Cymbidium Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Native Orchid Society South Australia
Journal of the Native Orchid Society of South Australia Inc PRINT POST APPROVED VOLUME 25 NO. 11 PP 54366200018 DECEMBER 2001 NATIVE ORCHID SOCIETY OF SOUTH AUSTRALIA POST OFFICE BOX 565 UNLEY SOUTH AUSTRALIA 5061 The Native Orchid Society of South Australia promotes the conservation of orchids through the preservation of natural habitat and through cultivation. Except with the documented official representation from the Management Committee no person is authorised to represent the society on any matter. All native orchids are protected plants in the wild. Their collection without written Government permit is illegal. PRESIDENT: SECRETARY: Bill Dear Cathy Houston Telephone: 82962111 Telephone: 8356 7356 VICE-PRESIDENT David Pettifor Tel. 014095457 COMMITTEE David Hirst Thelma Bridle Bob Bates Malcolm Guy EDITOR: TREASURER Gerry Carne Iris Freeman 118 Hewitt Avenue Toorak Gardens SA 5061 Telephone/Fax 8332 7730 E-mail [email protected] LIFE MEMBERS Mr R. Hargreaves Mr G. Carne Mr L. Nesbitt Mr R. Bates Mr R. Robjohns Mr R Shooter Mr D. Wells Registrar of Judges: Reg Shooter Trading Table: Judy Penney Field Trips & Conservation: Thelma Bridle Tel. 83844174 Tuber Bank Coordinator: Malcolm Guy Tel. 82767350 New Members Coordinator David Pettifor Tel. 0416 095 095 PATRON: Mr T.R.N. Lothian The Native Orchid Society of South Australia Inc. while taking all due care, take no responsibility for the loss, destruction or damage to any plants whether at shows, meetings or exhibits. Views or opinions expressed by authors of articles within this Journal do not necessarily reflect the views or opinions of the Management. We condones the reprint of any articles if acknowledgement is given. -
Australia Lacks Stem Succulents but Is It Depauperate in Plants With
Available online at www.sciencedirect.com ScienceDirect Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? 1,2 3 3 Joseph AM Holtum , Lillian P Hancock , Erika J Edwards , 4 5 6 Michael D Crisp , Darren M Crayn , Rowan Sage and 2 Klaus Winter In the flora of Australia, the driest vegetated continent, [1,2,3]. Crassulacean acid metabolism (CAM), a water- crassulacean acid metabolism (CAM), the most water-use use efficient form of photosynthesis typically associated efficient form of photosynthesis, is documented in only 0.6% of with leaf and stem succulence, also appears poorly repre- native species. Most are epiphytes and only seven terrestrial. sented in Australia. If 6% of vascular plants worldwide However, much of Australia is unsurveyed, and carbon isotope exhibit CAM [4], Australia should host 1300 CAM signature, commonly used to assess photosynthetic pathway species [5]. At present CAM has been documented in diversity, does not distinguish between plants with low-levels of only 120 named species (Table 1). Most are epiphytes, a CAM and C3 plants. We provide the first census of CAM for the mere seven are terrestrial. Australian flora and suggest that the real frequency of CAM in the flora is double that currently known, with the number of Ellenberg [2] suggested that rainfall in arid Australia is too terrestrial CAM species probably 10-fold greater. Still unpredictable to support the massive water-storing suc- unresolved is the question why the large stem-succulent life — culent life-form found amongst cacti, agaves and form is absent from the native Australian flora even though euphorbs. -
PGR Diversity and Economic Utilization of Orchids
Int.J.Curr.Microbiol.App.Sci (2019) 8(10): 1865-1887 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 10 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.810.217 PGR Diversity and Economic Utilization of Orchids R. K. Pamarthi, R. Devadas, Raj Kumar, D. Rai, P. Kiran Babu, A. L. Meitei, L. C. De, S. Chakrabarthy, D. Barman and D. R. Singh* ICAR-NRC for Orchids, Pakyong, Sikkim, India ICAR-IARI, Kalimpong, West Bengal, India *Corresponding author ABSTRACT Orchids are one of the highly commercial crops in floriculture sector and are robustly exploited due to the high ornamental and economic value. ICAR-NRC for Orchids Pakyong, Sikkim, India, majorly focused on collection, characterization, K e yw or ds evaluation, conservation and utilization of genetic resources available in the country particularly in north-eastern region and developed a National repository of Orchids, Collection, Conservation, orchids. From 1996 to till date, several exploration programmes carried across the Utilization country and a total of 351 species under 94 genera was collected and conserved at Article Info this institute. Among the collections, 205 species were categorized as threatened species, followed by 90 species having breeding value, 87 species which are used Accepted: in traditional medicine, 77 species having fragrance and 11 species were used in 15 September 2019 traditional dietary. Successful DNA bank of 260 species was constructed for Available Online: 10 October 2019 future utilization in various research works. The collected orchid germplasm which includes native orchids was successfully utilized in breeding programme for development of novel varieties and hybrids. -
PC22 Doc. 22.1 Annex (In English Only / Únicamente En Inglés / Seulement En Anglais)
Original language: English PC22 Doc. 22.1 Annex (in English only / únicamente en inglés / seulement en anglais) Quick scan of Orchidaceae species in European commerce as components of cosmetic, food and medicinal products Prepared by Josef A. Brinckmann Sebastopol, California, 95472 USA Commissioned by Federal Food Safety and Veterinary Office FSVO CITES Management Authorithy of Switzerland and Lichtenstein 2014 PC22 Doc 22.1 – p. 1 Contents Abbreviations and Acronyms ........................................................................................................................ 7 Executive Summary ...................................................................................................................................... 8 Information about the Databases Used ...................................................................................................... 11 1. Anoectochilus formosanus .................................................................................................................. 13 1.1. Countries of origin ................................................................................................................. 13 1.2. Commercially traded forms ................................................................................................... 13 1.2.1. Anoectochilus Formosanus Cell Culture Extract (CosIng) ............................................ 13 1.2.2. Anoectochilus Formosanus Extract (CosIng) ................................................................ 13 1.3. Selected finished -
Nlcdec2018.Pdf
D E C E M B E R - J A N U A R Y I S S U E Landcare Linkup N E X T L A N D C A R E L I N K U P 2 0 1 9 M O N T H L Y E C O - C O N V E R S A T I O N S Thursday 24th January, 5-7pm Find a Frog in February with Eva Ford, MRCCC Become a Citizen Scientist and learn how to contribute to the knowledge and future of a special fauna group – amphibians. Frogs have an amazing their life cycle and adaptations to different habitats. They also tell us of things we can’t see that may affect our future. To help them we need to know where they live and what they need. Learn how to identify your local frogs, how to send in a record of frogs you encounter and what you can do to improve conditions for these wonderful animals. A fabulous event to bring your kids along to, last activity before school goes back... Don't forgot to bring your gumboots as we could get wet while searching for frogs! BOOK HERE ONLINE BOOKING ONLY RSVP by Monday 21st January Book and pay for Noosa Landcare events by clicking here. These monthly events are free for Noosa Landcare Members and Bushlandcare Program volunteers and $10 for general entry. Page 2. General Manager Muses Vines in the City B Y P H I L M O R A N In June 2017, I contacted Shaun Walsh who is CEO of South Bank and Roma Street Parklands Indeed the volunteers had come on a tour to with a view to get some Richmond Birdwing vines Pomona to have a look at Shaun’s property in established in the heart of Brisbane. -
Highly Efficient Protoplast Isolation and Transient Expression System
International Journal of Molecular Sciences Article Highly Efficient Protoplast Isolation and Transient Expression System for Functional Characterization of Flowering Related Genes in Cymbidium Orchids Rui Ren 1 , Jie Gao 1, Chuqiao Lu 1, Yonglu Wei 1, Jianpeng Jin 1, Sek-Man Wong 2,3,4, Genfa Zhu 1,* and Fengxi Yang 1,* 1 Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; [email protected] (R.R.); [email protected] (J.G.); [email protected] (C.L.); [email protected] (Y.W.); [email protected] (J.J.) 2 Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore; [email protected] 3 National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215000, China 4 Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore * Correspondence: [email protected] (G.Z.); [email protected] (F.Y.) Received: 28 February 2020; Accepted: 24 March 2020; Published: 25 March 2020 Abstract: Protoplast systems have been proven powerful tools in modern plant biology. However, successful preparation of abundant viable protoplasts remains a challenge for Cymbidium orchids. Herein, we established an efficient protoplast isolation protocol from orchid petals through optimization of enzymatic conditions. It requires optimal D-mannitol concentration (0.5 M), enzyme concentration (1.2 % (w/v) cellulose and 0.6 % (w/v) macerozyme) and digestion time (6 h). With this protocol, the highest yield (3.50 107/g fresh weight of orchid tissue) and viability (94.21%) of × protoplasts were obtained from flower petals of Cymbidium. -
Chromosome Numbers and Cross-Compatibility in the Genus Cymbidium and Some Related Tropical Genera (Orchidaceae)
CHROMOSOME NUMBERS AND CROSS-COMPATIBILITY IN THE GENUS CYMBIDIUM AND SOME RELATED TROPICAL GENERA (ORCHIDACEAE) A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN HORTICULTURE AUGUST 1977 By Kenneth W. Leonhardt Dissertation Committee: Yoneo Sagawa, Chairman Haruyuki Kamemoto Henry Y. Nakasone Philip E. Parvin William L. Theobald We certify that we have read this dissertation and that in our opinion it is satisfactory in scope and quality as a dissertation for the degree of Doctor of Philosophy in Horticulture. DISSERTATION COMMITTEE (7 'Cry^o , w A Chairman Chromosome Numbers and Cross-Compatibility in the Genus Cymbidium and Some Related Tropical Genera (Orchidaceae) Abstract Investigations on chromosome numbers and cross-compatibility were made with species and hybrids of Cymbidium and other tropical genera of the family Orchidaceae. Chromosome number determinations were made of 163 plants. One hundred nineteen counts of Cymbidium clones were made of which 92 are reported for the first time. Diploid, triploid, tetraploid, hexaploid and aneuploid individuals were determined. Triploid cultivars of two species, C. insigne 'Bierii' and C. pumilum 'Yashima' were found. Forty- four counts of intergeneric hybrids and genera other than Cymbidium were made. The hybrid status of 17 progenies of intergeneric pollinations was determined by analysis of somatic chromosome numbers. Nine plants derived from colchicine treated protocorms were identified as polyploids; 8 being euploid and 1 a mixoploid. The origin of the polyploid nature of some of the hybrids not subjected to colchicine treatments is dis cussed. It was verified cytologically that Cymbidium did hybridize with Ansellia and Catasetum. -
Transcriptional Mapping of the Messenger and Leader Rnas of Orchid fleck Virus, a Bisegmented Negative-Strand RNA Virus
Virology 452-453 (2014) 166–174 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro Transcriptional mapping of the messenger and leader RNAs of orchid fleck virus, a bisegmented negative-strand RNA virus Hideki Kondo a,n, Kazuyuki Maruyama a, Sotaro Chiba a, Ida Bagus Andika b, Nobuhiro Suzuki a a Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan b Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China article info abstract Article history: The transcriptional strategy of orchid fleck virus (OFV), which has a two-segmented negative-strand RNA Received 3 December 2013 genome and resembles plant nucleorhabdoviruses, remains unexplored. In this study, the transcripts of Returned to author for revisions six genes encoded by OFV RNA1 and RNA2 in the poly(A)-enriched RNA fraction from infected plants 25 December 2013 were molecularly characterized. All of the OFV mRNAs were initiated at a start sequence 30-UU-50 with Accepted 11 January 2014 one to three non-viral adenine nucleotides which were added at the 50 end of each mRNA, whereas their Available online 4 February 2014 30 termini ended with a 50-AUUUAAA(U/G)AAAA(A)n-30 sequence. We also identified the presence of Keywords: polyadenylated short transcripts derived from the 30-terminal leader regions of both genomic and fl Orchid eck virus antigenomic strands, providing the first example of plus- and minus-strand leader RNAs in a segmented Dichorhavirus minus-strand RNA virus. The similarity in the transcriptional strategy between this bipartite OFV and Rhabdovirus monopartite rhabdoviruses, especially nucleorhabdoviruses (family Rhabdoviridae) is additional support Negative-strand RNA virus Bipartite genome for their close relationship. -
The Complete Plastid Genome Sequence of Iris Gatesii (Section Oncocyclus), a Bearded Species from Southeastern Turkey
Aliso: A Journal of Systematic and Evolutionary Botany Volume 32 | Issue 1 Article 3 2014 The ompletC e Plastid Genome Sequence of Iris gatesii (Section Oncocyclus), a Bearded Species from Southeastern Turkey Carol A. Wilson Rancho Santa Ana Botanic Garden, Claremont, California Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, Ecology and Evolutionary Biology Commons, and the Genomics Commons Recommended Citation Wilson, Carol A. (2014) "The ompC lete Plastid Genome Sequence of Iris gatesii (Section Oncocyclus), a Bearded Species from Southeastern Turkey," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 32: Iss. 1, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol32/iss1/3 Aliso, 32(1), pp. 47–54 ISSN 0065-6275 (print), 2327-2929 (online) THE COMPLETE PLASTID GENOME SEQUENCE OF IRIS GATESII (SECTION ONCOCYCLUS), A BEARDED SPECIES FROM SOUTHEASTERN TURKEY CAROL A. WILSON Rancho Santa Ana Botanic Garden and Claremont Graduate University, 1500 North College Avenue, Claremont, California 91711 ([email protected]) ABSTRACT Iris gatesii is a rare bearded species in subgenus Iris section Oncocyclus that occurs in steppe communities of southeastern Turkey. This species is not commonly cultivated, but related species in section Iris are economically important horticultural plants. The complete plastid genome is reported for I. gatesii based on data generated using the Illumina HiSeq platform and is compared to genomes of 16 species selected from across the monocotyledons. This Iris genome is the only known plastid genome available for order Asparagales that is not from Orchidaceae. The I. gatesii plastid genome, unlike orchid genomes, has little gene loss and rearrangement and is likely to be similar to other genomes from Asparagales. -
Independent Degradation in Genes of the Plastid Ndh Gene Family in Species of the Orchid Genus Cymbidium (Orchidaceae; Epidendroideae)
RESEARCH ARTICLE Independent degradation in genes of the plastid ndh gene family in species of the orchid genus Cymbidium (Orchidaceae; Epidendroideae) Hyoung Tae Kim1, Mark W. Chase2* 1 College of Agriculture and Life Sciences, Kyungpook University, Daegu, Korea, 2 Jodrell Laboratory, Royal a1111111111 Botanic Gardens, Kew, Richmond, Surrey, United Kingdom a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract In this paper, we compare ndh genes in the plastid genome of many Cymbidium species and three closely related taxa in Orchidaceae looking for evidence of ndh gene degradation. OPEN ACCESS Among the 11 ndh genes, there were frequently large deletions in directly repeated or AT- Citation: Kim HT, Chase MW (2017) Independent rich regions. Variation in these degraded ndh genes occurs between individual plants, degradation in genes of the plastid ndh gene family apparently at population levels in these Cymbidium species. It is likely that ndh gene trans- in species of the orchid genus Cymbidium fers from the plastome to mitochondrial genome (chondriome) occurred independently in (Orchidaceae; Epidendroideae). PLoS ONE 12(11): e0187318. https://doi.org/10.1371/journal. Orchidaceae and that ndh genes in the chondriome were also relatively recently transferred pone.0187318 between distantly related species in Orchidaceae. Four variants of the ycf1-rpl32 region, Editor: Zhong-Jian Liu, The National Orchid which normally includes the ndhF genes in the plastome, were identified, and some Cymbid- Conservation Center of China; The Orchid ium species contained at least two copies of that region in their organellar genomes. The Conservation & Research Center of Shenzhen, four ycf1-rpl32 variants seem to have a clear pattern of close relationships. -
Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes
Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes Shichao Chen1., Dong-Kap Kim2., Mark W. Chase3, Joo-Hwan Kim4* 1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi- do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea Abstract Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny. -
KOS Monthly Bulletin February 2019
THE MONTHLY BULLETIN OF THE KU-RING-GAI ORCHID SOCIETY INC. (Established in 1947) A.B.N. 92 531 295 125 February 2019 Volume 60 No. 2 Annual Membership : now $15 single, $18 family Patron : Keith Irvine web site (active link) : http:/kuringaiorchidsociety.org.au President : Dennys Angove 043 88 77 689 Committee Jessie Koh (Membership Secretary / Social Events) Secretary : Jenny Richardson (Culture Classes) Committee : Pauline Onslow (Member Support) Treasurer : Lina Huang Committee : Trevor Onslow (Guest Speakers) Senior Vice President : tba Committee : Graeme Mohr (Benching Admin) Junior Vice President : tba Committee : Chris Wilson (Library and Reference Sources) Editor (Hon volunteer) Jim Brydie Committee : Lee Payne (Sponsorship) Society mail to - 6 Binnari Road, Hornsby Heights NSW 2077 Email – [email protected] Next Meeting : Monday, 18th February, 2019 Venue : The Lindfield Community Centre, corner of Bradfield Rd and Moore Avenue, West Lindfield. The hall is open from 6.30pm. Please try and get there early to help set up tables, chairs and lighting. Benching is available shortly after 7pm but please be patient and wait until tables and dividers are in place. The Culture Class this month starts at 7.20pm and will be a very interesting topic titled “An introduction to orchids of the monsoon, and how to look after them”. and the class will be taken by Jean and Geoff Fulcher. This is the first time we have had this subject, and you might be really surprised to know just how many orchids are from monsoon regions and they are affected by that pattern. You need to learn about this.