Unit 17 Heat and Cold Waves

Total Page:16

File Type:pdf, Size:1020Kb

Unit 17 Heat and Cold Waves UNIT 17 HEAT AND COLD WAVES Structure 17.0 Learning Outcome 17.1 Introduction 17.2 Heat Wave and Cold Wave: Criteria f 7.3 Affected Regions 17.4 Causes and Impacts 17.4.1 Causes of Heat Wave 17.4.2 Causes of Cold Wave 17.4.3 Impacts 17.5 Prevention and Preparedness 17.5.1 Prevention 17.5.2 Preparedness: Advance Warnings 17.6 Rescue and Relief 17.7 Conclusion 17.8 Key Concepts 17.9 References and Further Reading 17.10 Activity 17.0 LEAWING OUTCOME ~fterstudying this Unit, you should be able to: m understand air temperature and other criteria associated with heat and cold waves; o leam about the regions susceptible io such events including the vulnerable areas in India; o discuss the causes and impacts af heat and cold waves; r explain the health hazards and other damages caused due to extreme tempe'ratures during heat and cold waves; and o describe preventive measures to minimise the sufferings. Natural disasters like cyclones, floods, droughts and avalanches are of meteorological origin, that is associated with the weather situation. They wc&ionally leapcatastrophic situations heaping untoldmisery over the affected areaslregions. There are other weather situations as well which, though not disastrous by themselves, could linger on and create hazardous or even disastrous weather causing severe health problems leading to loss of lives, damages to seasonal crops and other related miseries. Among these are lingering spells of heat and cold waves. In the forty years i.e. from 1936 to 1975, nearly 20,000 people were killed in the United States by the effects of heat. In the disastrous heat wave of 1980 more than 1,250 people died in one single 204 Utzderstnizcli~zg Natural Disasters year, and in 1901 the heat wave killed 9,508 people in the United States. In Australia, heat wave\ accounts for more deaths than any other natural disaster, During 1939, severe heat wave took toll of 438 lives in South Australia and 400 of these were from Victoria province alone. In India too, casualties are no less significant. In theyear 1988, the severe heat wave killed nearly 900 persons in the states of Madhya Pradesh and Rajasthan during the months of May and June. In 1998, the casualties were still higher and according to a report, nearly 1,300 persons died in the heat wave over different parts of the country. The casualties from cold waves are no less. In extra-tropical countries, considerable casualties are due to low temperatures during a cold wave. In India and other countries in tropical areas, prolonged exposure to cold temperatures causes a number of deaths every year. Reports indicate that in India more than 600 persons dieddue to cold waves in the winter of 2001-02; and during the first fortnight of January 1983 the death toll was 452 in the two States of Bihar and Uttar Pradesh. In such extreme temperature conditions, the worst affected are the economically weaker sections of the society who cannot afford to ensure protection against exposure to the extremes of weather, particularly the temperitures. Other victims are those who are in the susceptible age groups like the very young and the old or the infirm with fragile health conditions, chronic invalids and those with weight and alcoholic problems which for apparent reasons have little adaptability to extreme temperature variations. * 17.2 MEAT WAVE AND COLD WAVE: CRITERIA i) General Temperature conditions, which vary from extreme hot to chilly weather differ from place to place. In fact, people living at a place for long get acclimatized to the normal weathedclimate of that place/region. For instance, in the coldclimate region (extra tropical regions or high level stations), day temperature of more than 30° C may be a hot day for the locals whereas this temperature in the warm climate region may present the feeling of comfortable weather. In the equatorial and tropical regions, locals are accustomed to wandhot weather. Threshold temperature at which hot weather begins to cause discomfort and health problems for people in these regions is apparently much higher than. in the higher latitudes. Comfortable temperature range for inland and coastal stations of the same climate regimes may also differ substantially due to varying humidity levels and the wind flow. In these cases, it is the va-iationof effective temperature (which takes into account wind speed and humidity along with ambient air temperature) from the normal climatic conditions, instead of the ambient air temperature alone, which influences the comfort level and related health risks. Similarly, people ipold clilnate conditions are acclimatized to rather low temperatures and threshold values for cold yave cohitions in those regibns are much lower than for people living in warm climates. Thus, health relatedproblerns due to cold waves in the extra-tropical countries are different, compared to those in the tropics. Injuries due to extreme cold temperatuses and related problems are more common in the extratropics. Threshold values of prevailing air temperature and their departure froin normal for heat and cold wav&s,therefore, differ from one place to another and arepri~narilydependent on the following factors: e LocaI climatic conditions e Geographic and Topographic fe'eat~~resof the place Heat and Cold Waves 205 It should also be noted that heat wave is reckoned with reference to abnormal rise in the day temperature (the so called Maximum Temperature) whereas cold wave is reckoned with reference to an abno~~nalfall in the early morning temperature i.e. the Minimum Temperature. ii) Criteria in Extratropical Countries &at Wave In the extra tropical countries, heat wave is considered as the period of abnormally hot and dry . weather or when it is uncomfortably hot due to humidity. To be tenned heat wave, it should last atleast more than a day over the area. Howeve]; conventionally heat wave lastsfor several days to several weeks depending on the prevailing weather conditions. Cold Wave Weather fluctuations in the extra-tropical regions are rather rapid and related with fast movement of weather systems. Many a times, cold air Inass sweeps in rapidly in the rear of a weather disturbance, which causes the chill to be more effective. Criterion f'orcold wave includes not only the minimum temperature to which it may fall but also the rate of temperature fa11 within 24 hours. i iii) Criteria followed in India IndiaMeteorologicalDepartment uses a simple procedure to define heat and cold waves in relation with temperature departures from the nonnal day (Maximum) and night (Minimum) temperatures of the placelarea. Heat waves are termed as moderate or severe if the prevailing maxi~num temperatures are markedly C6-7O C) or 8O C or more above normal, respectively. In the same way, cold waves are tenned mode9 .ate or severe if the prevailing xninirnu~ntemperatures are markedly (6-7°C) below normal or Fall by 8OC or more below normal. This is now being revised to make tel-minologies more in confolmity with international practices by linking the temperature departures with local climatic conditions andco~nfoft.levelsinstead of basing them on temperature departure values alone. Concept of Hot Day and Cold Day has been also added to describe the temperature extremes which are rather border line cases prior to attaining heat and cold wave stage. - - --- 17.3 AFFECTED REGIONS Sorne regions are more susceptible than others due to the following factors: a Solar heating and radiative cooIing effects are more over the land than over the sea. F~~rthermore,land and sea breeze tend to inhibit these effects over the coasts and islands, Land locked areas are, therefore, more prone to the occurrence of extreme temperatures, e In the tropics, heat waves are rather common in the land-locked areas due to intense solar heating by the direct sun rays. a In the mid-latitudes, preferred regions for heat waves are where southwesterlylnorthwesterly winds bring willin tropical air to higher latitudes in n~~thernlso~rtliemhemisphere, In northern hemisphere, eastern parts of North America and east European countries experience such weather situations more frequently during the surn~nermonths. In the southern hemisphere, different parts of west and south Australiaexperience heat waves, which persist for number of weeks and account for more number of deaths than any other natural hazard there, Urban areas experience greater effects of heat wave th~u~the rural regions, Asphalt and concrete, used in abundance in urban areas, store heat longer and release it gradually during night, which produce signiticcantly higher day and ~~igl'lttime temperatures in urban weas. Built up large cities act as heat islands. -. .-- ..- 206 U/tder.~tandingNaturril Disasters e Cold waves are associated with the incursion of cold air-mass to warm places. It generally takes place in the rear of the passage of low pressure system which brings cold air from higher latitudes to regions of lower latitudes. o In India, heat and cold wave conditions are Inore frequent in the north, central and adjoining eastern parts of the countly. These occasionally extend southwards to Peninsular India. Heat waves occur in the coastal regions of the States of Orissa and AndhraPradesh on the east coast when the prevailing weather is hot and huinid under calm wind and cloudless sky conditions. CAUSES AND IMPACTS Heat and cold waves are caused by the extreme temperature, during the summer and winter months. 17.4.1 Causes of Heat Wave Progressive northwardsouthward march of the sun towards the tropic of cancer/capricorn (23O30' NIS latitude) brings summer season to the northernlsoutherrt hemisphere, respectively. As the associated solar heating progl-esses with it, land areas in the interior of the continents consistently experience high temperatures during the summer season.
Recommended publications
  • From Headquarters
    from headquarters EDITOR'S NOTE: With this issue we begin a regular column intended to keep AMS members informed of activities and initiatives that are currently under way within the Society and that are being administered by the staff at AMS Headquarters. Revision of the Glossary of Meteorology required to track the terms through the writing and review processes and the preparation for publication. In 1952 Ralph E. Huschke and a team of principal Funding for the Glossary revision has been ob- and subject volunteer contributors began assembling tained through the National Science Foundation with meteorological, hydrological, oceanographic, math- support from the Environmental Protection Agency, ematical, and physics terms for publication. The col- the National Oceanic and Atmospheric Administra- lection of 7247 terms resulted in the Glossary of tion, the U.S. Air Force, the U.S. Navy, and the Meteorology published in 1959 by the AMS. At that Department of Energy. In addition, the AMS is contrib- time, the Glossary contained up-to-date terms found uting more than $90,000 annually to the project, in meteorology and sister disciplines. In the 35 years substantially from its special initiative fund, generated since its publication, more than 10 000 copies of the from interest on reserves, to support overhead and Glossary have been sold. publication costs. Over the decades, the field of meteorology has Publication of the revised Glossary is planned for expanded in the traditional sense and into the new late 1997, with simultaneous publication in an appro- areas of satellite meteorology and numerical weather priate electronic format. The electronic edition will be prediction, among others.
    [Show full text]
  • 6Th Grade Reading Comprehension Worksheets | Extreme Weather
    Name: ___________________________________ Extreme Weather Severe storms happen in low-pressure weather systems. Warm, wet air begins rising into the air. The higher it rises, the cooler it becomes. Water vapor in the air forms drops, a process called condensation. The drops join together to form clouds, and then precipitation of some kind (rain, sleet, snow, or hail) will fall down to Earth’s surface. Although conditions must be very specific for a thunderstorm A tornado in Oklahoma to develop, thunderstorms remain the most common kind of extreme weather. Before a thunderstorm can develop, there have to be three conditions present: the air has to be full of moisture, there must be either an intensely heated portion of Earth’s surface sending warm air up quickly or an approaching cold front, and the warm air that is rising must be warm enough to stay warmer than the air it passes through as it rises. The moisture in the rising air condenses, clouds form and a storm begins. A cold front happens when cold air is moving near the surface of Earth, and it pushes warm air up very quickly. This is often the beginning of a thunderstorm. Clouds form, and heavy rains begin falling. Opposite electrical charges inside storm clouds separate, causing lightning to flash towards Earth. Lightning has enough energy to heat the air all around it. This sudden burst of heat is what causes the noise we know as thunder. Thunderstorms often bring disasters with them, including floods, fires caused by lightning, damage from hailstones or strong winds, and even tornadoes.
    [Show full text]
  • NOAA's Atlantic Oceanographic and Meteorological Laboratory
    Improving Early Warnings for Extreme Weather Events NOAA’s Atlantic Oceanographic and Meteorological Laboratory Lightning over the Great Plains. Texas. May 12, 2009. Image Credit: NOAA/NSSL, VORTEX II. Financial Impacts from Extreme Weather Events A recent nationwide survey indicated that weather loss of life and damage to critical infrastructure. This forecasts generate $31.5 billion in economic benefits to effort is crucial for informing emergency management and U.S. households.1 Since 1980, the U.S. has sustained 279 public preparedness. weather and climate disasters where overall damages reached or exceeded $1 billion (including Consumer Price Index adjustment in 2020 dollars); The total cost of these 279 events exceeds $1.825 trillion.2 AOML scientists are working to improve the forecasts of four main disaster types: tropical cyclones, tornado- related severe storms, heat waves, and extreme rainfall. Improved weather forecasts provide emergency managers, government officials, businesses, and the public with more accurate and timely warnings to minimize catastrophic 1 U.S. Department of Commerce/National Oceanic and Atmospheric Administration. (2018, June). NOAA By The Numbers: Economic Statistics Relevant to NOAA’s Mission. Silver Spring, Maryland: United States. 2 NOAA National Centers for Environmental Information (NCEI) U.S. Billion-Dollar Weather and Climate Disasters (2020). Understanding Long-Term Ocean Dynamics Leads to Better Short-Term Prediction Extreme weather events are responsible for devastating atmospheric observations and model simulations. For mortality and economic impacts in the United States, example, researchers at AOML study how temperature but current extreme weather forecasts are only able to variations associated with El Niño and La Niña, as well as accurately predict events a few days in advance.
    [Show full text]
  • Consecutive Extreme Flooding and Heat Wave in Japan: Are They Becoming a Norm?
    Received: 17 May 2019 Revised: 25 June 2019 Accepted: 1 July 2019 DOI: 10.1002/asl.933 EDITORIAL Consecutive extreme flooding and heat wave in Japan: Are they becoming a norm? In July 2018, Japan experienced two contrasting, yet consec- increases (Chen et al., 2004). Putting these together, one could utive, extreme events: a devastating flood in early July argue that the 2018 sequential events in southern Japan indicate followed by unprecedented heat waves a week later. Death a much-amplified EASM lifecycle (Figure 1a), featuring the tolls from these two extreme events combined exceeded strong Baiu rainfall, an intense monsoon break, and the landfall 300, accompanying tremendous economic losses (BBC: July of Super Typhoon Jebi in early September. 24, 2018; AP: July 30, 2018). Meteorological analysis on The atmospheric features that enhance the ascent and insta- these 2018 events quickly emerged (JMA-TCC, 2018; bility of the Baiu rainband have been extensively studied Kotsuki et al., 2019; Tsuguti et al., 2019), highlighting sev- (Sampe and Xie, 2010); these include the upper-level westerly eral compound factors: a strengthened subtropical anticy- jet and traveling synoptic waves, mid-level advection of warm clone, a deepened synoptic trough, and Typhoon Prapiroon and moist air influenced by the South Asian thermal low, and that collectively enhanced the Baiu rainband (the Japanese low-level southerly moisture transport associated with an summer monsoon), fostering heavy precipitation. The com- enhanced NPSH. These features are outlined in Figure 1b as prehensive study of these events, conducted within a month (A) the NPSH, and particularly its western extension; (B) the and released by the Japan Meteorological Agency (JMA) western Pacific monsoon trough; (C) the South Asian monsoon; (JMA-TCC, 2018), reflected decades of knowledge of the (D) the mid-latitude westerly jet and quasistationary short Baiu rainband and new understanding of recent heat waves waves, as well as the Baiu rainband itself; these are based on in southern Japan and Korea (Xu et al., 2019).
    [Show full text]
  • Climate and Weather
    Point Reyes National Seashore Protection for your Cultural and Natural Heritage Climate and Weather While Point Reyes’ climate is generally described as a Mediterranean climate with cool rainy winters and warm dry summers, the peninsula’s weather can vary considerably from the headlands of the Na- tional Seashore to the inland areas of the Olema Valley. Visiting Point Reyes, you can experience extremes in weather within a few short miles. The key to the contrasts in weather is the Inverness Ridge. It sepa- rates the Headlands, dominated by the oceanic influences of the Pacific Ocean, from the Olema Valley, which is dominated by the terrestrial influences of the continental mainland. Leaning into the Wind You’ll often need to lean into the wind to keep your balance on the windiest place on the West Coast! Near the ocean on the western side of the Inverness Ridge, constant winds of moderate to strong velocity sweep the exposed headlands and outer beaches. During most of the year, particularly in summer, prevailing winds blow from the Northwest. In November and December, the winds shift to the south bringing some of the fiercest winds during southerly gales. Over the course of the year the average maximum wind velocity is 43 miles per hour. These strong winds are a faint breeze compared to the highest wind speed recorded at the point of 133 miles per hour. However, east of the Inverness Ridge, extremes are much less com- mon. Sheltered from the open ocean, winds are much lighter in veloc- ity, but it is an unusual day that does not bring some breezes to the Olema Valley.
    [Show full text]
  • Geo2242 Extreme Weather
    GEO2242, Fall 2020 Sections: 195C [14371], 19FE [14372], & 4297 [14373] Gen Ed ‘P’ – Physical Science EXTREME WEATHER [3 Credit Hours] Spring 2019 Instructor: Holli Capps Email: [email protected] Office Hours - TBD Course Website: Log in to CANVAS at http://lss.at.ufl.edu Course Communications: You can email me at email given above or via email in Canvas. If you email me via Canvas they keep a full record of it – so this is preferred. Required Texts [2]: ‘Exploring Physical Geography’, by Reynolds, Rohli, Johnson, Waylen and Francek, 3rd Edition, eText from McGraw Hill. Available access to sign up for this text can be found by logging into the course on Canvas, and accessing via the canvas page. Cost is around $80.00. This is a required eText and you must purchase it via Canvas. Weekly reading assignments, quiz assessments and homework assignments will be run through this webpage and ebook and so you MUST obtain this ASAP. See information in Canvas on How to Sign Up and Purchase this ebook – on ‘Home’ page of canvas course, via UF All-Access The second required textbook is ’Going to Extremes: Mud, Sweat and Frozen Tears’ by Nick Middleton, PAN Books. Price varies – Kindle edition is $8.00, paperback available used for less than $15.00. You will need this book in your possession before Module 3 of the course. It is available in electronic versions for less than $10 from numerous sites. Again information and links to this book can be found under the ‘Modules’ tab, and then ‘Accessing the textbook’ link.
    [Show full text]
  • Jane Wilson Baldwin [email protected] B M
    Jane Wilson Baldwin [email protected] B http://janebaldw.in m EDUCATION Princeton University, Princeton, NJ Ph.D. in Atmospheric and Oceanic Sciences (AOS) 2012 – 2018 Doctoral Advisor: Gabriel A. Vecchi Dissertation title: Orographic Controls on Asian Hydroclimate, and an Examination of Heat Wave Temporal Com- pounding Harvard University, Cambridge, MA B.A. in Earth and Planetary Sciences 2007 – 2012 Summa Cum Laude. Cumulative GPA: 3.94. Thesis Advisor: Peter Huybers Thesis title: The Interactions of Precipitation and Temperature in Determining the Equilibrium of Glaciers (awarded highest departmental honors) Secondary Field in East Asian Studies, Language Citation in Mandarin Chinese RESEARCH Postdoctoral Fellow, Lamont-Doherty Earth Observatory, Columbia University Sep 2019 – EXPERIENCE Examining controls on multiple tropical cyclones occurring in sequence (i.e. compounding) and impacts of such events with Profs. Suzana Camargo and Adam Sobel. Collaborating with the World Bank’s disaster risk team to merge their damage model and Columbia’s tropical cyclone hazard model. Postdoctoral Research Associate, Princeton Environmental Institute Sep 2018 – Jul 2019 Associated with Prof. Gabriel Vecchi’s group in the Department of Geosciences and Prof. Michael Oppenheimer’s group in the Woodrow Wilson School of Public and International Affairs. Researched implications of heat wave temporal structure for human health outcomes, and controls on tropical cyclone genesis. Applied Scientist Intern, Descartes Labs Jun 2018 – Sep 2018 Tech start-up spun off from Los Alamos National Labs developing innovative applications of geospatial data using machine learning. Worked to develop a wildfire early detection system based on GOES-16 weather satellite data. Graduate Research Assistant, Princeton Climate Dynamics Group and NOAA Geophysical Fluid Dynamics Laboratory 2012 – 2018 Advisor: Gabriel Vecchi (Professor of Geosciences and the Princeton Environmental Institute) Committee Members: Thomas Delworth, Isaac Held, P.C.D.
    [Show full text]
  • Recent History of Large-Scale Ecosystem Disturbances in North America Derived from the AVHRR Satellite Record
    Ecosystems (2005) 8: 808-824 DOI: 10.1007/~10021-005-0041-6 Recent History of Large-Scale Ecosystem Disturbances in North America Derived from the AVHRR Satellite Record Christopher potter,'" Pang-Ning d an,' Vipin ~umar,'Chris ~ucharik,~ Steven ~looster; Vanessa ~enovese,~Warren ohe en,^ and Sean ~eale~~ 'NASA Ames Research Center, Moffett Field, California 94035, USA;2~niversity of Minnesota, Minneapolis, Minnesota 55415, USA; 3~niversityof Wisconsin, Madison, Wisconsin 53706, USA; *~aliforniaState University Monterey Bay, Seaside 93955, California, USA; USDA Forest Service, Corvallis, Oregon 97331, USA Ecosystem structure and function are strongly af- over i9 years, areas potentially influenced by ma- fected by disturbance events, many of which in jor ecosystem disturbances (one FPAR-LO event North America are associated with seasonal tem- over the period 1982-2000) total to more than perature extremes, wildfires, and tropical storms. 766,000 km2.The periods of highest detection fre- This study was conducted to evaluate patterns in a quency were 1987-1989, 1995-1 997, and 1999. 19-year record of global satellite observations of Sub-continental regions of the Pacific Northwest, vegetation phenology from the advanced very high Alaska, and Central Canada had the highest pro- resolution radiometer (AVHRR) as a means to portion (>90%) of FPAR-LO pixels detected in characterize major ecosystem disturbance events forests, tundra shrublands, and wetland areas. The and regimes. The fraction absorbed of photosyn- Great Lakes region showed the highest proportion thetically active radiation (FPAR) by vegetation (39%) of FPAR-LO pixels detected in cropland canopies worldwide has been computed at a areas, whereas the western United States showed monthly time interval from 1982 to 2000 and the highest proportion f 16% ) of FPAR-LO pixels gridded at a spatial resolution of 8-krn globally.
    [Show full text]
  • Current and Future Snow Avalanche Threats and Mitigation Measures in Canada
    CURRENT AND FUTURE SNOW AVALANCHE THREATS AND MITIGATION MEASURES IN CANADA Prepared for: Public Safety Canada Prepared by: Cam Campbell, M.Sc.1 Laura Bakermans, M.Sc., P.Eng.2 Bruce Jamieson, Ph.D., P.Eng.3 Chris Stethem4 Date: 2 September 2007 1 Canadian Avalanche Centre, Box 2759, Revelstoke, B.C., Canada, V0E 2S0. Phone: (250) 837-2748. Fax: (250) 837-4624. E-mail: [email protected] 2 Department of Civil Engineering, University of Calgary, 2500 University Drive NW. Calgary, AB, Canada, T2N 1N4, Canada. E-mail: [email protected] 3 Department of Civil Engineering, University of Calgary, 2500 University Drive NW. Calgary, AB, Canada, T2N 1N4, Canada. Phone: (403) 220-7479. Fax: (403) 282-7026. E-mail: [email protected] 4 Chris Stethem and Associates Ltd., 120 McNeill, Canmore, AB, Canada, T1W 2R8. Phone: (403) 678-2477. Fax: (403) 678-346. E-mail: [email protected] Table of Contents EXECUTIVE SUMMARY This report presents the results of the Public Safety Canada funded project to inventory current and predict future trends in avalanche threats and mitigation programs in Canada. The project also updated the Natural Resources Canada website and map of fatal avalanche incidents. Avalanches have been responsible for at least 702 fatalities in Canada since the earliest recorded incident in 1782. Sixty-one percent of these fatalities occurred in British Columbia, with 13% in Alberta, 11% in Quebec and 10% in Newfoundland and Labrador. The remainder occurred in Ontario, Nova Scotia and the Yukon, Northwest and Nunavut Territories. Fifty-three percent of the fatalities were people engaged in recreational activities, while 18% were people in or near buildings, 16% were travelling or working on transportation corridors and 8% were working in resource industries.
    [Show full text]
  • Burkina Faso
    Climate Risk Profile CLIMATE RISKS IN FOOD FOR PEACE GEOGRAPHIES BURKINA FASO COUNTRY OVERVIEW Northern Burkina Faso, the focus of USAID’s Food for Peace (FFP) in-country programming, is a semi-arid region that is chronically food insecure. In this area, poverty, limited rainfall, high evaporation rates, dependence on rainfed crops, and poor soils make people highly vulnerable to climate shocks (such as droughts, floods, heat waves and dust storms) that drive down agricultural production and increase food prices. Trends toward increasing temperatures, rising evaporation rates and heavy rainfall events may exacerbate these hazards, adversely impacting food security, health and water resources. Weather trends that negatively impact resource availability also threaten to intensify tensions over limited land and water resources and accelerate rural to urban and north to south migration. Burkina Faso has a high population growth rate (3 percent per year during 2010–2015), pervasive poverty (43.7 percent live on less than $1.90 per day), a highly rural population (70 percent) and a heavy reliance on agriculture, which employs more than 80 percent of the working population and accounts for about 34 percent of GDP. These factors are driving expanded cultivation and extensive, low-input agricultural production, both of which increase pressure on natural resources essential to the country’s mostly rural population. (6, 26, 27, 31, 47, 48) CLIMATE PROJECTIONS 1.6°– 2.8°C increase in Increased frequency Increased heat waves, temperatures by 2050
    [Show full text]
  • Climate Change Could Alter the Distribution of Mountain Pine Beetle Outbreaks in Western Canada
    Ecography 35: 211–223, 2012 doi: 10.1111/j.1600-0587.2011.06847.x © 2011 Th e Authors. Ecography © 2012 Nordic Society Oikos Subject Editor: Jacques Régniére. Accepted 24 May 2011 Climate change could alter the distribution of mountain pine beetle outbreaks in western Canada Kishan R. Sambaraju , Allan L. Carroll , Jun Zhu , Kerstin Stahl , R. Dan Moore and Brian H. Aukema K. R. Sambaraju ([email protected]) and B. H. Aukema, Ecosystem Science and Management Program, Univ. of Northern British Columbia, Prince George, BC V2N 4Z9, Canada. Present address of KRS: Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., PO Box 10380, Stn. Sainte-Foy, Quebec, QC GIV 4C7, Canada. Present address of BHA: Dept of Entomology, Univ. of Minnesota, 1980 Folwell Ave, St Paul, MN 55108, USA. – A. L. Carroll, Dept of Forest Sciences, Univ. of British Columbia, Vancouver, BC V6T1Z4, Canada. – J. Zhu, Dept of Statistics, Colorado State Univ., Fort Collins, CO 80523, USA. Present address of JZ: Dept of Statistics and Dept of Entomology, Univ. of Wisconsin, Madison, WI 53706, USA. – K. Stahl, Inst. of Hydrology, Univ. of Freiburg, DE-79098 Freiburg, Germany. – R. D. Moore, Dept of Geography and Dept of Forest Resources Management, Univ. of British Columbia, Vancouver, BC V6T 1Z2, Canada. Climate change can markedly impact biology, population ecology, and spatial patterns of eruptive insects due to the direct infl uence of temperature on insect development and population success. Th e mountain pine beetle Dendroctonus pondero- sae (Coleoptera: Curculionidae), is a landscape-altering insect that infests forests of North America.
    [Show full text]
  • Are Extreme Events, Like Heat Waves, Droughts Or Floods, Expected to Change As the Earth’S Climate Changes?
    Frequently Asked Questions Frequently Asked Question 10.1 Are Extreme Events, Like Heat Waves, Droughts or Floods, Expected to Change as the Earth’s Climate Changes? Yes; the type, frequency and intensity of extreme events are where mean precipitation is expected to increase, and dry ex- expected to change as Earth’s climate changes, and these changes tremes are projected to become more severe in areas where mean could occur even with relatively small mean climate changes. precipitation is projected to decrease. Changes in some types of extreme events have already been ob- In concert with the results for increased extremes of intense served, for example, increases in the frequency and intensity of precipitation, even if the wind strength of storms in a future heat waves and heavy precipitation events (see FAQ 3.3). climate did not change, there would be an increase in extreme In a warmer future climate, there will be an increased risk rainfall intensity. In particular, over NH land, an increase in the of more intense, more frequent and longer-lasting heat waves. likelihood of very wet winters is projected over much of central The European heat wave of 2003 is an example of the type of and northern Europe due to the increase in intense precipitation extreme heat event lasting from several days to over a week that during storm events, suggesting an increased chance of flooding is likely to become more common in a warmer future climate. A over Europe and other mid-latitude regions due to more intense related aspect of temperature extremes is that there is likely to rainfall and snowfall events producing more runoff.
    [Show full text]