (Master degree, one year), 15 HE Energy Systems Master Programme in Energy Systems Supervisor: Alan Kabanshi Assistant supervisor: Roland Forsberg Examiner: Magnus Mattsson ABSTRACT Regarding the great importance of a good working environment, in this research, ventilation systems installed in kitchens of restaurants were studied in order to avoid problems and to understand the key factors that can influence on the performance of the system. The results obtained were taken into account to provide some recommendations to a real ventilation system of a restaurant called Pastaria in Gävle (Sweden). This concrete ventilation system was not performing good, and some calculations based on the kitchen design were made trying to offset the problem. A large number of scientific studies related to restaurant kitchen hoods and ventilation systems were used to get the findings. These articles were obtained from scholar web databases. The main problem found in kitchen hoods is the inadequate exhaust airflow. The minimum required airflow varies depending on the size and shape of the hood. Keil et al. (2004) found in their research that only 39% and 24% of the studied hoods met the minimum recommended airflow from ACGIH and ASHRAE guidelines, respectively. Other key factors found are related to the kitchen design. The kitchen hood is recommended to have incorporated a capture hood covering all the burners. Side panels can be employed to increase the capture and containment.
    [Show full text]
  • Integrating Kitchen Exhaust Systems with Building HVAC – 07.22.09 2 Ventilation
    Design Guide 3 Improving Commercial Kitchen Ventilation System Performance Integrating Kitchen Exhaust Systems with Building HVAC The Opportunity: Reduce Utility Costs and Improve This design guide provides information that may help achieve optimum perfor- Kitchen Comfort mance and energy efficiency in com- mercial kitchen ventilation systems by The replacement air required for commercial kitchen ventilation systems integrating kitchen exhaust with building HVAC. The information presented is is always 100% of the exhaust air—what goes out must come in! A common applicable to new construction and, in some instances, retrofit construction. design practice is to supply at least 80% of replacement air using an independent The audience for this guideline is kitch- en designers, mechanical engineers, makeup air unit (MAU) with the remaining 20% supplied by conditioned outside code officials, food service operators, air from heating, ventilating, and air-conditioning (HVAC) roof-top units (RTU) property managers, and maintenance people. The building code analysis is serving the kitchen and/or by transfer air from adjacent spaces. This keeps the focused on California’s Title 24. This guide is intended to augment compre- kitchen under a negative pressure (relative to the dining room) to prevent cook- hensive design information published in the Kitchen Ventilation Chapter in the ing odors from migrating into the dining area. In many climates the replacement ASHRAE Handbook on HVAC Applica- tions, as well as companion publications air from an independent makeup air unit is not conditioned, which may create under the design series subtitled Im- uncomfortable conditions (too cold and/or too hot) in the kitchen.
    [Show full text]
  • Kitchen Ventilation Systems: Part 2 Providing Adequate Makeup Air
    The Pennsylvania Housing Research Center Kitchen Ventilation Systems: Part 2 Providing Adequate Makeup Air Builder Brief: April 2012 Anthony C. Jellen, PE & Brian M. Wolfgang, EIT, Michael A. Turns, MS INTRODUCTION and require larger exhaust systems leading to higher The first Builder Brief of this two-part series operation costs, and increased risk of house discussed the relationship between kitchen exhaust depressurization and associated hazards. In addition, rates, house tightness, and house depressurization. every cubic foot of exhausted air is a cubic foot of That brief also provided an overview of the health makeup air that must be heated or cooled at the and safety hazards associated with house homeowner’s expense. depressurization and the presence of combustion appliances. The required exhaust rate for standard, low-powered, residential kitchen ranges is typically specified per In this brief, we provide design guidance for linear foot of range. Table 1 shows recommended introducing makeup air for a residential kitchen exhaust rate per linear foot (LF), according to the exhaust system using three common techniques: (1) Home Ventilating Institute (HVI). engineered openings, (2) HVAC-integrated air Table 1. HVI recommended and minimum ventilation systems, and (3) dedicated makeup air units. We will rates for kitchen range hoods. also discuss common design practices for meeting the interlocking and closure requirements of the LOCATION Rec. Vent. Rate Min. Vent. Rate 2009 International Residential Code (IRC) Section per LF of Range per LF of Range M1503.4. Wall 100 CFM 40 CFM Island 150 CFM 50 CFM PROPER RANGE EXHAUST SELECTION Kitchens that contain high-powered, commercial- The objective of a kitchen range exhaust system is to style cooking equipment will require a higher capture moisture and airborne contaminants created exhaust rate.
    [Show full text]
  • Ventilation Solutions by Fantech
    Ventilation Solutions 2020 At Fantech, we do much more than make fans. We are committed to making products that support healthy and comfortable indoor environments. Our high-efficiency products ensure your loved ones breathe fresh, clean air from this moment to the next. fantech “ “ TABLE OF CONTENTS 8 Fresh Air for Single and Multi-Family Home • Single family home • Training endless pool • Condominiums • Hair salon • Crawlspace • She-shed • Indoor pool 24 Filtration • Whole-house filtration • Fresh Air Appliance • Mini-split IAQ Pre-filter 32 Kitchen Ventilation • Makeup air for residences • Kitchen exhaust • Makeup air for communal kitchens • Food prep exhaust 42 Bathroom Ventilation At Fantech, we're • Guest bathroom • Commercial restroom • Single-bath • Home spa not just building • Multi-bath • Public restrooms “ fans, we're 56 62 Residential Laundries Garage Ventilation building solutions 68 Radon Mitigation and opportunities • Active soil depressurization system for a healthier, • Dilution solution safer tomorrow. 74 78 Back Bedroom Attic Ventilation Don't be shy! Help us Fantech now offers the ability to register products for exciting help YOU! perks and benefits. Register your products in minutes registration.fantech.app Registering your product helps Fantech continue improving future product offerings and your customer experience. fantech 8 | | 9 Fresh Air Thanks to space-age technology, your home can keep inside in and outside out more efficiently than ever before. But locking the fresh air out is a bad idea. A fresh air appliance by Fantech will allow you to bring it all in without sacrificing the energy your home worked so hard to produce. Single Family .................................... 10 Condominiums ................................
    [Show full text]
  • Dr. Andrey Livchak, Director of Global R&D
    Dr. Andrey Livchak, Director of Global R&D Halton Group Foodservice Division ASHRAE is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of Completion for non-AIA members are available on request. This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation. Approved for: 1 General CE hours Energy Efficient Solutions for Commercial Kitchen Ventilation 0 By Dr. Andrey Livchak LEED-specific hours GBCI cannot guarantee that course sessions will be delivered to you as submitted to GBCI. However, any course found to be in violation of the standards of the program, or otherwise contrary to the mission of GBCI, shall be removed. Your course evaluations will help us uphold these standards. Course ID: 0920002608 6 Course Description Energy Efficient Solutions for Commercial Kitchen Ventilation Restaurants have the highest energy intensity among buildings in the commercial sector. They contribute over 500 trillion Btu to the U.S. annual energy consumption. This course will give practical recommendations how to reduce energy consumption of a foodservice facility by up to 50% and improve its indoor environmental quality. It will also give recommendations how to improve efficiency of existing commercial kitchens.
    [Show full text]
  • Kitchen Ventilation and Indoor Air Quality Staff Slides
    DOCKETED Docket Number: 19-BSTD-03 Project Title: 2022 Energy Code Pre-Rulemaking TN #: 235050 Document Title: Kitchen ventilation and indoor air quality staff slides This file contains the presentation given by Energy Commission Description: staff at the September 30, 2020 hearing and panel discussion on kitchen ventilation, indoor cooking, and indoor air quality. Filer: Peter Strait Organization: California Energy Commission Submitter Role: Commission Staff Submission Date: 10/6/2020 12:59:52 AM Docketed Date: 10/6/2020 Commissioner Hearing on Indoor Cooking, Ventilation, and Indoor Air Quality Pre-Rulemaking Hearing and Panel Discussion Presenters: Peter Strait, Supervisor, Standards Development Date: September 30, 2020 Background • Recent advances in the understanding of pollutants generated by indoor cooking, including research published by UCLA and by Lawrence Berkeley National Laboratory (LBNL), have called into question the sufficiency of existing kitchen ventilation standards. • Several public advocates, including the Sierra Club, have requested a hearing based on these studies and a summarizing paper published by the Rocky Mountain Institute. • A portion of LBNL’s research characterizing the capture efficiency of range hoods led to development of the ASTM E3087 test standard. The ASHRAE 62.2 Range Hood Working Group made recommendations for development of Home Ventilating Institute (HVI) rating procedures based on this new standard, resulting in HVI 917. 2 Problem Statement • Pollutants resulting from indoor cooking activities, including nitrogen oxides, carbon monoxide, and fine particulates, can reach levels that affect human health. • Minimum standards for kitchen ventilation, and specifically for kitchen range hoods, may not reduce the risk of exposure to harmful amounts of these pollutants to a sufficient degree.
    [Show full text]
  • A31 SI: Kitchen Ventilation
    Related Commercial Resources CHAPTER 31 KITCHEN VENTILATION Cooking Effluent ...................................................................... 31.1 System Integration and Balancing ......................................... 31.18 Exhaust Hoods ......................................................................... 31.2 Energy Considerations........................................................... 31.21 Exhaust Systems....................................................................... 31.9 Fire Protection ....................................................................... 31.22 Replacement (Makeup) Air Operation and Maintenance .................................................. 31.25 Systems ............................................................................... 31.13 Residential Kitchen Ventilation.............................................. 31.27 ITCHEN ventilation is a complex application of HVAC sys- ventilation. However, heat radiated to the space from the appliance K tems. System design includes aspects of air conditioning, fire is largely unaffected by ventilation and must be addressed by the safety, ventilation, building pressurization, refrigeration, air distri- space air-conditioning system. Chapter 30 of the 2005 ASHRAE bution, and food service equipment. Kitchens are in many buildings, Handbook—Fundamentals lists typical space heat gain values for including restaurants, hotels, hospitals, retail malls, single- and many commercial kitchen appliances. multifamily dwellings, and correctional facilities.
    [Show full text]
  • Residential Kitchen Ventilation - a Guide for the Specifying Engineer
    AN-92-16-1 RESIDENTIAL KITCHEN VENTILATION - A GUIDE FOR THE SPECIFYING ENGINEER D.W. Wolbrink J.R. Sarnosky, P.E. Member ASHRAE ABSTRACT The hood provided an inverted sump to capture the convective flow and the fan extracted the captured air. It r The evolution of residential kitchen ventilation is actually worked well and revolutionized residential kitchen examined a/Id the importance of kitchen range hoods in ventilation. today's ventilation systems is reviewed as an aid to the Today's powered residential range hood came into specifying engineer. Home cooking produces liquid a/Id being when engineers unitized the hood, putting the fan solid particles, odors, airborne moisture, heat, and inside the hood at the factory, so their company could sell sometimes gas combustion products. How the residential one product where before they had sold two. With the range hood handles these problems is revealed, and the addition of an effective light for the cooking surface, the results of various testing programs are given. The proper present standard configuration of the product appeared. application of range hoods relative to sizing, room Ductless hoods, althoughnotventilatingdevices, must location, a/Id proper ductwork is discussed. 1he rating be mentioned as part of kitchen ventilation history. They methods a/Id standards for hoods are explained and appeared on the scene just after the Nautilus submarine related to real life. The issues of range hood noise and traveled under tlie polar ice cap in the 1950s. There was energy conservation are reviewed a/Id answers are great public awareness of the use of activated carbon provided on how to ha/Idle these issues.
    [Show full text]
  • Kitchen Ventilation Should Be High Performance (Not Optional)
    Kitchen Ventilation Should be High Performance (not Optional) Brett C. Singer Residential Building Systems & Indoor Environment Groups Lawrence Berkeley National Laboratory Building America Technical Update Denver, CO April 30, 2013 Acknowledgements PROGRAM SUPPORT •U.S. Department of Energy – Building America Program •U.S. Environmental Protection Agency – Indoor Environments Division •U.S. Department of Housing and Urban Development – Office of Healthy Homes & Lead Hazard Control •California Energy Commission – Public Interest Energy Research Program TECHNICAL CONTRIBUTIONS •Woody Delp, Tosh Hotchi, Melissa Lunden, Nasim Mullen, Chris Stratton, Doug Sullivan, Iain Walker Kitchen Ventilation Simplified PROBLEM: • Cooking burners & cooking produce odors, moisture and pollutants SOLUTION: • Install and use extra exhaust ventilation in kitchen OPTIMAL SOLUTION: • Effective, low-energy and quiet range hoods that operate automatically as needed What do we want from our range hoods? • Remove smoke as needed • Enhance kitchen aesthetics • Remove odors & moisture • Affordable • Remove pollutants from burners and cooking • Quiet, low-power operation • Automatic operation What do we NOT want? • Fire • Noise • Maintenance • Bad aesthetics • Higher energy bills • Depressurization-induced backdrafting of natural draft appliances Pollutants from burners and cooking • Gas burners • Moisture & CO2 • NO and formaldehyde Experimental Evaluation of Pollutant 2 Emissions From Residential Appliances • Ultrafine particles & CO Singer et al., LBNL-2897E •
    [Show full text]