Vibrations of Atoms at Surfaces

Total Page:16

File Type:pdf, Size:1020Kb

Load more

]6 Nature Vol. 284 6 March 1980 logical and resource geology map to be Indian links persisted well into Late vibrations with zero momentum parallel to published at 1: 10,000,000 in 198 I and de Cretaceous times (E.H. Colbert, Flagstaff) the surface, as in infrared studies. Wit requested data to assist in this. Such a although it is not clear if such links were The short range interactions are much compilation will allow further testing of the provided by the Laccadive-Mascarene weaker but their effects can be separated reconstruction but it is unlikely that Ridge or whether access was along the because they can transfer large amounts of location of the major blocks will be in error Iranian-Afghanistan coastlines. Palaeo­ momentum to the electron (Ho, Willis & by more than a few 100 km. The biogeographic provinces formed a Plummer Phys. Rev. Lett. 40, 1463; 1978). importance of this map is thus to highlight significant part of the meeting, with the key Tuning the spectrometer to the non­ areas for future research. glossopterid flora now being divisible into specular electrons immediately separates A major consideration was the extent of six stratigraphic units that have, so far, these processes, but at the price of Gondwanaland. Nepal (C.l. Klootwyk, been correlated between India and requiring much greater sensitivity. We Canberra), Iran (H. Wensink, Utrecht) Australia (J.F. Rigby, Geological Survey, immediately gain two advantages: the need and Thailand (S. Bunopas & P. Vella, Queensland; S.C. Shah, Geological for a dipole moment is removed; and Wellington) were formerly parts of Survey, Calcutta). The presentation of vibrations with non-zero parallel Gondwanaland and there is evidence that maj or advances in palynological momentum can be seen. There is a further much of China (1.B. Waterhouse, correlations were predictable, but nonethe­ less obvious gain in information. The Queensland; P. Tasch, Wichita) and less of critical value for the Carbo-Permian matrix element for the scattering involves possibly some central Asian blocks, with (E.M. Truswell, BMR, Canberra) and an incident-wave momentum k j an exit parts of southern Europe (D.H. Tarling, Permo-Triassic (J. Anderson, wave momentum kr and the displacement Newcastle upon Tyne), also formed parts Witwatersrand). Although this work solves ofthejth atom, Cj , caused by the vibration: of this supercontinent at various times, the many problems it also raises others; it degree of floral and faunal interchange destroys the previous, elegantly simple 3 exp{(kj.r-kr·r)}C • VJ.j(r-R }d r (I) between the Gondwanan and Laurasian concept of a Gondwanaland drifting ~ J j j continents having clearly altered as both through polar regions and hence being J continents evolved. The distribution of glaciated at successive periods in different dinosaurs seems to indicate that Afro- areas. The age of these ice sheet deposits where Vj is the potential of the jth atom, are almost entirely Sakmarian (Lower assumed localised near Rj. If we were Permian) and require much more complex investigating the modes of a molecule, it D.H. Tarling is a Senior Lecturer in the Department of Geophysics and Planetary explanations (D.H. Tarling in Climatic would be useful to know how Cj varied Physics at the University of Newcastle-upon­ Change, (Ed. Gribbin) Cambridge within the molecule. Equation (1) shows Tyne. University Press, 1978). 0 that the contribution of each atom to the matrix element has a phase Vibrations of atoms at surfaces therefore by measuring at different values of kj - kr it will be possible to identify the from John Pendry individual components of the mode, provided only that we already know the THE vibrational properties of atoms and spectrometry can approach 1 meV mean positions Rj of the atoms. That is, we molecules adsorbed on surfaces are resolution and so the technique is mainly know the phonon 'wavefunctions' as well determined by the detailed interaction with concerned with studying strong bonds to as the energy levels. the surface: whether a molecule relatively light atoms. Despite these There is an analogy with angle-resolved dissociates, to what degree an atom is considerable restrictions EELS is proving a photoemission experiments in which the coordinated by surface atoms, whether useful technique which is continually energy and momentum of an ejected new species are formed. Knowledge of the developing both experimentally and photoelectron implies by conservation the way atoms vibrate is an essential theoretically. energy and momentum of the original state complement to our static picture of atomic There are two ways in which electrons of the electron before excitation. (Li, Tong arrangements. The traditional tool for interact with vibrating atoms: through long & Mills Phys. Rev. in the press). studying vibrations is infrared absorption, range and short range forces. If the Alternatively knowing both the original which has yielded much information about vibration has an associated dipole and final electron E and k we can infer the q vibrations but is limited by the need for the moment, an electric field extends far from and w of the photon. If we read phonon for bond to have a strong polar element to be the surface and operates on an photon we have the EELS experiment infrared active, and in the case of metal approaching or receding electron for a (whether it involves the loss or gain of a surfaces by the electromagnetic boundary relatively long period. If a dipole moment phonon). The analogy extends even condition which allows only a normal is present, this is the dominant mode for further: equation (1) gives the matrix component of the electric field. Electron inelastic scattering. (Evans & Mills Phys. element for interaction with a phonon energy loss spectroscopy (EELS) offers an Rev. B7, 853; 1973). Because the forces are defining atomic displacements Cj • The alternative means of studying vibrational long range the electron loses energy but analogous matrix element for photo­ frequencies which to some extent escapes remains undeviated in direction. A emission is from these restrictions (Ibach Phys. Rev. specular reflection at the surface turns the Lett. 24, 1416; 1970). electron around into an analyser which Experiments make use of 1-10 eV separates the inelastic component. Until electrons, which can be monochromated to recently this has been the predominant a few meVs. This represents much worse mode of operation of EELS experiments. resolution than infrared can provide and The requirement of a dipole moment where Aj is the 'A vector' of the photon severely restricts the power of the imposes some of the restrictions of infrared field at the jth atom. This close analogy technique. It is unlikely that electron spectroscopy and the lack of any should lead to rapid development of the substantial momentum transfer to the associated theory of EELS which will be John Pendry is at the SRC's Daresbury electron in the inelastic collision limits the needed to realise the full potential Laboratory. information that can be obtained to information in the data 0 0028-<>836/80/10016·01 SOI.00 © 1980 Macmillan Journals Ltd .
Recommended publications
  • Primary Mechanical Vibrators Mass-Spring System Equation Of

    Primary Mechanical Vibrators Mass-Spring System Equation Of

    Primary Mechanical Vibrators Music 206: Mechanical Vibration Tamara Smyth, [email protected] • With a model of a wind instrument body, a model of Department of Music, the mechanical “primary” resonator is needed for a University of California, San Diego (UCSD) complete instrument. November 15, 2019 • Many sounds are produced by coupling the mechanical vibrations of a source to the resonance of an acoustic tube: – In vocal systems, air pressure from the lungs controls the oscillation of a membrane (vocal fold), creating a variable constriction through which air flows. – Similarly, blowing into the mouthpiece of a clarinet will cause the reed to vibrate, narrowing and widening the airflow aperture to the bore. 1 Music 206: Mechanical Vibration 2 Mass-spring System Equation of Motion • Before modeling this mechanical vibrating system, • The force on an object having mass m and let’s review some acoustics, and mechanical vibration. acceleration a may be determined using Newton’s second law of motion • The simplest oscillator is the mass-spring system: – a horizontal spring fixed at one end with a mass F = ma. connected to the other. • There is an elastic force restoring the mass to its equilibrium position, given by Hooke’s law m F = −Kx, K x where K is a constant describing the stiffness of the Figure 1: An ideal mass-spring system. spring. • The motion of an object can be describe in terms of • The spring force is equal and opposite to the force its due to acceleration, yielding the equation of motion: 2 1. displacement x(t) d x m 2 = −Kx.
  • Free and Forced Vibration Modes of the Human Fingertip

    Free and Forced Vibration Modes of the Human Fingertip

    applied sciences Article Free and Forced Vibration Modes of the Human Fingertip Gokhan Serhat * and Katherine J. Kuchenbecker Haptic Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany; [email protected] * Correspondence: [email protected] Abstract: Computational analysis of free and forced vibration responses provides crucial information on the dynamic characteristics of deformable bodies. Although such numerical techniques are prevalently used in many disciplines, they have been underutilized in the quest to understand the form and function of human fingers. We addressed this opportunity by building DigiTip, a detailed three-dimensional finite element model of a representative human fingertip that is based on prior anatomical and biomechanical studies. Using the developed model, we first performed modal analyses to determine the free vibration modes with associated frequencies up to about 250 Hz, the frequency at which humans are most sensitive to vibratory stimuli on the fingertip. The modal analysis results reveal that this typical human fingertip exhibits seven characteristic vibration patterns in the considered frequency range. Subsequently, we applied distributed harmonic forces at the fingerprint centroid in three principal directions to predict forced vibration responses through frequency-response analyses; these simulations demonstrate that certain vibration modes are excited significantly more efficiently than the others under the investigated conditions. The results illuminate the dynamic behavior of the human fingertip in haptic interactions involving oscillating stimuli, such as textures and vibratory alerts, and they show how the modal information can predict the forced vibration responses of the soft tissue. Citation: Serhat, G.; Kuchenbecker, Keywords: human fingertips; soft-tissue dynamics; natural vibration modes; frequency-response K.J.
  • VIBRATIONAL SPECTROSCOPY • the Vibrational Energy V(R) Can Be Calculated Using the (Classical) Model of the Harmonic Oscillator

    VIBRATIONAL SPECTROSCOPY • the Vibrational Energy V(R) Can Be Calculated Using the (Classical) Model of the Harmonic Oscillator

    VIBRATIONAL SPECTROSCOPY • The vibrational energy V(r) can be calculated using the (classical) model of the harmonic oscillator: • Using this potential energy function in the Schrödinger equation, the vibrational frequency can be calculated: The vibrational frequency is increasing with: • increasing force constant f = increasing bond strength • decreasing atomic mass • Example: f cc > f c=c > f c-c Vibrational spectra (I): Harmonic oscillator model • Infrared radiation in the range from 10,000 – 100 cm –1 is absorbed and converted by an organic molecule into energy of molecular vibration –> this absorption is quantized: A simple harmonic oscillator is a mechanical system consisting of a point mass connected to a massless spring. The mass is under action of a restoring force proportional to the displacement of particle from its equilibrium position and the force constant f (also k in followings) of the spring. MOLECULES I: Vibrational We model the vibrational motion as a harmonic oscillator, two masses attached by a spring. nu and vee! Solving the Schrödinger equation for the 1 v h(v 2 ) harmonic oscillator you find the following quantized energy levels: v 0,1,2,... The energy levels The level are non-degenerate, that is gv=1 for all values of v. The energy levels are equally spaced by hn. The energy of the lowest state is NOT zero. This is called the zero-point energy. 1 R h Re 0 2 Vibrational spectra (III): Rotation-vibration transitions The vibrational spectra appear as bands rather than lines. When vibrational spectra of gaseous diatomic molecules are observed under high-resolution conditions, each band can be found to contain a large number of closely spaced components— band spectra.
  • Control Strategy Development of Driveline Vibration Reduction for Power-Split Hybrid Vehicles

    Control Strategy Development of Driveline Vibration Reduction for Power-Split Hybrid Vehicles

    applied sciences Article Control Strategy Development of Driveline Vibration Reduction for Power-Split Hybrid Vehicles Hsiu-Ying Hwang 1, Tian-Syung Lan 2,* and Jia-Shiun Chen 1 1 Department of Vehicle Engineering, National Taipei University of Technology, Taipei 10608, Taiwan; [email protected] (H.-Y.H.); [email protected] (J.-S.C.) 2 College of Mechatronic Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China * Correspondence: [email protected] Received: 16 January 2020; Accepted: 25 February 2020; Published: 2 March 2020 Abstract: In order to achieve better performance of fuel consumption in hybrid vehicles, the internal combustion engine is controlled to operate under a better efficient zone and often turned off and on during driving. However, while starting or shifting the driving mode, the instantaneous large torque from the engine or electric motor may occur, which can easily lead to a high vibration of the elastomer on the driveline. This results in decreased comfort. A two-mode power-split hybrid system model with elastomers was established with MATLAB/Simulink. Vibration reduction control strategies, Pause Cancelation strategy (PC), and PID control were developed in this research. When the system detected a large instantaneous torque output on the internal combustion engine or driveline, the electric motor provided corresponding torque to adjust the torque transmitted to the shaft mitigating the vibration. To the research results, in the two-mode power-split hybrid system, PC was able to mitigate the vibration of the engine damper by about 60%. However, the mitigation effect of PID and PC-PID was better than PC, and the vibration was able to converge faster when the instantaneous large torque input was made.
  • The Physics of Sound 1

    The Physics of Sound 1

    The Physics of Sound 1 The Physics of Sound Sound lies at the very center of speech communication. A sound wave is both the end product of the speech production mechanism and the primary source of raw material used by the listener to recover the speaker's message. Because of the central role played by sound in speech communication, it is important to have a good understanding of how sound is produced, modified, and measured. The purpose of this chapter will be to review some basic principles underlying the physics of sound, with a particular focus on two ideas that play an especially important role in both speech and hearing: the concept of the spectrum and acoustic filtering. The speech production mechanism is a kind of assembly line that operates by generating some relatively simple sounds consisting of various combinations of buzzes, hisses, and pops, and then filtering those sounds by making a number of fine adjustments to the tongue, lips, jaw, soft palate, and other articulators. We will also see that a crucial step at the receiving end occurs when the ear breaks this complex sound into its individual frequency components in much the same way that a prism breaks white light into components of different optical frequencies. Before getting into these ideas it is first necessary to cover the basic principles of vibration and sound propagation. Sound and Vibration A sound wave is an air pressure disturbance that results from vibration. The vibration can come from a tuning fork, a guitar string, the column of air in an organ pipe, the head (or rim) of a snare drum, steam escaping from a radiator, the reed on a clarinet, the diaphragm of a loudspeaker, the vocal cords, or virtually anything that vibrates in a frequency range that is audible to a listener (roughly 20 to 20,000 cycles per second for humans).
  • Ch 11 Vibrations and Waves Simple Harmonic Motion Simple Harmonic Motion

    Ch 11 Vibrations and Waves Simple Harmonic Motion Simple Harmonic Motion

    Ch 11 Vibrations and Waves Simple Harmonic Motion Simple Harmonic Motion A vibration (oscillation) back & forth taking the same amount of time for each cycle is periodic. Each vibration has an equilibrium position from which it is somehow disturbed by a given energy source. The disturbance produces a displacement from equilibrium. This is followed by a restoring force. Vibrations transfer energy. Recall Hooke’s Law The restoring force of a spring is proportional to the displacement, x. F = -kx. K is the proportionality constant and we choose the equilibrium position of x = 0. The minus sign reminds us the restoring force is always opposite the displacement, x. F is not constant but varies with position. Acceleration of the mass is not constant therefore. http://www.youtube.com/watch?v=eeYRkW8V7Vg&feature=pl ayer_embedded Key Terms Displacement- distance from equilibrium Amplitude- maximum displacement Cycle- one complete to and fro motion Period (T)- Time for one complete cycle (s) Frequency (f)- number of cycles per second (Hz) * period and frequency are inversely related: T = 1/f f = 1/T Energy in SHOs (Simple Harmonic Oscillators) In stretching or compressing a spring, work is required and potential energy is stored. Elastic PE is given by: PE = ½ kx2 Total mechanical energy E of the mass-spring system = sum of KE + PE E = ½ mv2 + ½ kx2 Here v is velocity of the mass at x position from equilibrium. E remains constant w/o friction. Energy Transformations As a mass oscillates on a spring, the energy changes from PE to KE while the total E remains constant.
  • Leonhard Euler - Wikipedia, the Free Encyclopedia Page 1 of 14

    Leonhard Euler - Wikipedia, the Free Encyclopedia Page 1 of 14

    Leonhard Euler - Wikipedia, the free encyclopedia Page 1 of 14 Leonhard Euler From Wikipedia, the free encyclopedia Leonhard Euler ( German pronunciation: [l]; English Leonhard Euler approximation, "Oiler" [1] 15 April 1707 – 18 September 1783) was a pioneering Swiss mathematician and physicist. He made important discoveries in fields as diverse as infinitesimal calculus and graph theory. He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function.[2] He is also renowned for his work in mechanics, fluid dynamics, optics, and astronomy. Euler spent most of his adult life in St. Petersburg, Russia, and in Berlin, Prussia. He is considered to be the preeminent mathematician of the 18th century, and one of the greatest of all time. He is also one of the most prolific mathematicians ever; his collected works fill 60–80 quarto volumes. [3] A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is our teacher in all things," which has also been translated as "Read Portrait by Emanuel Handmann 1756(?) Euler, read Euler, he is the master of us all." [4] Born 15 April 1707 Euler was featured on the sixth series of the Swiss 10- Basel, Switzerland franc banknote and on numerous Swiss, German, and Died Russian postage stamps. The asteroid 2002 Euler was 18 September 1783 (aged 76) named in his honor. He is also commemorated by the [OS: 7 September 1783] Lutheran Church on their Calendar of Saints on 24 St. Petersburg, Russia May – he was a devout Christian (and believer in Residence Prussia, Russia biblical inerrancy) who wrote apologetics and argued Switzerland [5] forcefully against the prominent atheists of his time.
  • HOOKE's LAW and Sihlple HARMONIC MOTION by DR

    HOOKE's LAW and Sihlple HARMONIC MOTION by DR

    Hooke’s Law by Dr. James E. Parks Department of Physics and Astronomy 401 Nielsen Physics Building The University of Tennessee Knoxville, Tennessee 37996-1200 Copyright June, 2000 by James Edgar Parks* *All rights are reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage or retrieval system, without permission in writing from the author. Objective The objectives of this experiment are: (1) to study simple harmonic motion, (2) to learn the requirements for simple harmonic motion, (3) to learn Hooke's Law, (4) to verify Hooke's Law for a simple spring, (5) to measure the force constant of a spiral spring, (6) to learn the definitions of period and frequency and the relationships between them, (7) to learn the definition of amplitude, (8) to learn the relationship between the period, mass, and force constant of a vibrating mass on a spring undergoing simple harmonic motion, (9) to determine the period of a vibrating spring with different masses, and (10) to compare the measured periods of vibration with those calculated from theory. Theory The motion of a body that oscillates back and forth is defined as simple harmonic motion if there exists a restoring force F that is opposite and directly proportional to the distance x that the body is displaced from its equilibrium position. This relationship between the restoring force F and the displacement x may be written as F=-kx (1) where k is a constant of proportionality. The minus sign indicates that the force is oppositely directed to the displacement and is always towards the equilibrium position.
  • Leonhard Euler's Elastic Curves Author(S): W

    Leonhard Euler's Elastic Curves Author(S): W

    Leonhard Euler's Elastic Curves Author(s): W. A. Oldfather, C. A. Ellis and Donald M. Brown Source: Isis, Vol. 20, No. 1 (Nov., 1933), pp. 72-160 Published by: The University of Chicago Press on behalf of The History of Science Society Stable URL: http://www.jstor.org/stable/224885 Accessed: 10-07-2015 18:15 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and The History of Science Society are collaborating with JSTOR to digitize, preserve and extend access to Isis. http://www.jstor.org This content downloaded from 128.138.65.63 on Fri, 10 Jul 2015 18:15:50 UTC All use subject to JSTOR Terms and Conditions LeonhardEuler's ElasticCurves (De Curvis Elasticis, Additamentum I to his Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Lausanne and Geneva, 1744). Translated and Annotated by W. A. OLDFATHER, C. A. ELLIS, and D. M. BROWN PREFACE In the fall of I920 Mr. CHARLES A. ELLIS, at that time Professor of Structural Engineering in the University of Illinois, called my attention to the famous appendix on elastic curves by LEONHARD EULER, which he felt might well be made available in an English translationto those students of structuralengineering who were interested in the classical treatises which constitute landmarks in the history of this ever increasingly important branch of scientific and technical achievement.
  • Torsional Vibrations

    Torsional Vibrations

    Torsional Vibrations: ---When a shaft is transmitting torque it is subjected to twisting of torsional deflection; and if there are cyclic variations in the transmitted torque the shaft will oscillate, that is twist and untwist. Assumption: Mass moment of inertia of the disk is large compared with the mass moment of inertia of the shaft. For the torque exerted by the rod: T = I * α Therefore d 2θ −K θ = I t dt 2 Where Kt = torsional spring constant of the shaft The negative sign is used because T is opposite in sense to θ. ∴ d 2θ K + t θ = 0 dt 2 I It is a homogeneous differential equation. Solution is æ K ö æ K ö θ = ç t ÷ + ç t ÷ C1 cosç t÷ C 2 sinç t÷ è I ø è I ø Boundary conditions: (1) θ = 0 when t = 0 (2) θ = A when sqrt(Kt/I) * t = π/2 ∴ C1 = 0 and C2 = A and the solution becomes æ ö ç Kt ÷ θ = A sinç t÷ è I ø This is a simple harmonic motion. K ω = t n I Since Kt = T/θ and θ = (TL)/(GJ), so Kt=(JG)/L Therefore π 4 ω = d G n 32 I L Where ωn = natural frequency of torsional vibration, rad/s fn = natural frequency in cycles/sec = ωn /(2 π) d = shaft diameter, m G = modulus of elasticity in shear for shaft material (79.3 x 109 Pa for steel) I = mass moment of inertia of disk about the x-axis = Mr2 L = shaft length, m Torsional Vibration of a Shaft with Two Disks When disk 1 is rotating in a counterclockwise direction, disk 2 must be rotating in a clockwise direction.
  • Molecular Vibration Model 1: the Classical Harmonic Oscillator

    Molecular Vibration Model 1: the Classical Harmonic Oscillator

    Molecular Vibration Model 1: The Classical Harmonic Oscillator maximum maximum If the bond joining two atoms of masses, m and m , acts as a perfect V 1 2 compression elongaon spring, the two masses move back and forth as the bond compresses and expands with a characteristic frequency: ! ! !!× !! ν = where µ = !! ! !!! !! where µ is the reduced mass and k is the bond force constant. The force constant reflects how strongly the bond resists being stretched or compressed. Strong bonds have higher values for k and weak bonds have lower values for k. x < 0 0 x > 0 The figure above shows how the potential energy changes during the vibration. At every point, the total energy, E, is the sum of the potential, V, and kinetic, T, energy: E = T + V. The potential energy is at a maximum at the “turning points” where the kinetic energy is zero. Similarly, when the bond has its equilibrium length, x = 0, V = 0 and the atoms are moving with the maximum speed. Critical thinking questions 1. According to the equation above, what happens to the vibrational frequency if one of the atoms is replaced by a heavier mass (keeping k constant)? 2. According to the equation above, what happens to the vibrational frequency if the force constant is replaced by a larger value (keeping µ constant). 3. In general, what is the reduced mass of the homonuclear diatomic X2 if element X has atomic mass m? 4. What is the ratio of the reduced masses of H2 and D2? 5. What does the reduced mass of HX tend to as X becomes very heavy compared to H? Molecular Vibration Model 2: The Quantum Harmonic Oscillator The Schrödinger equation for the simple harmonic oscillator is given by: ℏ! !! Ĥψ(x) = (− + ½ kx2)ψ(x) = Eψ(x) !! !"! This gives the energy levels as ! εν = (ν + ½) ħ where ν = 0, 1, 2 ...
  • Innovative Experimental Practices in Vibration Mechanics

    Innovative Experimental Practices in Vibration Mechanics

    2006-752: INNOVATIVE EXPERIMENTAL PRACTICES IN VIBRATION MECHANICS K. V. Sudhakar, Universidad de las Americas-Puebla Tadeusz Majewski, Universidad de las Americas-Puebla Luis Maus, Universidad de las Americas-Puebla Page 11.767.1 Page © American Society for Engineering Education, 2006 INNOVATIVE EXPERIMENTAL PRACTICES IN VIBRATION MECHANICS Abstract This paper presents the laboratory stands and the methodology that are used to provide the laboratory experiments as a supplement to the courses of dynamics and vibration. It is shown in what way the knowledge from the lectures can be used for analyzing the dynamics of mechanical systems or in what way the relations describing vibration can be used to determine some parameters of the system. Keywords: dynamics, vibration, laboratory experiment, identification of parameters, verification of results 1. Introduction The class-room teaching of mechanics courses, especially of dynamics and vibrations, involves theoretical models and mathematical computations. It is difficult for students to imagine in what way the systems work, what mechanical properties they have, and predict their behavior if a force or moment is applied. It is difficult to evaluate the behavior of the systems if they are governed by non-linear equations. The nonlinearity of the system can be the result of large displacement, friction force, impacts between the elements of the system, and external forces. One option is to make a computer simulation and define the most important parameters as a function of time or the system’s parameters. Usually our theoretical models do not consider all the factors that exist in a real world. If we investigate the vibration of the system with excitation it is usually taken as a harmonic one.