Introduction to Vertex Operator Superalgebras and Their Modules Mathematics and Its Applications

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Vertex Operator Superalgebras and Their Modules Mathematics and Its Applications Introduction to Vertex Operator Superalgebras and Their Modules Mathematics and Its Applications Managing Editor: M. HAZEWINKEL Centre for Mathematics andComputer Science, Amsterdam, The Netherlands Volume 456 Introduction to Vertex Operator Superalgebras and Their Modules by XiaopingXu Departement 0/Mathematics, The Hong Kong University 0/Science and Technology, Clear Water Bay, Kowloon Hong Kong , P.R. China Springer-Science+Business Media, B.V. A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-90-481-5096-0 ISBN 978-94-015-9097-6 (eBook) DOI 10.1007/978-94-015-9097-6 Printedon acid-free paper All Rights Reserved @1998 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 1998. Softcover reprint ofthe hardcover 1st edition 1998 No part ofthe material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner To My Wife Fan Wu Contents Preface ix Introduction xi Notational Conventions . xvi I Self-Dual Lattices and Codes 1 1 Self-Dual Codes 3 1.1 Basic Definitions and Properties . 3 1.2 Gluing Technique . 10 1.2.1 Code Gluing Shells . 10 1.2.2 Gluing Procedure . 13 1.2.3 Structure of Glue Codes . 16 1.3 Some Constructional Theorems 19 1.4 Four Constructions of Binary Self-Dual Codes 24 1.5 Constructions of Ternary Self-Dual Codes 28 1.6 Self-Dual Codes over Z4 . 32 2 Self-Dual Lattices 37 2.1 Definitions and Background . 37 2.2 Vntwisted Gluing Technique of Self-Dual Lattices 43 2.3 Twisted Gluing Technique of Self-Dual Lattices 47 2.4 V-Shellsof Type A . 50 2.5 T-Shells of Type A . 57 2.6 V-Shells and T-Shells of Type D . 72 11 Vertex Operator Superalgebras and Their Modules 83 3 Definitions and General Properties 85 3.1 Calculus of Formal Variables . 86 vii viii CONTENTS 3.2 Vertex Operator Superalgebras . 91 3.3 Modules . 100 3.4 Adjoint Operators and Intertwining Operat ors 114 3.4.1 Contragredient Modules . 114 3.4.2 Definition and Properties of Intertwining Operators 119 3.4.3 Intertwining Operators Induced by Imposing the Skew Symmetry · 122 3.4.4 Adjoint Intertwining Operators . · 123 3.5 Invariant Bilinear Forms . · 126 3.6 Definitions and Properties of Lie Superalgebras . · 134 3.7 Simple Lie Algebras and Their Irreducible Representations · 138 3.8 Subalgebras of Invariants and the Orbifold Constru ction . · 143 4 Conformal Superalgebras, Affine Kac-Moody Algebras and KZ Equa- tions 149 4.1 Conformal Superalgebras and Vertex Algebras . 149 4.2 VOAs Associated to Affine Kac-Moody Algebras . 169 4.3 Intertwining Operators and KZ Equations . 179 4.3.1 Determination of the Intertwining Operators . 180 4.3.2 KZ Equations . 192 5 Analogue of the Highest-Weight Theory 203 5.1 Truncated Modules . · 203 5.2 Intertwining Operators and Bimodules · 217 5.3 Virasoro Vertex Operator Algebra .. · 228 6 Lattice Vertex Operator Superalgebras 235 6.1 Construction of the Algebras . · 235 6.2 Construction of the Modules . · 244 6.3 Characterization of the Algebras . · 266 6.4 Characterization of the Modules . · 275 6.5 Intertwining Operators . · 283 7 VOSAs Generated by Their Subspaces of Small Weights 289 7.1 VOSAs Generated by Subspaces of Weights 1/2 and 1 . · 289 7.2 Super Extensions of the Virasoro VOA . 308 7.3 VOSAs from Graded Associative algebras . · 316 Bibliography 337 Index 351 Preface Vertex algebra was introduced by Boreherds, and the slightly revised notion "vertex oper­ ator algebra" was formulated by Frenkel, Lepowsky and Meurman, in order to solve the problem of the moonshine representation of the Monster group - the largest sporadie group . On the one hand, vertex operator algebras ean be viewed as extensions of eertain infinite-dimensional Lie algebras such as affine Lie algebras and the Virasoro algebra. On the other hand, they are natural one-variable generalizations of commutative associative algebras with an identity element . In a certain sense, Lie algebras and commutative asso­ ciative algebras are reconciled in vertex operator algebras. Moreover, some other algebraie structures, such as integral linear lattiees, Jordan algebras and noncommutative associa­ tive algebras, also appear as subalgebraic structures of vertex operator algebras. The axioms of vertex operator algebra have geometrie interpretations in terms of Riemman spheres with punctures. The trace functions of a certain component of vertex operators enjoy the modular invariant properties. Vertex operator algebras appeared in physies as the fundamental algebraic structures of eonformal field theory, whieh plays an important role in string theory and statistieal meehanies .Moreover, eonformal fieldtheoryreveals an importantmathematieal property, the so called "mirror symmetry" among Calabi-Yau manifolds. The general correspondence between vertex operator algebras and Calabi-Yau manifolds still remains mysterious. Ever since the first book on vertex operator algebras by Frenkel, Lepowsky and Meur­ man was published in 1988, there has been a rapid development in vertex operator su­ peralgebras, which are slight generalizations of vertex operator algebras. It is estimated that there are about 400 related pap ers published. It seems to us that there is a need of giving a systematic update approach to the basic concepts, techniques and examples in vertex operator superalgebras. It was Prof. Miehiel Hazewinkel who suggested I write a book on this topie. Writing a book on the structure theory of vertex operator superalgebras and their irredueible modules is diffieult. First of all, such a theory has not reaehed a relativelycorn­ plete stage. Secondly, the diversity in vertex operator superalgebras and their applications implies that we cannot include all the achievements in a book of relatively short length. Nevertheless, we have tried to incorporate as many things as possible that are basic and ix x PREFACE simple enough to be presented in a relatively short length. The selection of the materials in this book certainly reflects my personal bias. I regret that I am not able to include in this book the moonshine module, an extraordinary exmaple of vertex operator algebra. Moreover, I apologize to those people whose important contributions to vertex operator superalgebras have not been included in the book, due to my intention of limiting the length of the book. Lattice vertex operator superalgebras are the largest dass of simple vertex operator superalgebras that have been relatively well studied. In particular, the vertex operator superalgebra associated with a positive definite self-duallattice has a unique locaHy-finite irreducible module, that is, itself. In order to give the reader a better picture of this type of algebras, I include my work on self-dual codes and lattices as apart of this book. It is my intention that this book could become a one-semester graduate text book after a proper selection of the materials in the book based on the instructor's preference. A substantial number of exercises are given in order to help reader to better understand the content. The people to whom I owe most are my former Ph.D. thesis advisors Profs. James Lepowsky and Robert Wilson. They had patiently guided me into this fascinating field of vertex operator algebras. Their encouragement to my exploring new mathematical structures has prolonged impact on my mathematical research life after I completed my graduate study with them. I am very grateful to Prof. MichielHazewinkel for his sugges­ tion of writing this book and recommendation of publication. I thank Prof. Victor Kac for his interesting lectures on conformal superalgebras, the notions that have been inten­ sively used in the book. I would also like to thank Drs. Chongying Dong and Haisheng Li for their sending me their preprints and YongchangZhu for his explanations on certain things in his works. Last, but not least, I wish to express my gratitude to the publishers for their tremendous work on publishing this book. During my writing of this book, Hong Kong was returned to China. I would also like to dedicate the book to this great event of Chinese people. Xiaoping Xu Hong Kong, P. R. China March 1998 Introduction The commutator formulae offree fields appeared in the 1920s when quantum field theory was born. These may be counted as the earliestphenomena ofvertexoperator algebras.The mathematical turning point in this field came in the late 1960s when Kac-Moodyalgebras were introduced by Kac [KaI] and byMoody[Moo] ,independently, and theVirasoro algebra was studied by Gel'fand Fuck [GF]as the only one-dimensional central extension ofthe Lie algebra ofvector fields on a circle, although this algebra was actually discovered by Block [BI) towards theend of the 1950s. A subfamily of Kac-Moody algebras can be realized as one-dimensional central extensions ofthe loopalgebras, which are called affine Kac-Moody algebras . In the 1970s, Lepowsky and Wilson [LW1) introduced vertex operators for explicitly constructing the integral irreducible modules ofaffine Kac-Moodyalgebras. The exponential of a free bosonic field. We observed a few years aga that the linear Hamilto­ nian operators in the theory of Hamiltonian operators developed by Gel'fand , Dikii and Dorfman in middle 1970's are also quite closely related to vertex operator algebras . We believe that the not ion of "conformal superalgebra" formulated by Kac [Ka4] is equivalent to that of linear Hamitonian operator in Gel'fand-Dikii-Dorfman 's theory, where in the supercase, proper settings need to be added. In the1980s, vertex algebra was introduced by Boreherds [B02], and a slightly re­ vised notion "vertex operator algebra" was formulated by Frenkel, Lepowsky and Meur­ man [FLMl-3], in order to solve the problem of the moonshine representation of the Monster group - the largest sporadic group (cf.
Recommended publications
  • Introduction to Supersymmetry(1)
    Introduction to Supersymmetry(1) J.N. Tavares Dep. Matem¶aticaPura, Faculdade de Ci^encias,U. Porto, 4000 Porto TQFT Club 1Esta ¶euma vers~aoprovis¶oria,incompleta, para uso exclusivo nas sess~oesde trabalho do TQFT club CONTENTS 1 Contents 1 Supersymmetry in Quantum Mechanics 2 1.1 The Supersymmetric Oscillator . 2 1.2 Witten Index . 4 1.3 A fundamental example: The Laplacian on forms . 7 1.4 Witten's proof of Morse Inequalities . 8 2 Supergeometry and Supersymmetry 13 2.1 Field Theory. A quick review . 13 2.2 SuperEuclidean Space . 17 2.3 Reality Conditions . 18 2.4 Supersmooth functions . 18 2.5 Supermanifolds . 21 2.6 Lie Superalgebras . 21 2.7 Super Lie groups . 26 2.8 Rigid Superspace . 27 2.9 Covariant Derivatives . 30 3 APPENDIX. Cli®ord Algebras and Spin Groups 31 3.1 Cli®ord Algebras . 31 Motivation. Cli®ord maps . 31 Cli®ord Algebras . 33 Involutions in V .................................. 35 Representations . 36 3.2 Pin and Spin groups . 43 3.3 Spin Representations . 47 3.4 U(2), spinors and almost complex structures . 49 3.5 Spinc(4)...................................... 50 Chiral Operator. Self Duality . 51 2 1 Supersymmetry in Quantum Mechanics 1.1 The Supersymmetric Oscillator i As we will see later the \hermitian supercharges" Q®, in the N extended SuperPoincar¶eLie Algebra obey the anticommutation relations: i j m ij fQ®;Q¯g = 2(γ C)®¯± Pm (1.1) m where ®; ¯ are \spinor" indices, i; j 2 f1; ¢ ¢ ¢ ;Ng \internal" indices and (γ C)®¯ a bilinear form in the spinor indices ®; ¯. When specialized to 0-space dimensions ((1+0)-spacetime), then since P0 = H, relations (1.1) take the form (with a little change in notations): fQi;Qjg = 2±ij H (1.2) with N \Hermitian charges" Qi; i = 1; ¢ ¢ ¢ ;N.
    [Show full text]
  • Inönü–Wigner Contraction and D = 2 + 1 Supergravity
    Eur. Phys. J. C (2017) 77:48 DOI 10.1140/epjc/s10052-017-4615-1 Regular Article - Theoretical Physics Inönü–Wigner contraction and D = 2 + 1 supergravity P. K. Concha1,2,a, O. Fierro3,b, E. K. Rodríguez1,2,c 1 Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar, Chile 2 Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Casilla 567, Valdivia, Chile 3 Departamento de Matemática y Física Aplicadas, Universidad Católica de la Santísima Concepción, Alonso de Rivera 2850, Concepción, Chile Received: 25 November 2016 / Accepted: 5 January 2017 / Published online: 25 January 2017 © The Author(s) 2017. This article is published with open access at Springerlink.com Abstract We present a generalization of the standard cannot always be obtained by rescaling the gauge fields and Inönü–Wigner contraction by rescaling not only the gener- considering some limit as in the (anti)commutation relations. ators of a Lie superalgebra but also the arbitrary constants In particular it is well known that, in the presence of the exotic appearing in the components of the invariant tensor. The Lagrangian, the Poincaré limit cannot be applied to a (p, q) procedure presented here allows one to obtain explicitly the AdS CS supergravity [7]. This difficulty can be overcome Chern–Simons supergravity action of a contracted superal- extending the osp (2, p) ⊗ osp (2, q) superalgebra by intro- gebra. In particular we show that the Poincaré limit can be ducing the automorphism generators so (p) and so (q) [9]. performed to a D = 2 + 1 (p, q) AdS Chern–Simons super- In such a case, the IW contraction can be applied and repro- gravity in presence of the exotic form.
    [Show full text]
  • 1. INTRODUCTION 1.1. Introductory Remarks on Supersymmetry. 1.2
    1. INTRODUCTION 1.1. Introductory remarks on supersymmetry. 1.2. Classical mechanics, the electromagnetic, and gravitational fields. 1.3. Principles of quantum mechanics. 1.4. Symmetries and projective unitary representations. 1.5. Poincar´esymmetry and particle classification. 1.6. Vector bundles and wave equations. The Maxwell, Dirac, and Weyl - equations. 1.7. Bosons and fermions. 1.8. Supersymmetry as the symmetry of Z2{graded geometry. 1.1. Introductory remarks on supersymmetry. The subject of supersymme- try (SUSY) is a part of the theory of elementary particles and their interactions and the still unfinished quest of obtaining a unified view of all the elementary forces in a manner compatible with quantum theory and general relativity. Supersymme- try was discovered in the early 1970's, and in the intervening years has become a major component of theoretical physics. Its novel mathematical features have led to a deeper understanding of the geometrical structure of spacetime, a theme to which great thinkers like Riemann, Poincar´e,Einstein, Weyl, and many others have contributed. Symmetry has always played a fundamental role in quantum theory: rotational symmetry in the theory of spin, Poincar´esymmetry in the classification of elemen- tary particles, and permutation symmetry in the treatment of systems of identical particles. Supersymmetry is a new kind of symmetry which was discovered by the physicists in the early 1970's. However, it is different from all other discoveries in physics in the sense that there has been no experimental evidence supporting it so far. Nevertheless an enormous effort has been expended by many physicists in developing it because of its many unique features and also because of its beauty and coherence1.
    [Show full text]
  • Of Operator Algebras Vern I
    proceedings of the american mathematical society Volume 92, Number 2, October 1984 COMPLETELY BOUNDED HOMOMORPHISMS OF OPERATOR ALGEBRAS VERN I. PAULSEN1 ABSTRACT. Let A be a unital operator algebra. We prove that if p is a completely bounded, unital homomorphism of A into the algebra of bounded operators on a Hubert space, then there exists a similarity S, with ||S-1|| • ||S|| = ||p||cb, such that S_1p(-)S is a completely contractive homomorphism. We also show how Rota's theorem on operators similar to contractions and the result of Sz.-Nagy and Foias on the similarity of p-dilations to contractions can be deduced from this result. 1. Introduction. In [6] we proved that a homomorphism p of an operator algebra is similar to a completely contractive homomorphism if and only if p is completely bounded. It was known that if S is such a similarity, then ||5|| • ||5_11| > ||/9||cb- However, at the time we were unable to determine if one could choose the similarity such that ||5|| • US'-1!! = ||p||cb- When the operator algebra is a C*- algebra then Haagerup had shown [3] that such a similarity could be chosen. The purpose of the present note is to prove that for a general operator algebra, there exists a similarity S such that ||5|| • ||5_1|| = ||p||cb- Completely contractive homomorphisms are central to the study of the repre- sentation theory of operator algebras, since they are precisely the homomorphisms that can be dilated to a ^representation on some larger Hilbert space of any C*- algebra which contains the operator algebra.
    [Show full text]
  • Supergravity Backgrounds and Symmetry Superalgebras
    Turkish Journal of Physics Turk J Phys (2016) 40: 113 { 126 http://journals.tubitak.gov.tr/physics/ ⃝c TUB¨ ITAK_ Review Article doi:10.3906/fiz-1510-8 Supergravity backgrounds and symmetry superalgebras Umit¨ ERTEM∗ School of Mathematics, College of Science and Engineering, The University of Edinburgh, Edinburgh, United Kingdom Received: 12.10.2015 • Accepted/Published Online: 08.12.2015 • Final Version: 27.04.2016 Abstract: We consider the bosonic sectors of supergravity theories in ten and eleven dimensions corresponding to the low energy limits of string theories and M-theory. The solutions of supergravity field equations are known as supergravity backgrounds and the number of preserved supersymmetries in those backgrounds are determined by Killing spinors. We provide some examples of supergravity backgrounds that preserve different fractions of supersymmetry. An important invariant for the characterization of supergravity backgrounds is their Killing superalgebras, which are constructed out of Killing vectors and Killing spinors of the background. After constructing Killing superalgebras of some special supergravity backgrounds, we discuss the possibilities of the extensions of these superalgebras to include the higher degree hidden symmetries of the background. Key words: Supergravity backgrounds, Killing spinors, Killing superalgebras 1. Introduction The unification of fundamental forces of nature is one of the biggest aims in modern theoretical physics. The most promising approaches for that aim include the ten-dimensional supersymmetric string theories and their eleven-dimensional unification called M-theory. There are five different string theories in ten dimensions: type I, type IIA and IIB, and heterotic E8 × E8 and SO(32) theories. However, some dualities called T-duality, S-duality, and U-duality between strong coupling and weak coupling limits of these theories can be defined and these dualities can give rise to one unified M-theory in eleven dimensions [1, 2, 3, 4].
    [Show full text]
  • Robot and Multibody Dynamics
    Robot and Multibody Dynamics Abhinandan Jain Robot and Multibody Dynamics Analysis and Algorithms 123 Abhinandan Jain Ph.D. Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91109 USA [email protected] ISBN 978-1-4419-7266-8 e-ISBN 978-1-4419-7267-5 DOI 10.1007/978-1-4419-7267-5 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010938443 c Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) In memory of Guillermo Rodriguez, an exceptional scholar and a gentleman. To my parents, and to my wife, Karen. Preface “It is a profoundly erroneous truism, repeated by copybooks and by eminent people when they are making speeches, that we should cultivate the habit of thinking of what we are doing. The precise opposite is the case.
    [Show full text]
  • From String Theory and Moonshine to Vertex Algebras
    Preample From string theory and Moonshine to vertex algebras Bong H. Lian Department of Mathematics Brandeis University [email protected] Harvard University, May 22, 2020 Dedicated to the memory of John Horton Conway December 26, 1937 – April 11, 2020. Preample Acknowledgements: Speaker’s collaborators on the theory of vertex algebras: Andy Linshaw (Denver University) Bailin Song (University of Science and Technology of China) Gregg Zuckerman (Yale University) For their helpful input to this lecture, special thanks to An Huang (Brandeis University) Tsung-Ju Lee (Harvard CMSA) Andy Linshaw (Denver University) Preample Disclaimers: This lecture includes a brief survey of the period prior to and soon after the creation of the theory of vertex algebras, and makes no claim of completeness – the survey is intended to highlight developments that reflect the speaker’s own views (and biases) about the subject. As a short survey of early history, it will inevitably miss many of the more recent important or even towering results. Egs. geometric Langlands, braided tensor categories, conformal nets, applications to mirror symmetry, deformations of VAs, .... Emphases are placed on the mutually beneficial cross-influences between physics and vertex algebras in their concurrent early developments, and the lecture is aimed for a general audience. Preample Outline 1 Early History 1970s – 90s: two parallel universes 2 A fruitful perspective: vertex algebras as higher commutative algebras 3 Classification: cousins of the Moonshine VOA 4 Speculations The String Theory Universe 1968: Veneziano proposed a model (using the Euler beta function) to explain the ‘st-channel crossing’ symmetry in 4-meson scattering, and the Regge trajectory (an angular momentum vs binding energy plot for the Coulumb potential).
    [Show full text]
  • Representations of Centrally Extended Lie Superalgebra $\Mathfrak {Psl}(2
    Representations of centrally extended Lie superalgebra psl(2|2) Takuya Matsumoto and Alexander Molev Abstract The symmetries provided by representations of the centrally extended Lie su- peralgebra psl(2|2) are known to play an important role in the spin chain models originated in the planar anti-de Sitter/conformal field theory correspondence and one- dimensional Hubbard model. We give a complete description of finite-dimensional irreducible representations of this superalgebra thus extending the work of Beisert which deals with a generic family of representations. Our description includes a new class of modules with degenerate eigenvalues of the central elements. Moreover, we construct explicit bases in all irreducible representations by applying the techniques of Mickelsson–Zhelobenko algebras. arXiv:1405.3420v2 [math.RT] 15 Sep 2014 Institute for Theoretical Physics and Spinoza Institute Utrecht University, Leuvenlaan 4, 3854 CE Utrecht, The Netherlands [email protected] School of Mathematics and Statistics University of Sydney, NSW 2006, Australia [email protected] 1 1 Introduction As discovered by Beisert [1, 2, 3], certain spin chain models originated in the planar anti-de Sitter/conformal field theory (AdS/CFT) correspondence admit hidden symmetries pro- vided by the action of the Yangian Y(g) associated with the centrally extended Lie super- algebra g = psl(2|2) ⋉C3. This is a semi-direct product of the simple Lie superalgebra psl(2|2) of type A(1, 1) and the abelian Lie algebra C3 spanned by elements C, K and P which are central in g. Due to the results of [6], psl(2|2) is distinguished among the basic classical Lie superalgebras by the existence of a three-dimensional central extension.
    [Show full text]
  • Classification of Simple Linearly Compact N-Lie Superalgebras
    Classification of simple linearly compact n-Lie superalgebras The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Cantarini, Nicoletta, and Victor G. Kac. “Classification of Simple Linearly Compact n-Lie Superalgebras.” Communications in Mathematical Physics 298.3 (2010): 833–853. Web. As Published http://dx.doi.org/10.1007/s00220-010-1049-0 Publisher Springer-Verlag Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/71610 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike 3.0 Detailed Terms http://creativecommons.org/licenses/by-nc-sa/3.0/ Classification of simple linearly compact n-Lie superalgebras Nicoletta Cantarini∗ Victor G. Kac∗∗ Abstract We classify simple linearly compact n-Lie superalgebras with n> 2 over a field F of charac- teristic 0. The classification is based on a bijective correspondence between non-abelian n-Lie Z n−1 superalgebras and transitive -graded Lie superalgebras of the form L = ⊕j=−1Lj, where dim Ln−1 = 1, L−1 and Ln−1 generate L, and [Lj ,Ln−j−1] = 0 for all j, thereby reducing it to the known classification of simple linearly compact Lie superalgebras and their Z-gradings. The list consists of four examples, one of them being the n+1-dimensional vector product n-Lie algebra, and the remaining three infinite-dimensional n-Lie algebras. Introduction Given an integer n ≥ 2, an n-Lie algebra g is a vector space over a field F, endowed with an n-ary anti-commutative product n Λ g → g , a1 ∧ .
    [Show full text]
  • Scientific Report for the Year 2000
    The Erwin Schr¨odinger International Boltzmanngasse 9 ESI Institute for Mathematical Physics A-1090 Wien, Austria Scientific Report for the Year 2000 Vienna, ESI-Report 2000 March 1, 2001 Supported by Federal Ministry of Education, Science, and Culture, Austria ESI–Report 2000 ERWIN SCHRODINGER¨ INTERNATIONAL INSTITUTE OF MATHEMATICAL PHYSICS, SCIENTIFIC REPORT FOR THE YEAR 2000 ESI, Boltzmanngasse 9, A-1090 Wien, Austria March 1, 2001 Honorary President: Walter Thirring, Tel. +43-1-4277-51516. President: Jakob Yngvason: +43-1-4277-51506. [email protected] Director: Peter W. Michor: +43-1-3172047-16. [email protected] Director: Klaus Schmidt: +43-1-3172047-14. [email protected] Administration: Ulrike Fischer, Eva Kissler, Ursula Sagmeister: +43-1-3172047-12, [email protected] Computer group: Andreas Cap, Gerald Teschl, Hermann Schichl. International Scientific Advisory board: Jean-Pierre Bourguignon (IHES), Giovanni Gallavotti (Roma), Krzysztof Gawedzki (IHES), Vaughan F.R. Jones (Berkeley), Viktor Kac (MIT), Elliott Lieb (Princeton), Harald Grosse (Vienna), Harald Niederreiter (Vienna), ESI preprints are available via ‘anonymous ftp’ or ‘gopher’: FTP.ESI.AC.AT and via the URL: http://www.esi.ac.at. Table of contents General remarks . 2 Winter School in Geometry and Physics . 2 Wolfgang Pauli und die Physik des 20. Jahrhunderts . 3 Summer Session Seminar Sophus Lie . 3 PROGRAMS IN 2000 . 4 Duality, String Theory, and M-theory . 4 Confinement . 5 Representation theory . 7 Algebraic Groups, Invariant Theory, and Applications . 7 Quantum Measurement and Information . 9 CONTINUATION OF PROGRAMS FROM 1999 and earlier . 10 List of Preprints in 2000 . 13 List of seminars and colloquia outside of conferences .
    [Show full text]
  • Operator Algebras: an Informal Overview 3
    OPERATOR ALGEBRAS: AN INFORMAL OVERVIEW FERNANDO LLEDO´ Contents 1. Introduction 1 2. Operator algebras 2 2.1. What are operator algebras? 2 2.2. Differences and analogies between C*- and von Neumann algebras 3 2.3. Relevance of operator algebras 5 3. Different ways to think about operator algebras 6 3.1. Operator algebras as non-commutative spaces 6 3.2. Operator algebras as a natural universe for spectral theory 6 3.3. Von Neumann algebras as symmetry algebras 7 4. Some classical results 8 4.1. Operator algebras in functional analysis 8 4.2. Operator algebras in harmonic analysis 10 4.3. Operator algebras in quantum physics 11 References 13 Abstract. In this article we give a short and informal overview of some aspects of the theory of C*- and von Neumann algebras. We also mention some classical results and applications of these families of operator algebras. 1. Introduction arXiv:0901.0232v1 [math.OA] 2 Jan 2009 Any introduction to the theory of operator algebras, a subject that has deep interrelations with many mathematical and physical disciplines, will miss out important elements of the theory, and this introduction is no ex- ception. The purpose of this article is to give a brief and informal overview on C*- and von Neumann algebras which are the main actors of this summer school. We will also mention some of the classical results in the theory of operator algebras that have been crucial for the development of several areas in mathematics and mathematical physics. Being an overview we can not provide details. Precise definitions, statements and examples can be found in [1] and references cited therein.
    [Show full text]
  • Kac-Moody Algebras and Applications
    Kac-Moody Algebras and Applications Owen Barrett December 24, 2014 Abstract This article is an introduction to the theory of Kac-Moody algebras: their genesis, their con- struction, basic theorems concerning them, and some of their applications. We first record some of the classical theory, since the Kac-Moody construction generalizes the theory of simple finite-dimensional Lie algebras in a closely analogous way. We then introduce the construction and properties of Kac-Moody algebras with an eye to drawing natural connec- tions to the classical theory. Last, we discuss some physical applications of Kac-Moody alge- bras,includingtheSugawaraandVirosorocosetconstructions,whicharebasictoconformal field theory. Contents 1 Introduction2 2 Finite-dimensional Lie algebras3 2.1 Nilpotency.....................................3 2.2 Solvability.....................................4 2.3 Semisimplicity...................................4 2.4 Root systems....................................5 2.4.1 Symmetries................................5 2.4.2 The Weyl group..............................6 2.4.3 Bases...................................6 2.4.4 The Cartan matrix.............................7 2.4.5 Irreducibility...............................7 2.4.6 Complex root systems...........................7 2.5 The structure of semisimple Lie algebras.....................7 2.5.1 Cartan subalgebras............................8 2.5.2 Decomposition of g ............................8 2.5.3 Existence and uniqueness.........................8 2.6 Linear representations of complex semisimple Lie algebras...........9 2.6.1 Weights and primitive elements.....................9 2.7 Irreducible modules with a highest weight....................9 2.8 Finite-dimensional modules............................ 10 3 Kac-Moody algebras 10 3.1 Basic definitions.................................. 10 3.1.1 Construction of the auxiliary Lie algebra................. 11 3.1.2 Construction of the Kac-Moody algebra................. 12 3.1.3 Root space of the Kac-Moody algebra g(A) ..............
    [Show full text]