Australasian Arachnology - Page 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Five New Species of the Open-Holed Trapdoor Spider Genus Aname
RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 35 010–038 (2020) DOI: 10.18195/issn.0312-3162.35.2020.010-038 Five new species of the open-holed trapdoor spider genus Aname (Araneae: Mygalomorphae: Anamidae) from Western Australia, with a revised generic placement for Aname armigera Mark S. Harvey1,2, Karl Gruber2, Mia J. Hillyer1 and Joel A. Huey1,2,3,4 1 Collections and Research, Western Australian Museum, 49 Kew Street, Welshpool, Western Australia 6106, Australia. 2 School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia. 3 Adjunct, School of Natural Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia. 4 Present address: Biologic Environmental Survey, East Perth, Western Australia 6004, Australia. Corresponding author: [email protected] ABSTRACT – The open-holed trapdoor spider genus Aname L. Koch, 1873 is widely distributed throughout Australia, and currently contains 44 named species. Using a combination of morphological and molecular data, we describe fve new species from the Wheatbelt, Mid-west and Goldfelds regions of Western Australia: A. exulans sp. nov., A. lillianae sp. nov., A. mccleeryorum sp. nov., A. phillipae sp. nov. and A. simoneae sp. nov. The female holotype of Aname armigera Rainbow and Pulleine, 1918 from near Mullewa was examined and found to belong to the genus Proshermacha Simon forming the new combination P. armigera (Rainbow and Pulleine, 1918), comb. nov. KEYWORDS: taxonomy, systematics, molecular phylogenetics urn:lsid:zoobank.org:pub:98828964-6150-465D-B5AE-1480DA0D454E INTRODUCTION Castalanelli, Framenau, Huey and Harvey, 2020, a The open-holed trapdoor spider genus Aname species from Western Australia recently described in L. -
Eg the Short Range-Endemics of the Pilbara Bioregion
Appendix 3 Supporting Technical Studies Earl Grey Lithium Project SRE and Subterranean Fauna Desktop Assessment Prepared for: Covalent Lithium January 2019 Final Report May 2017 Earl Grey SRE & Subterranean Fauna Kidman Resources Ltd Earl Grey Lithium Project SRE and Subterranean Fauna Desktop Assessment Bennelongia Pty Ltd 5 Bishop Street Jolimont WA 6014 P: (08) 9285 8722 F: (08) 9285 8811 E: [email protected] ABN: 55 124 110 167 Report Number: 298 Report Version Prepared by Reviewed by Submitted to Client Method Date Draft Anton Mittra Stuart Halse Email 31 May 2017 Final Stuart Halse Email 24 November 17 Final V2 Anton Mittra Email 14 January 2019 BEC_Mt Holland_SRE_final_V2_10i2019.docx This document has been prepared to the requirements of the Client and is for the use by the Client, its agents, and Bennelongia Environmental Consultants. Copyright and any other Intellectual Property associated with the document belongs to Bennelongia Environmental Consultants and may not be reproduced without written permission of the Client or Bennelongia. No liability or responsibility is accepted in respect of any use by a third party or for purposes other than for which the document was commissioned. Bennelongia has not attempted to verify the accuracy and completeness of information supplied by the Client. © Copyright 2015 Bennelongia Pty Ltd. i Earl Grey SRE & Subterranean Fauna Kidman Resources Ltd EXECUTIVE SUMMARY Covalent Lithium proposes to mine lithium at the Earl Grey deposit (the Proposal) approximately 100 km southeast of Southern Cross in Western Australia. This desktop review examines the likelihood that short-range endemic (SRE) invertebrates and listed terrestrial invertebrate species occur in the Proposal area and whether these species are likely to be impacted by proposed development. -
Spiders 27 November-5 December 2018 Submitted: August 2019 Robert Raven
Bush Blitz – Namadgi, ACT 27 Nov-5 Dec 2018 Namadgi, ACT Bush Blitz Spiders 27 November-5 December 2018 Submitted: August 2019 Robert Raven Nomenclature and taxonomy used in this report is consistent with: The Australian Faunal Directory (AFD) http://www.environment.gov.au/biodiversity/abrs/online-resources/fauna/afd/home Page 1 of 12 Bush Blitz – Namadgi, ACT 27 Nov-5 Dec 2018 Contents Contents .................................................................................................................................. 2 List of contributors ................................................................................................................... 2 Abstract ................................................................................................................................... 4 1. Introduction ...................................................................................................................... 4 2. Methods .......................................................................................................................... 4 2.1 Site selection ............................................................................................................. 4 2.2 Survey techniques ..................................................................................................... 4 2.2.1 Methods used at standard survey sites ................................................................... 5 2.3 Identifying the collections ......................................................................................... -
Raven, RJ 1984. a Revision of the Aname Maculata Species Group
Raven,R. J. 1984.A revision of the Anamemaculata species group(Araneae, Dipluridae) with notes on biogeography.J. ArachnoL,12:177-193. A REVISION OF THE ANAME MA CULA TA SPECIES GROUP (DIPLURIDAE, ARANEAE) WITH NOTES ON BIOGEOGRAPHY Robert1 J. Raven Queensland Museum Gregory Terrace, Fortitude Valley, Queensland ABSTRACT Thespecies of the Anamem¢culata (Hogg) species-group (previously Chenistonia) are revised. The type species, Chenistonlamaculara Hogg, and C trevallynia Hickmanare diagnosed.Five new species: A. caeruleomontana,A. earrhwatchorum,A. hiekmani,A. montanaand A. tropica, are described. Asmost of these species possess a serrula, absent in manyother species of Aname,the groupis of phylo~eneticsignificance. Becausethe groupoccurs in discontinuousmontane talnforests fromnorthern Queensland to Tasmania,it is also of biogeographicinterest. INTRODUCTION The Anamemaculata species group includes someof those species previously included in Chenistonia which Raven (1981) considered monophyletic. Although the species have revised lack a synapomorphythey remain a coherent taxonomicunit. Males of all species have a moderately short embolus on the palp and the first metatarsus is not usually as incrassate as that of the A. pallida species group. Twopreviously described species, Anamemaculata (Hogg) and Anametrevallynia (Hickman), are included in the group present. The male of "Chenistonia tepperi’ Hogg[presumably that described by Rainbow and PuUeine(1918) as Chenistonia major Hoggand placed by Main (1972) in Stanwellia] is being revised by Mainas part of the very complex’Chenistonia tepperi’ species group. MATERIALS AND METHODS All drawings were made with a camera-lucida. Spermathecae were drawn after being cleared in lactic acid. All measurementsare in millimetres except eye measurements which are in ocular micrometerunits. -
Zt03383p038.Pdf
Zootaxa 3383: 15–38 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Molecular and morphological characterisation of new species in the trapdoor spider genus Aname (Araneae: Mygalomorphae: Nemesiidae) from the Pilbara bioregion of Western Australia FRANCES S. B. HARVEY1, VOLKER W. FRAMENAU2,3,6, JANINE M. WOJCIESZEK3,7, MICHAEL G. RIX2 & MARK S. HARVEY2,3,4,5 1Shenton College, 227 Stubbs Terrace, Shenton Park, Western Australia 6008, Australia 2Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia 3School of Animal Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia 4 Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 49th Street, New York, NY 10024-5192, USA; and California Academy of Sciences, Golden Gate Park, San Francisco, CA 94103-3009, USA 5Corresponding author. E-mail: [email protected] 6Current address: Phoenix Environmental Sciences, 1/511 Wanneroo Road, Balcatta, Western Australia 6021, Australia 7Current address: School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch, Western Australia 6150, Australia Abstract A study of selected species in the nemesiid spider genus Aname L. Koch, 1873 from the Pilbara bioregion of Western Aus- tralia was undertaken using molecular and morphological techniques. Bayesian and parsimony analyses of mitochondrial sequence data from the Cytochrome c Oxidase subunit I (COI) gene found evidence for four species, confirming our initial morphological examination of adult male specimens. These four species are here described as A. mellosa n. -
Miscophus (Nitelopterus) Californicus (Ashmead) (Hymenoptera: Crabronidae)
June 26 2020 INSECTA 4 ######## A Journal of World Insect Systematics MUNDI 0773 Additional observations on the nesting behavior of Miscophus (Nitelopterus) californicus (Ashmead) (Hymenoptera: Crabronidae) Frank E. Kurczewski 1188 Converse Drive NE Atlanta, GA 30324 Alice J. Abela 2390 Lake Marie Drive Santa Maria, CA 93455 Darrell Ubick Department of Entomology California Academy of Sciences San Francisco, CA 94118 Date of issue: June 26, 2020 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Frank E. Kurczewski, Alice J. Abela and Darrell Ubick Additional observations on the nesting behavior of Miscophus (Nitelopterus) californicus (Ashmead) (Hymenoptera: Crabronidae) Insecta Mundi 0773: 1–4 ZooBank Registered: urn:lsid:zoobank.org:pub:9B155224-FB61-4929-BE6A-F4573C740DC6 Published in 2020 by Center for Systematic Entomology, Inc. P.O. Box 141874 Gainesville, FL 32614-1874 USA http://centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non- marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e. medical entomology, pest control research, etc.), and no longer publishes book reviews or editorials. Insecta Mundi publishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication. Insecta Mundi is referenced or abstracted by several sources, including the Zoological Record and CAB Abstracts. Insecta Mundi is published irregularly throughout the year, with completed manuscripts assigned an individual number. Manuscripts must be peer reviewed prior to submission, after which they are reviewed by the editorial board to ensure quality. -
Orthognathe, Cribellate Und Haplogyne Familien, Pholcidae, Zodariidae, Mimetidae Sowie Argiopifor- Mia (Ohne Linyphiidae S.I.) (Arachnida: Araneida)
© Tiroler Landesmuseum Ferdinandeum, Innsbruck download unter www.biologiezentrum.at 69 Beiträge zur Spinnenfauna von Nordtirol — 2: Orthognathe, cribellate und haplogyne Familien, Pholcidae, Zodariidae, Mimetidae sowie Argiopifor- mia (ohne Linyphiidae s.I.) (Arachnida: Araneida). Mit Bemerkungen zur Spinnenfauna der Ostalpen* Von Konrad THALER Synopsis: On the Araneida of North Tyrol — 2. Orthognathous, cribellate and haplogyne families, Pholci- dae, Zodariidae, Mimetidae and Argiopiformia (Linyphiidae s.I. excepted). With notes on the spiders of the East Alps (Arachnida: Araneida). — Ca. 154 spider species from 18 families recorded from North Tyrol in the period 1867—1992 have been enumerated and reexamined, together with the pertinent literature. As a result, 129 species are accepted as autochthonous, 4 species might be due to casual introductions only, and 5 Araneidae might have become extinct since 1867 (Neoscona adianta, Singa hamata) and 1950 respectively (Agalenatea redii, Cyclosa oculata, Gibbaranea bituberculata). From the evidence available, 16 further species are rejected for the arachnofauna of North Tyrol. The distribution of the species is shown together with short notes on habitat and distribution in altitude and additional references to taxonomy and biology. The occurrence of further 8 families in the East Alps is indicated briefly (Eresidae, Filistatidae, Oecobiidae, Zoropsidae, Leptonetidae, Loxoscelidae, Mysmenidae, Theridiosomatidae). Inhalt 1. Einleitung 70 2. Vorgangsweise und Dank 70 2.1 System, Reihung der Familien 70 2.2 Literatur 71 2.3 Bewertung, Vorkommen in N-Tirol 72 2.4 Dank 72 3. Ergebnisse 72 3.1 Faunistische Bilanz 72 3.2 Regionaler Erforschungsstand, Habitatverteilung 74 3.3 Tiergeographie, Faunenelemente, Verbreitungsgrenzen 74 4. Spezielle Faunistik 75 4.1 Atypidae 75 4.2 Amaurobiidae 76 4.3 Dictynidae 77 — Eresidae 80 — Filistatidae 80 — Oecobiidae 80 4.4 Titanoecidae 80 4.5 Uloboridae 81 — Zoropsidae 82 4.6 Dysderidae 82 — Leptonetidae 84 — Loxoscelidae 84 4.7 Oonopidae 84 * 1: Veröff. -
Checklist of Australian Spiders (Total of 3,839 Species in 674 Genera and 82 Families*) by Volker W
Checklist of Australian Spiders (total of 3,839 species in 674 genera and 82 families*) by Volker W. Framenau Version 1.41: Friday, 27 July 2018 For feedback and corrections please contact: [email protected] Acknowledgements (thanks for feedback to): Gustavo Hormiga (Tetragnathidae), Rob Whyte (several typographic errors and species omissions), Mark Harvey (Oecobiidae), Jürgen Otto (Salticidae), Barbara Baehr (Orsolobidae). *The family Stenochilidae occurs in Australia (Framenau, Baehr, Zborowski 2014) but since no species have been published for this country, this family is currently not listed with any species below. this page: Araneomorphae Agelenidae Oramia Araneomorphae Agelenidae C. L. Koch, 1837 Modern Funnel-web Spiders Oramia Forster, 1964 frequens (Rainbow, 1920) Tegenaria Latreille, 1804 domestica (Clerck, 1758) Amaurobiidae Thorell, 1870 Mesh-web Weavers Dardurus Davies, 1976 agrestis Davies, 1976 nemoralis Davies, 1976 saltuosus Davies, 1976 silvaticus Davies, 1976 spinipes Davies, 1976 tamborinensis Davies, 1976 Daviesa Koçal & Kemal, 2008 gallonae (Davies, 1993) lubinae (Davies, 1993) Oztira Milledge, 2011 affinis (Hickman, 1981) aquilonaria (Davies, 1986) kroombiti Milledge, 2011 summa (Davies, 1986) Storenosoma Hogg, 1900 altum Davies, 1986 bifidum Milledge, 2011 bondi Milledge, 2011 forsteri Milledge, 2011 grayi Milledge, 2011 grossum Milledge, 2011 hoggi (Roewer, 1942) picadilly Milledge, 2011 smithae Milledge, 2011 supernum Davies, 1986 tasmaniensis Milledge, 2011 terraneum Davies, 1986 Page 1 of 98 this page: -
The Phylogenetic Placement of Psechridae Within Entelegynae and the Convergent Origin of Orb-Like Spider Webs
Accepted on 22 September 2012 © 2012 Blackwell Verlag GmbH J Zoolog Syst Evol Res doi: 10.1111/jzs.12007 1Department of Biology, University of Vermont, Burlington VT, ; 2National Museum of Natural History, Smithsonian Institution, Washington DC, USA; 3Institute of Biology, Scientific Research Centre, Slovenian Academy of Sciences and Arts, Ljubljana Slovenia; 4Department of Biology and Integrated Bioscience Program, University of Akron, Akron OH, USA; 5College of Life Sciences, Hubei University, Wuhan Hubei, China The phylogenetic placement of Psechridae within Entelegynae and the convergent origin of orb-like spider webs 1,2 3 4 2,3,5 INGI AGNARSSON *, MATJAŽ GREGORIČ ,TODD A. BLACKLEDGE and MATJAŽ KUNTNER Abstract Evolutionary convergence of phenotypic traits provides evidence for their functional success. The origin of the orb web was a critical event in the diversification of spiders that facilitated a spectacular radiation of approximately 12 000 species and promoted the evolution of novel web types. How the orb web evolved from ancestral web types, and how many times orb-like architectures evolved in spiders, has been debated for a long time. The little known spider genus Fecenia (Psechridae) constructs a web that resembles the archetypical orb web, but morphological data suggest that Psechri- dae (Psechrus + Fecenia) does not belong in Orbiculariae, the ‘true orb weavers’, but to the ‘retrolateral tibial apophysis (RTA) clade’ consisting mostly of wandering spiders, but also including spiders building less regular webs. Yet, the data are sparse and no molecular phylogenetic study has estimated Fecenia’s exact position in the tree of life. Adding new data to sequences pulled from GenBank, we reconstruct a phylogeny of Entelegynae and phylogenetically test the monophyly and placement of Psechridae, and in doing so, the alternative hypotheses of monophyletic origin of the orb web and the pseudo-orb versus their independent origins, a potentially spectacular case of behavioural convergence. -
A Preliminary Survey for Spiders on St. Eustatius, West Indies Joe Morpeth2, Jo-Anne Nina Sewlal1* and Christopher K
A Preliminary Survey for Spiders on St. Eustatius, West Indies Joe Morpeth2, Jo-Anne Nina Sewlal1* and Christopher K. Starr1 1. Department of Life Sciences, University of the West Indies, St Augustine, Trinidad and Tobago 2. 37 Limethwaite Road, Windermere, Cumbria, LA23 2BQ, United Kingdom *Corresponding author: [email protected] ABSTRACT Three photographic surveys were conducted during the period; 2010 to 2011, 2013 and 2014, and supplemented by physi- cal sampling for a one-week period in January 2015, in a wide variety of habitats on the island of St. Eustatius, West In- dies, for the presence of spiders. Seventeen localities were surveyed from 15 habitats, including five man-made habitats. Twenty-four families representing 53 species were collected. Members of the family Araneidae comprised almost a quarter of the species found. More species in natural than in human-made or highly disturbed habitats. Key words: Anapidae, Araneidae, Barychelidae, Clubionidae, Corinnidae, Filistatidae, Gnaphosidae, Lycosidae, Mimeti- dae, Miturgidae, Mysmenidae, Ochyroceratidae, Oecobiidae, Oxyopidae, Pholcidae, Salticidae, Scytodidae, Sicariidae, Sparassidae, Tetragnathidae, Theridiidae, Theridiosomatidae, Thomisidae, Theraphosidae. INTRODUCTION Arthropods comprise the most diverse animal group tatius were conducted between 2010 and 2011, 2013 and in any terrestrial environment. However, sampling arthro- 2014. This data was supplemented by a survey that took pods is particularly challenging due to traits such as small place 10-17 January 2015 utilising specialised techniques size, short generation time, diversity, limited distribution aimed at collecting spiders. The sampling methodology and strict environmental requirements (microhabitats). was unstandardised with respect to sampling techniques, These traits make it possible in theory to map environmen- collecting team and sample period, and took place over a tal diversity and track environmental changes faster and five-year period. -
Changes in Spinning Anatomy and Thread Stickiness Associated with the Origin of Orb-Weaving Spiders
Biological Journal of the Linnean Society (1999), 68: 593±612. With 18 ®gures Article ID: bijl.1999.0361, available online at http://www.Idealibrary.com on Changes in spinning anatomy and thread stickiness associated with the origin of orb-weaving spiders BRENT D. OPELL Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061±0406, U.S.A. Received 14 September 1998; accepted 25 March 1999 The cribellum is an oval spinning ®eld whose spigots produce silk ®brils that form the outer surfaces of the primitive prey capture threads found in aerial spider webs. A comparison of the cribella and cribellar capture threads of 13 species of spiders representing seven families (Amaurobiidae, Desidae, Dictynidae, Filistatidae, Neolanidae, Oecobiidae, and Uloboridae) con®rms that the stickness of a cribellar thread is directly related to the number of spigots on a spider's cribellum. This comparison also demonstrates that the origin of orb-weaving spiders from ancestors that constructed less highly organized webs was associated with increases in both the weight-speci®c number of cribellum spigots and the weight-speci®c stickiness of cribellar prey capture threads. In contrast to other cribellate spiders, the number of cribellum spigots of orb-weaving species of the family Uloboridae scales to spider mass. Thus, the origin of orb-weaving spiders involved not only behavioural changes that stylized and restricted the placement of cribellar threads, but also included morphological changes that increased the stickiness of these capture threads by endowing them with more cribellar ®brils. 1999 The Linnean Society of London ADDITIONAL KEY WORDS:Ðancestor-reconstruction analysis ± character evolution ± cribellum ± cribellar capture thread ± web architecture. -
UWA (2005) Mygalomorph Spiders of Mt Gibson Region
The University of Western Australia School of Animal Biology 35 Stirling Highway, Crawley, Western Australia Australia 6009 Facsimile (08) 9380 1029 Telephone (08) 9380 3903 [email protected] THE MYGALOMORPH SPIDERS FROM THE MT GIBSON REGION, WESTERN AUSTRALIA, INCLUDING SPECIES APPARENTLY ENDEMIC TO THE AREA Report to ATA Environmental October 2005 Barbara York Main 1 REPORT TO ATA ENVIRONMENTAL ON MT GIBSON MYGALOMORPH SPIDERS By Barbara York Main School of Animal Biology MO92, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009. bymain @cyllene.uwa.edu.au OBJECTIVES To identify the mygalomorph spiders (trapdoor spiders) collected by ATA Environmental during a survey of selected invertebrates targeting short range endemic species at the site of the proposed Mt Gibson iron ore mine. INTRODUCTION The trapdoor and funnelweb spiders (Mygalomorphae) are richly represented in Australia with ten families. Of these, eight occur in Western Australia with seven represented in the Wheatbelt. The remaining family, Migidae, is confined to the moist forested and topographically high areas of the southwest of the state. Of those occurring in the wheatbelt, the “brushfooted” Theraphosidae (so-called bird eating spiders) which are generally tropical and secondarily inhabit arid areas (Main 1997), impinge on the northern and eastern margins only. The remaining six families are well represented throughout the wheatbelt and lower pastoral areas. The Idiopidae (typical trapdoor spiders) and the Nemesiidae (mostly open-holed burrowers) are particularly diverse both taxonomically and ecologically and comprise many genera, some of which eg. Aganippe (Idiopidae) and Teyl (Nemesiidae) have undergone sequential radiations in response to geohistorical events combined with climatic change (Main 1996, 1999) resulting in a plethora of species.