Igneous Rocks: a Classification and Glossary of Terms

Total Page:16

File Type:pdf, Size:1020Kb

Igneous Rocks: a Classification and Glossary of Terms This page intentionally left blank IGNEOUS ROCKS: A CLASSIFICATION AND GLOSSARY OF TERMS Decades of field and microscope studies and more recent quantitative geo- chemical analyses have resulted in a vast, and sometimes overwhelming, array of nomenclature and terminology associated with igneous rocks. Under the auspices of the International Union of Geological Sciences (IUGS), a group of petrologists from around the world has laboured for more than 30 years to collate these terms, gain international agreement on their usage, and reassess the methods by which we categorize and name igneous rocks. This book presents the results of their work and gives a complete classifi- cation of igneous rocks based on all the recommendations of the IUGS Sub- commission on the Systematics of Igneous Rocks. Revised from the 1st edition (1989), it shows how igneous rocks can be distinguished in the sequence of pyroclastic rocks, carbonatites, melilite-bearing rocks, kalsilite-bearing rocks, kimberlites, lamproites, leucite-bearing rocks, lamprophyres and charnockites. It also demonstrates how the more common plutonic and volcanic rocks that remain can then be categorized using the familiar and widely accepted modal QAPF and chemical TAS classification systems. The glossary of igneous terms has been fully updated since the 1st edition and now includes 1637 entries, of which 316 are recommended by the Subcommission, 312 are regarded as local terms, and 413 are now considered obsolete. Incorporating a comprehensive list of source references for all the terms included in the glossary, this book will be an indispensable reference guide for all geologists studying igneous rocks, either in the field or the laboratory. It presents a standardized and widely accepted naming scheme that will allow geologists to interpret terminology found in the primary literature and provide formal names for rock samples based on petrographic analyses. Work on this book started as long ago as 1958 when Albert Streckeisen was asked to collaborate in revising Paul Niggli’s well-known book Tabellen zur Petrographie und zum Gesteinbestimmen (Tables for Petrography and Rock Determination). It was at this point that Streckeisen noted significant problems with all 12 of the classification systems used to identify and name igneous rocks at that time. Rather than propose a 16th system, he chose instead to write a review article outlining the problems inherent in classifying igneous rocks and invited petrologists from around the world to send their comments. In 1970 this lead to the formation of the Subcommission of the Systematics of Igneous Rocks, under the IUGS Commission on Petrology, who published their conclusions in the 1st edition of this book in 1989. The work of this international body has continued to this day, lead by Bruno Zanettin and later by Mike Le Bas. This fully revised 2nd edition has been compiled and edited by Roger Le Maitre, with significant helpfrom a panelof co-contributors. IGNEOUS ROCKS A Classification and Glossary of Terms Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks R.W. LE MAITRE (EDITOR), A. STRECKEISEN, B. ZANETTIN, M.J. LE BAS, B. BONIN, P. BATEMAN, G. BELLIENI, A. DUDEK, S. EFREMOVA, J. KELLER, J. LAMEYRE, P.A. SABINE, R. SCHMID, H. SØRENSEN, A.R. WOOLLEY Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge , United Kingdom Published in the United States by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521662154 © R.W. Le Maitre & International Union of Geological Sciences 2002 This book is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2002 ISBN-13 978-0-511-06864-5 eBook (EBL) ISBN-10 0-511-06864-6 eBook (EBL) ISBN-13 978-0-521-66215-4 hardback ISBN-10 0-521-66215-X hardback Cambridge University Press has no responsibility for the persistence or accuracy of s for external or third-party internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. v Contents Figures ...................................................................................................................................... vi Tables ....................................................................................................................................... vii Albert Streckeisen ..................................................................................................................viii Foreword to 1st edition.............................................................................................................. x Chairman’s Preface .................................................................................................................xiii Editor’s Preface ....................................................................................................................... xv 1 Introduction ........................................................................................................................... 1 1.1 Changes to the 1st edition ............................................................................................. 1 2 Classification and nomenclature............................................................................................ 3 2.1 Principles ...................................................................................................................... 3 2.1.1 Parameters used .................................................................................................... 4 2.1.2 Nomenclature ....................................................................................................... 4 2.1.3 Using the classification ........................................................................................ 6 2.2 Pyroclastic rocks and tephra ......................................................................................... 7 2.2.1 Pyroclasts ............................................................................................................. 7 2.2.2 Pyroclastic deposits .............................................................................................. 7 2.2.3 Mixed pyroclastic–epiclastic deposits .................................................................. 8 2.3 Carbonatites ................................................................................................................ 10 2.4 Melilite-bearing rocks ................................................................................................. 11 2.4.1 Melilitolites ........................................................................................................ 11 2.4.2 Melilitites ........................................................................................................... 11 2.5 Kalsilite-bearing rocks ................................................................................................ 12 2.6 Kimberlites.................................................................................................................. 13 2.6.1 Group I kimberlites ............................................................................................ 13 2.6.2 Group II kimberlites ........................................................................................... 14 2.7 Lamproites .................................................................................................................. 16 2.7.1 Mineralogical criteria ......................................................................................... 16 2.7.2 Chemical criteria ................................................................................................ 16 2.7.3 Nomenclature ..................................................................................................... 16 2.8 Leucite-bearing rocks ................................................................................................. 18 2.9 Lamprophyres ............................................................................................................. 19 2.10 Charnockitic rocks .................................................................................................... 20 2.11 Plutonic rocks............................................................................................................21 2.11.1 Plutonic QAPF classification (M < 90%) ........................................................ 21 2.11.2 Ultramafic rocks (M > 90%) ............................................................................ 28 2.11.3 Provisional “field” classification ...................................................................... 29 2.12 Volcanic rocks ........................................................................................................... 30 2.12.1 Volcanic QAPF classification (M < 90%)........................................................ 30 2.12.2 The TAS classification ..................................................................................... 33 2.12.3 Provisional “field” classification ...................................................................... 39 2.13 References ................................................................................................................
Recommended publications
  • Multiple Sources for Tephra from AD 1259 Volcanic Signal in Antarctic Ice
    Multiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores Biancamaria Narcisi, Jean Robert Petit, Barbara Delmonte, Valentina Batanova, Joel Savarino To cite this version: Biancamaria Narcisi, Jean Robert Petit, Barbara Delmonte, Valentina Batanova, Joel Savarino. Mul- tiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores. Quaternary Science Reviews, Elsevier, 2019, 210, pp.164-174. 10.1016/j.quascirev.2019.03.005. hal-02350371 HAL Id: hal-02350371 https://hal.archives-ouvertes.fr/hal-02350371 Submitted on 25 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manuscript Details Manuscript number JQSR_2019_21 Title MULTIPLE SOURCES FOR TEPHRA FROM AD 1259 VOLCANIC SIGNAL IN ANTARCTIC ICE CORES Abstract Strong volcanic signals simultaneously recorded in polar ice sheets are commonly assigned to major low-latitude eruptions that dispersed large quantities of aerosols in the global atmosphere with the potential of inducing climate perturbations. Parent eruptions responsible for specific events are typically deduced from matching to a known volcanic eruption having coincidental date. However, more robust source linkage can be achieved only through geochemical characterisation of the airborne volcanic glass products (tephra) sometimes preserved in the polar strata.
    [Show full text]
  • Open-File Report 2005-1235
    Prepared in cooperation with the Idaho Geological Survey and the Montana Bureau of Mines and Geology Spatial databases for the geology of the Northern Rocky Mountains - Idaho, Montana, and Washington By Michael L. Zientek, Pamela Dunlap Derkey, Robert J. Miller, J. Douglas Causey, Arthur A. Bookstrom, Mary H. Carlson, Gregory N. Green, Thomas P. Frost, David E. Boleneus, Karl V. Evans, Bradley S. Van Gosen, Anna B. Wilson, Jeremy C. Larsen, Helen Z. Kayser, William N. Kelley, and Kenneth C. Assmus Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government Open-File Report 2005-1235 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia 2005 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Contents Abstract .......................................................................................................................................................... 1 Introduction
    [Show full text]
  • Petrography and Physicomechanical Properties of Rocks from the Ambela Granitic Complex, NW Pakistan
    Hindawi Publishing Corporation The Scientific World Journal Volume 2013, Article ID 349381, 8 pages http://dx.doi.org/10.1155/2013/349381 Research Article Petrography and Physicomechanical Properties of Rocks from the Ambela Granitic Complex, NW Pakistan Mohammad Arif,1 S. Wajid Hanif Bukhari,2 Noor Muhammad,3 and Muhammad Sajid1 1 Department of Geology, University of Peshawar, Peshawar 25120, Pakistan 2 Centre of Excellence in Mineralogy, University of Balochistan, Quetta 87300, Pakistan 3 Department of Mining Engineering, NWFP University of Engineering and Technology, Peshawar 25120, Pakistan Correspondence should be addressed to Mohammad Arif; arif [email protected] Received 17 April 2013; Accepted 11 May 2013 Academic Editors: M. Gregoire,N.Hirao,J.A.Morales,L.Tosi,andJ.Yvon´ Copyright © 2013 Mohammad Arif et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Petrography and physicomechanical properties of alkali granites, alkali quartz syenite, and nepheline syenite from Ambela, NW Pakistan, have been investigated. Whereas the alkali quartz syenite and most of the alkali granites are megaporphyritic, the nepheline syenite and some of the alkali granites are microporphyritic. Their phenocryst shape and size and abundance of groundmass are also different. The values of unconfined compressive strength (UCS) are the lowest and highest for megaporphyritic alkali granite and alkali quartz syenite, respectively. However, all the four rock types are moderately strong. Correspondingly, their specific gravity and water absorption values are within the permissible range for use as construction material. The UCS for the alkali quartz syenite is the highest, most probably because (i) it has roughly equal amounts of phenocryst and groundmass, (ii) it displays maximum size contrast between phenocryst and groundmass, (iii) its phenocrysts are highly irregular, and (iv) it contains substantial amounts of quartz.
    [Show full text]
  • Package 'NORRRM'
    Package ‘NORRRM’ March 11, 2015 Type Package Title Geochemical Toolkit for R Version 1.0.0 Date 2015-01-29 Author Renee Gonzalez Guzman Maintainer Renee Gonzalez Guzman <[email protected]> Imports ggplot2,SDMTools Description CIPW Norm (acronym from the surnames of the authors: Cross, Iddings, Pirrson and Washington) is the most commonly used calculation algorithm to estimate the standard mineral assemblages for igneous rocks from its geochemical composition. NORRRM (acronym from noRm, R lan- guage and Renee) is the highly consistent program to calculate the CIPW Norm. Depends R (>= 3.1.1) License GPL (>= 3) NeedsCompilation no Repository CRAN Date/Publication 2015-03-11 21:49:49 R topics documented: NORRRM-package . .2 AdjRock . .3 Andes . .4 AtomWeight . .5 CIPW............................................6 CIPW.trace . .7 MinWeight . .9 OxiWeight . 10 TASplot . 11 TestTAS . 12 Index 13 1 2 NORRRM-package NORRRM-package Geochemical Toolkit for R Description According to the IUGS (International Union of Geological Science), Subcommission on the Sys- tematics of Igneous Rocks, the primary classification of igneous rocks must be based according to their modal mineral composition, expressed in volume percent. Nevertheless, where these data are not available or can not be determined owing to fine-grained mineral assemblage, glassy content or changes in the original mineralogy, then other criteria based on chemical bulk composition may be used. Computed from the chemical composition, the normative mineralogy is an alternative approach for mineralogical classification and useful for set up the naming of igneous rocks (as parts of the TAS classification, TASplot). The CIPW Norm is the most commonly used calculation algorithm to estimate the standard mineral assemblages for igneous rocks CIPW, generated over more than a hundred years ago and thereafter modified by some authors to the passage of the years (e.g., Verma et al., 2002).
    [Show full text]
  • Formation of the Yosemite Creek Granodiorite: a Field and Geochemical Study
    Formation of the Yosemite Creek Granodiorite: a field and geochemical study 14 12 10 8 6 4 15 2 14 phonolite0 13 40 50 60 70 80 12 tephri- trachyte (q<20%) phonolite 11 trachydacite (q>20%) foidite 10 phono- tephrite trachy- 9 andesite rhyolite 8 tephrite ba sa ltic (ol<10%) trachy- 7 andesite basanite trachy- 6 (ol>10%) basalt 5 4 dacite 3 asalt andesite b ba sa ltic 2 picro- andesite basalt 1 0 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 1000 syn-COLG WPG 100 10 VAG 250 1 200 1 10 100 1000 150 100 50 0 0 500 1000 1500 2000 by Erik Bliekendaal Master of Science Thesis Solid Earth Vrije Universiteit Amsterdam 2012 [..] Preface My personal interests in geology developed towards the debate of crust-mantle differentiation during my master. The processes involved in crust-mantle differentiation makes the Earth as it is nowadays. The scale of this phenomena exceed all human proportions with a time-scale that spans the complete history of Earth and will continue far into the future. Length and depth scales of the crust-mantle processes are immense with respect to human proportions. I feel it to be a honour to work with and attribute to such a important and interesting subject. The scientific debate is firm and spreads over a numerous geological disciplines. In my opinion the most interesting of these disciplines are the petrology and geochemistry. Especially the debate with respect to these disciplines is heated and firm due to new geochemical analytical techniques.
    [Show full text]
  • Petrography Edward F
    Chapter 4 Petrography Edward F. Stoddard A petrographic study was taken in order to help determine the sources of lithic artifacts found at archaeological sites on Fort Bragg. In the first phase of the study, known and suspected archaeological quarry sites in the central Piedmont of North Carolina were visited. From each quarry, hand specimens were collected and petrographic thin sections were examined in an attempt to establish a basis for distinguishing among the quarries. If material from each quarry was sufficiently distinctive, then quarry sources could potentially be matched with Fort Bragg lithic artifacts. Seventy-one samples from 12 quarry zones were examined (Table 4.1). Thirty- one of these samples are from five quarry zones in the Uwharrie Mountains region; 20 of these were collected and described previously by Daniel and Butler (1996). Forty specimens were collected from seven additional quarry zones in Chatham, Durham, Person, Orange, and Cumberland Counties. All quarries are within the Carolina Terrane, except the Cumberland County quarry, which occurs in younger sedimentary material derived primarily from Carolina Terrane outcrops. Rocks include both metavolcanic and metasedimentary types. Compositionally, most metavolcanic rocks are dacitic and include flows, tuffs, breccias, and porphyries. Metasedimentary rocks are metamudstone and fine metasandstone. The Uwharrie quarries are divided into five zones: Eastern, Western, Southern, Asheboro, and Southeastern. The divisions are based primarily on macroscopic petrography and follow the results of Daniel and Butler (1996); the Uwharries Southeastern zone was added in this study. Each of the Uwharrie quarry zones represents three to six individual quarries in relatively close proximity. Rock specimens are all various felsic metavolcanic rocks, but zones may be distinguished based upon mineralogy and texture.
    [Show full text]
  • IQUAME[Text Eingeben] 2500
    IQUAME[Text eingeben] 2500 Review of the 1 : 2.5 Million International Quaternary Map of Europe BGR & UNESCO, 1995 Working Paper GENERAL INFORMATION AND GUIDELINES FOR THE REVIEW July 2014 / actualised March 2019 Asch, K., Gdaniec, P., Müller, A. [Text eingeben] [IQUAME - GUIDELINES FOR THE REVIEW] Contact Dr. Kristine Asch, Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) Federal Institute for Geosciences and Natural Resources Stilleweg 2, 30655 Hannover, Germany Phone: 0049 (0) 511 643 3324 E-mail: [email protected] 2 Contact IQUAME 2500 – Tentative roadmap | [IQUAME - GUIDELINES FOR THE REVIEW] Foreword Review of the 1 : 2.5 Million International Quaternary Map of Europe (IQUAME 2500) The international cooperation within Europe is a long standing policy of BGR as of many other European geological surveys, and particularly well established for projects under the umbrella of organisations such as CGMW, UNESCO, INQUA, EUG and IUGS. Geology does not know about political boundaries. Accordingly, working on geosciences projects is often cross-boundary and the resulting data ought to display the underlying geology without state border related unconformities. An integrated knowledge of geology and a Europe-wide understanding of the subsurface is value added to both the use and the protection of natural resources. This applies equally to mineral and energy resources as well as to groundwater and soil. A broad, integrated cross-boundary approach towards the 1 : 2.5 Million International Quaternary Map of Europe (IQUAME 2500) and the updating of its underlying information and data promotes the cohesion of research on and exploration of natural resources. Thank you for participating in this joint project.
    [Show full text]
  • (Kamafugitic/Leucititic) and –Free (Lamproitic) Ultrapotassic Rocks and Associated Shoshonites from Italy: Constraints on Petrogenesis and Geodynamics
    Leucite-bearing (kamafugitic/leucititic) and –free (lamproitic) ultrapotassic rocks and associated shoshonites from Italy: constraints on petrogenesis and geodynamics Sandro Conticelli, Marinella A. Laurenzi, Guido Giordano, Massimo Mattei, Riccardo Avanzinelli, Leone Melluso, Simone Tommasini, Elena Boari, et al Journal of the Virtual Explorer, Electronic Edition, ISSN 1441-8142, volume 36, paper 20 In: (Eds.) Marco Beltrando, Angelo Peccerillo, Massimo Mattei, Sandro Conticelli, and Carlo Doglioni, The Geology of Italy: tectonics and life along plate margins, 2010. Download from: http://virtualexplorer.com.au/article/2010/251/ultrapotassic-and-related-volcanic-rocks-in- italy Click http://virtualexplorer.com.au/subscribe/ to subscribe to the Journal of the Virtual Explorer. Email [email protected] to contact a member of the Virtual Explorer team. Copyright is shared by The Virtual Explorer Pty Ltd with authors of individual contributions. Individual authors may use a single figure and/or a table and/or a brief paragraph or two of text in a subsequent work, provided this work is of a scientific nature, and intended for use in a learned journal, book or other peer reviewed publication. Copies of this article may be made in unlimited numbers for use in a classroom, to further education and science. The Virtual Explorer Pty Ltd is a scientific publisher and intends that appropriate professional standards be met in any of its publications. Journal of the Virtual Explorer, 2010 Volume 36 Paper 20 http://virtualexplorer.com.au/ Leucite-bearing (kamafugitic/leucititic) and –free (lamproitic) ultrapotassic rocks and associated shoshonites from Italy: constraints on petrogenesis and geodynamics Sandro Conticelli 1. Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via Giorgio La Pira, 4, I-50121, Firenze, Italy.
    [Show full text]
  • Chemical Classification of Common Volcanic Rocks Based on Degree of Silica Saturation and Cao/K2O Ratio
    An Acad Bras Cienc (2021) 93(3): e20201202 DOI 10.1590/0001-3765202120201202 Anais da Academia Brasileira de Ciências | Annals of the Brazilian Academy of Sciences Printed ISSN 0001-3765 I Online ISSN 1678-2690 www.scielo.br/aabc | www.fb.com/aabcjournal GEOSCIENCES Chemical classifi cation of common Running title: CHEMICAL volcanic rocks based on degree of CLASSIFICATION OF VOLCANIC ROCKS silica saturation and CaO/K2O ratio JOÃO O.S. SANTOS & LÉO A. HARTMANN Academy Section: GEOSCIENCES Abstract: Modal classifi cations of common volcanic rocks are expensive, diffi cult, or impossible to attain. As a consequence, these rocks are classifi ed using the chemical e20201202 composition. However, existing classifi catory diagrams are unable to identify all 16 families of common volcanic rocks; the most used is the total alkali-silica (TAS) diagram that identifi es six families. Rocks not in the TAS diagram are misclassifi ed with other 93 rock names; their names are evolving to extinction, e.g. latite and rhyodacite. Some (3) diagrams use Na O, which is a complicating element rather than discriminant. Na O is 93(3) 2 2 present both in alkali feldspar and plagioclase making diffi cult the separation of the DOI amount associated to either feldspar. Silicon, potassium, and calcium are the three 10.1590/0001-3765202120201202 major elements with highest variations among volcanic rocks. They are selected for use in two new diagrams confronting CaO/K2O ratio with K2O content (KCK diagrams). One diagram is designed for saturated (intermediate) rocks (quartz <5 vol.%) and the other for oversaturated (acid) volcanic rocks (quartz >5%).
    [Show full text]
  • Petrology of the High-Mg Tonalites and Dioritic Enclaves of the Ca. 2130Ma
    Precambrian Research 238 (2013) 18–41 Contents lists available at ScienceDirect Precambrian Research journal homepage: www.elsevier.com/locate/precamres Petrology of the high-Mg tonalites and dioritic enclaves of the ca. 2130 Ma Alto Maranhão suite: Evidence for a major juvenile crustal addition event during the Rhyacian orogenesis, Mineiro Belt, southeast Brazil a,∗ b,c,d Luıs´ Antonioˆ Rosa Seixas , Jacques-Marie Bardintzeff , d b Ross Stevenson , Bernard Bonin a Departamento de Geologia, Universidade Federal de Ouro Preto, Morro do Cruzeiro, CEP 35400-000 Ouro Preto, Brazil b Université Paris-Sud, Laboratoire IDES, UMR8148, F-91405 Orsay Cedex, France c Université Cergy-Pontoise, IUFM, F-95000 Cergy-Pontoise, France d GEOTOP Université du Québec à Montréal, P.O. Box 8888, Station Centre Ville, Montréal, Québec H3C 3P8, Canada a r a t b i c l e i n f o s t r a c t Article history: Combined field observations, petrography, mineral chemistry, geochemistry, Nd isotopes and U–Pb zir- Received 3 May 2013 con data are presented for the ca. 2130 Ma Alto Maranhão suite. The suite, composed by allanite-bearing Received in revised form biotite hornblende tonalites and commingled dioritic mafic magmatic enclaves (MME), occupies an esti- 16 September 2013 2 mated area of >300 km in the southern Quadrilátero Ferrífero region, Minas Gerais, Brazil. Tonalites Accepted 18 September 2013 and commingled MME are medium-K rocks, with high-Mg (Mg-number ≥ 0.46) and high-Cr (≥55 ppm) Available online 5 October 2013 contents. They are also enriched in large-ion lithophile elements (LILE, Sr, Ba), some high-field-strength elements (HFSE, Th, U), and light rare earth elements (REE), but depleted in Nb, Ta, and heavy REE.
    [Show full text]
  • Appendix: Classification and Petrogenesis of K-Rich Rocks
    Appendix: Classification and Petrogenesis of K-rich Rocks Classification and Nomenclature Potassium-rich rocks are found in several tectonic environments, including continental cratons, active subduction zones and post-collisional settings (e.g. Müller and Grove 2000). They are limited in abundance over a global scale, but are widespread in Italy. Potassium-rich rocks cover a very wide range of petrological and geochemical compositions, from alkaline to tran- sitional, from strongly undersaturated to oversaturated in silica, from ultra- basic and basic to intermediate. Mineralogical composition is even more variable, being dependent not only on the chemical composition of mag- mas but also on the pressure-temperature conditions of crystallisation (Yoder 1986). This makes rocks with similar major and trace element compositions display sometimes different mineralogical compositions (heteromorsphism). In order to overcome this problem, it is appropriate to classify potassic rocks on the basis of chemical parameters. The K2O vs. SiO2 of Peccerillo and Taylor (1976; Fig. A.1) is useful to classify rocks from arc environments, including the mildly potassic sho- shonites. The TAS diagram of Le Maitre (1989) is also useful for naming potassic and ultrapotassic rocks (Fig. A.2). In this book, nomenclature will follow, as close as possible, these diagrams. However, the extreme compositional variability which pertains to all the major petrological parameters in addition to silica and alkalis, makes K2O vs. SiO2 and TAS diagrams insufficient to express pet- rochemical affinities and variability of potassium-rich magmas. 318 Appendix: Classification and Petrogenesis of K-rich Rocks Fig. A.1. K2O vs. SiO2 classification grids for arc rocks.
    [Show full text]
  • To Mid-Alkaline Magmatism in the Eastern Sierras
    Early Carboniferous sub- to mid-alkaline magmatism in the Eastern Sierras Pampeanas, NW Argentina: A record of crustaI growth by the incorporation of mantle-derived material in an extensional setting C e, C e, CW. P.H. Alasino a.M, JA Oahlquist b.c, R.J. Pankhurstd , Galindo Casquet Rapela f, MA CM. Larrovere a.b, Fanning g • CRIIAR-CONlCET, Entre Rlos y Mendoza, 5301, Anillaco, La Rioja, Argentina b INGeReN-CENIIT-UNLaR, Av, Gob, Vemet y Aposto[ Felipe, 5300, La Rioja, Argentina c aaERRA-CONlCET-UNC, Av, Wlez Sarsfield 1611, Pab, GeoL, X5016CGA-Cordoba, Argentina d British Geological Survey, Keyworth, Nottingham NG12 SCC, United Kingdom " Depto, de Petro[ogfa y Geoqufmica - ICED (Universidad Complutense, (SIC), 28040 Madrid, Spain r GC-CONlCET-UNLP, CaUe 1 No, 644, 1900, La Plata,Argentina g Research School of Earth Sciences, The Australian National University,Canberra 0200, Australia ABSTRACT A recently discovered granitic intrusion at Cerro La Gloria in western Sierra de Famatina (NW Argentina) is representative of sub- to mid-alkaline Carboniferous magmatism in the region. The main rock type consists of microcline, quartz and plagioclase, with amphibole, magnetite, ilmenite, biotite, epidote, zircon, allanite and sphene as accessory minerals. We report a U-Pb zircon SHRIMP age for the pluton of Ma 349±3 (MSWD = 1.1), Le., Tournaisian. Whole-rock chemical composition and Nd isotope analyses are compatible with an origin by melting of older mafic material in the lower crust (ENdt between and and -0.58 +0.46 TDM values of about 1.1 Ca). The pluton is intruded by penecontemporaneous to late alkaline mafic dykes Keywords: that are classified as back-arc basalts.
    [Show full text]