Pos(ICHEP2012)007 Institute for Particle and Nuclear Studies, High Energy ∗ [email protected] Speaker

Total Page:16

File Type:pdf, Size:1020Kb

Pos(ICHEP2012)007 Institute for Particle and Nuclear Studies, High Energy ∗ Takashi.Kobayashi@Kek.Jp Speaker PoS(ICHEP2012)007 Long Baseline Neutrinos Takashi Kobayashi∗Institute for Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK) E-mail: [email protected] Status and results of accelerator-based long baseline neutrino oscillation experiments are re- viewed. Future prospects are also discussed. 36th International Conference on High Energy Physics 4-11 July 2012 Melbourne, Australia ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Long Baseline Neutrinos Takashi Kobayashi 1. Introduction In the last decades, great progress in understanding the nature of neutrinos has been made and it is now established that the neutrino have finite mass and “surprisingly” large mixing unlike quarks. However still there are many unanswered questions such as whether the standard 3x3 mixing matrix picture is correct?, all three flavors participate to the mixing? Why the mixing looks so different from the quarks, CP is violated?, what is the absolute mass?, why so light?, what is the mass spectrum, normal or inverted hierarchy?, etc. The neutrino keeps attracting much attention because PoS(ICHEP2012)007 unraveling these mysteries could provide breakthrough to understand fundamental questions in particle physics, physics at high energy scale beyond the standard model and origin of matter dominated universe. Accelerator based long baseline (LBL) neutrino oscillation experiments produce 1 ∼ 10 GeV nm beam and detect it at several 100 km from the source. The nm beam is produced in the “con- ventional” method where pions produced by hitting proton beam on a target decay in flight into + + nm as p ! nm + m [1]. The physics goals of the LBL experiments have been to understand nature of neutrino, especially mass and flavor mixing structure through the finding and measure- ments of neutrino oscillation. Neutrino oscillation is a phenomena that the type of neutrino (ne, nm , nt ) changes its type during flight if the mass eigenstates of neutrino have different mass eigenval- ues each other and the flavor eigenstates are expressed as a linear combinations of more than one 2 2 mass eigenstates. The typical oscillation length is characterized by L(km) ∼ E(GeV)= Dmi j (eV ), 2 2 2 where Dmi j ≡ mi − m j is the mass squared difference of the neutrino mass eigenvalues mi. The LBL experiments with 1 ∼ 10 GeV and several 100 km flight distance are optimized for measuring oscillation with jDm2j ∼ 10−2∼−3 eV2 at which the first evidence of neutrino oscillation was found in atmospheric neutrino observation by Superk-Kamiokande (SK) [2]. The first accelerator-based LBL experiment was the K2K experiment started in 1999 and finished in 2004 in Japan in which the nm beam is produced at KEK in Tsukuba-city and detected by Super-Kamiokande at 250 km [3]. The experiment confirmed the existence of neutrino oscillation by observing disappearance of nm after 250 km flight. The MINOS experiment in US [4] and the OPERA [5] and ICARUS [6] ex- periments in Europe were planned to further confirm/establish the neutrino oscillation discovered by SK. Soon after the discovery of neutrino oscillation by SK, the importance of the sub-leading electron neutrino appearance channel was pointed out [7, 8]. In the three flavor mixing picture, the probability of electron neutrino appearance gives a measure of the mixing angle q13. The existence of electron neutrino appearance at the atmospheric oscillation length means non-zero q13. Because the CP violating observable, the phase d, appears always in the product with sinq12 sinq23 sinq13 and q23 and q12 are known to be large, the size of q13 decides the feasibility of the future CP violation search. With the goal to discover electron neutrino appearance and determine q13, the T2K experiment [9] in Japan started taking data in 2010 and the NOnA experiment [10, 11, 12] is being constructed to start data taking in 2013. In these proceedings, the present on-going experiments and future prospects are summarized. 2 Long Baseline Neutrinos Takashi Kobayashi 735km Figure 1: MINOS experiment. Left picture is the far detector in the Soudan mine. The right graphs are ex- pected energy spectra of nm CC interactions (=flux × CC cross section). The black histogram is the spectrum PoS(ICHEP2012)007 in the default MINOS running condition. 2. Current experiments and their status 2.1 MINOS MINOS is a long baseline experiment with the precise nm disappearance measurements as a main physics goal, in which muon neutrino beam is produced by the 120 GeV proton beam from Main Injector at FNAL and detected by the MINOS detector located in the Soudan mine at 735 km from FNAL (Fig. 1)[4]. The neutrino beam is a 2-horn focused on-axis wide band beam with the peak energy of around 3 GeV as seen in the expected neutrino spectrum in Fig. 1(right). The beam power of the Main Injector had reached at 350 kW. Magnetized tracking calorimeters are placed at near (980 ton) and far (5,400 ton) site. Physics data taking had been started in May 2005 and 20 20 finished on Apr. 30, 2012 with the total accumulated POTs of 10:7 × 10 and 3:4 × 10 for nm and n m , respectively. 2.2 CNGS experiments CERN neutrino to Gran Sasso (CNGS) is a high energy muon neutrino beam of hEn i ∼ 20 GeV produced at CERN with the SPS 400-GeV proton beam and directed to the detectors placed in Gran Sasso laboratory at 732 km distance (Fig. 2)[13]. Main goal of the CNGS experiments is to detect nt appearance. There are two experiments now taking beam data from CNGS, OPERA [5] and ICARUS [6]. OPERA is an emulsion based detector which identify t decay by its decay topology (kink). The detector consists of emulsion based active target part and electronic tracker part. The target part is made of 150,000 7:5 × 12:5 × 10 cm3 emulsion cloud chamber (ECC) blocks, each of which is a stack of 57 emulsion sheets and 56 1mm-thick lead sheets, with the total weight of 1.25 kt. The OPERA detector started to take neutrino beam data since 2008 and accumulated 1:4 × 1020 POT by 2011 and ∼ 1:8 × 1020 POT in 2012. The other detector is a Liquid Argon TPC detector, ICARUS, which consists of two 3:6 × 3:9 × 19:6 = 275 m3 chambers with 476 ton total Liq. Argon mass. It has been taking data since Oct. 2010 and have accumulated 5:8 × 1019 POT equivalent data. 2.3 T2K The T2K (Tokai to Kamioka) experiment is a long baseline experiment in Japan with the main goal of discovering ne appearance. The muon neutrino beam is produced by the 30 GeV 3 Long Baseline Neutrinos Takashi Kobayashi 732km Figure 2: Cern Neutrino beam to Gran Sasso (CNGS). The expected energy spectrum of nm flux is plotted in the left panel (red histogram) overlaid with (nt appearance probability) × (nt CC cross section) as a PoS(ICHEP2012)007 function of neutrino energy which demonstrate that the nm spectrum is optimized to maximize number of nt appearance events. ×106 ] 2 1.2 1 0.8 POT/50 MeV/cm 0.6 21 0.4 Flux[/10 0.2 0 0 0.5 1 1.5 2 2.5 3 3.5 Eν (GeV) Figure 3: T2K experiment. Expected energy spectrum of nm flux at SK is plotted in the right panel. Main Ring (MR) of J-PARC (Japan Proton Accelerator Research Complex) and detected by the Super-Kamiokande detector at 295 km from J-PARC. In order to maximize the sensitivity, off-axis scheme is applied for the first time to have intense narrow energy spectrum peaked at the expected oscillation maximum of 0.6 GeV. T2K started data taking in Jan. 2010 and achieved 200 kW stable operation. After one year of recovery work from the big east Japan earthquake on March 11, 2011, the experiment resumed data taking from March 2012 and total accumulated POT reached 3:01 × 1020 from the beginning to June 9, 2012. 3. Important issues in LBL experiments The basic method of the analyses in LBL experiments is to compare the observed number of obs events Nf ar(En ) in a far detector to the expected number of events with oscillation which can be symbolically expressed as exp Nf ar (En ) = Posc · F f ar · s f ar · e f ar; (3.1) in a simplified formula omitting to explicitly write integration of, for example, final state particle phase space, and Posc, F f ar, s f ar and e f ar are oscillation probability, neutrino flux, neutrino inter- action cross section and detection efficiency at the far detector. The precision or sensitivity of a exp LBL experiment is determined by how precisely Nf ar can be evaluated (and of course the statistical obs error of Nf ar). 4 Long Baseline Neutrinos Takashi Kobayashi PoS(ICHEP2012)007 Figure 4: Example of results from hadron production measurements in NA61 for T2K for pion (left) and Kaon (right) exp In order to predict Nf ar precisely, usually it is evaluated by extrapolating the measurement by obs a near detector Nnear exp obs Posc · F f ar · s f ar · e f ar Nf ar (En ) = Nnear · (3.2) Fnear · snear · enear The energy spectra of nm flux at near and far site (without oscillation) are not the same due to geometrical difference relative to the neutrino production region and also the cross section and effi- ciencies are usually different for near and far detector, so this extrapolation does not follow simple 1=R2 law.
Recommended publications
  • Summary of the Second Workshop on Liquid Argon Time Projection Chamber Research and Development in the United States
    FERMILAB-CONF-15-149-ND Preprint typeset in JINST style - HYPER VERSION Summary of the Second Workshop on Liquid Argon Time Projection Chamber Research and Development in the United States R. Acciarria, M. Adamowskia, D. Artripb, B. Ballera, C. Brombergc, F. Cavannaa;d, B. Carlsa, H. Chene, G. Deptucha, L. Epprecht f , R. Dharmapalang W. Foremanh A. Hahna, M. Johnsona, B. J. P. Jones i, T. Junka, K. Lang j, S. Lockwitza, A. Marchionnia, C. Maugerk, C. Montanaril, S. Mufsonm, M. Nessin, H. Olling Backo, G. Petrillop, S. Pordesa, J. Raafa, B. Rebela, G. Sininsk, M. Soderberga;q, N. Spoonerr, M. Stancaria, T. Strausss, K. Teraot , C. Thorne, T. Topea, M. Toupsi, J. Urheimm, R. Van de Waterk, H. Wangu, R. Wassermanv, M. Webers, D. Whittingtonm, T. Yanga aFermi National Accelerator Laboratory, Batavia, IL 60510, USA bResearch Catalytics, USA cMichigan State University, East Lansing, MI 48824, USA dYale University, New Haven, CT 06520, USA eBrookhaven National Laboratory, Upton, NY 11973, USA f ETH Zürich, 8092 Zürich, Switzerland gArgonne National Laboratory, Argonne, IL, 60439, USA hUniversity of Chicago, Chicago, IL 60637, USA iMassachusetts Institute of Technology, Cambridge, MA 02139, USA jUniversity of Texas at Austin, TX 78712, USA kLos Alamos National Laboratory, Los Alamos, NM 87545, USA lIstituto Nazionale di Fisica Nucleare, Pavia 6-27100, Italy mIndiana University, Bloomington, IN 47405, USA nCERN, 1217 Meyrin, Switzerland oPrinceton University, Princeton, NJ 08544, USA pUniversity of Rochester, Rochester, NY 14627, USA qSyracuse University, NY 13210, USA rUniversity of Sheffield, Sheffield, South Yorkshire S10 2TN, UK sUniversity of Bern, 3012 Bern, Switzerland t Columbia University, New York, NY 10027, USA uUniversity of California Los Angeles, Los Angeles, CA 90095, USA vColorado State University, Fort Collins, CO 80523, USA – 1 – Operated by Fermi Research Alliance, LLC under Contract No.
    [Show full text]
  • An Introduction to Solar Neutrino Research
    AN INTRODUCTION TO SOLAR NEUTRINO RESEARCH John Bahcall Institute for Advanced Study, Princeton, NJ 08540 ABSTRACT In the ¯rst lecture, I describe the conflicts between the combined standard model predictions and the results of solar neutrino experi- ments. Here `combined standard model' means the minimal standard electroweak model plus a standard solar model. First, I show how the comparison between standard model predictions and the observed rates in the four pioneering experiments leads to three di®erent solar neutrino problems. Next, I summarize the stunning agreement be- tween the predictions of standard solar models and helioseismological measurements; this precise agreement suggests that future re¯nements of solar model physics are unlikely to a®ect signi¯cantly the three solar neutrino problems. Then, I describe the important recent analyses in which the neutrino fluxes are treated as free parameters, independent of any constraints from solar models. The disagreement that exists even without using any solar model constraints further reinforces the view that new physics may be required. The principal conclusion of the ¯rst lecture is that the minimal standard model is not consistent with the experimental results that have been reported for the pioneering solar neutrino experiments. In the second lecture, I discuss the possibilities for detecting \smok- ing gun" indications of departures from minimal standard electroweak theory. Examples of smoking guns are the distortion of the energy spectrum of recoil electrons produced by neutrino interactions, the de- pendence of the observed counting rate on the zenith angle of the sun (or, equivalently, the path through the earth to the detector), the ratio of the flux of neutrinos of all types to the flux of electron neutrinos 1 (neutral current to charged current ratio), and seasonal variations of the event rates (dependence upon the earth-sun distance).
    [Show full text]
  • ACTA PHYSICA POLONICA B No 6–7
    Vol. 35 (2004) ACTA PHYSICA POLONICA B No 6–7 THE ICARUS EXPERIMENT AT THE GRAN SASSO UNDERGROUND LABORATORY∗ ∗∗ A. Zalewska for the ICARUS Collaboration The H. Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences Radzikowskiego 152, 31-342 Kraków, Poland e-mail: [email protected] (Received May 14, 2004) The present ICARUS detector, called T600, is ready for installation in the Gran Sasso underground laboratory. It consists of two large cryostats, each one filled with 300 tons of Liquid Argon and equipped with two Time Projection Chambers (TPCs). An overview of the T600 detector is given. Main results of the analyses of the data collected during the surface tests with cosmic rays in summer 2001 are presented. They illustrate the de- tector’s excellent performance. A vast physics program of the ICARUS experiment, which includes different aspects of the neutrino studies and searches for proton decays, is shortly discussed. Finally, the detector up- grade towards the total mass of 3000 tons of Liquid Argon is mentioned. PACS numbers: 13.20.+g, 14.60.Pq, 29.40.Gx, 29.40.Vj 1. Introduction The ICARUS experiment [1] will be realized at Gran Sasso, in the world’s largest underground laboratory. It is located under 1400 meters of rock and is accessed from the tunnel of the Roma–Teramo highway. There are three big experimental halls and a number of galleries and small chambers. The ICARUS detector will be placed in hall B. The ICARUS detector is based on the concept of large TPC chambers filled with Liquid Argon (LAr), originally proposed by C.
    [Show full text]
  • Pos(Neutel 2013)013
    Sterile neutrino search with the ICARUS T600 in the CNGS beam PoS(Neutel 2013)013 PoS(Neutel 2013)013 Robert Sulej 1 National Centre for Nuclear Research A. Soltana 7, 05-400 Otwock, Swierk, Poland E-mail: [email protected] We report an early result from the ICARUS experiment on the search for a νµ→νe signal due to the LSND anomaly. The search was performed with the ICARUS T600 detector located at the Gran Sasso Laboratory, receiving CNGS neutrinos from CERN at an average energy of about 20 GeV, at a distance to source of about 730 km. At the L/E ν = 36.5 m/MeV of the ICARUS experiment the LSND anomaly would manifest as an excess of νe events, characterized by a fast 2 2 energy oscillation averaging approximately to sin (1.27 ∆m new L/E ν) ≈ 1/2 with probability 2 Pνµ →νe = 1/2sin (2θnew ). The present analysis is based on 1091 neutrino events, which are about 50% of the ICARUS data collected in 2010–2011. Two clear νe events have been found, compared with the expectation of 3 .7±0.6 events from conventional sources. Within the range of observations, this result is compatible with the absence of a LSND anomaly. At 90% and 99% confidence levels the limits of 3.4 and 7.3 events, corresponding to oscillation probabilities −3 −2 〈Pνµ →νe〉 ≤ 5.4×10 and 〈Pνµ →νe〉 ≤ 1.1×10 , are respectively set. The result strongly limits the 2 2 2 window of open options for the LSND anomaly to a region around (∆m , sin (2θ)) new = (0.5eV , 0.005), where there is an overall agreement at 90% CL between the present ICARUS limit, the published limits of KARMEN and the published positive signals of LSND and MiniBooNE Collaborations.
    [Show full text]
  • The ICARUS Experiment †
    universe Communication The ICARUS Experiment † Christian Farnese and on behalf of the ICARUS Collaboration Dipartimento di Fisica ed Astronomia, Universita degli Studi di Padova, ed INFN, 35131 Sezione di Padova, Italy; [email protected] † This paper is based on the talk at the 7th International Conference on New Frontiers in Physics (ICNFP 2018), Crete, Greece, 4–12 July 2018. Received: 28 November 2018; Accepted: 25 January 2019; Published: 29 January 2019 Abstract: The 760-ton ICARUST600 detector has completed a successful three-year physics run at the underground LNGSlaboratories, searching for atmospheric neutrino interactions and, with the CNGSneutrino beam from CERN, performing a sensitive search for LSND-like anomalous ne appearance, which contributed to constraining the allowed parameters to a narrow region around Dm2 ∼ eV2, where all the experimental results can be coherently accommodated at 90% C.L. The T600 detector underwent a significant overhaul at CERN and has now been moved to Fermilab, to be soon exposed to the Booster Neutrino Beam (BNB) to search for sterile neutrinos within the SBNprogram, devoted to definitively clarifying the open questions of the presently-observed neutrino anomalies. This paper will address ICARUS’s achievements, its status, and plans for the new run and the ongoing analyses, which will be finalized for the next physics run at Fermilab. Keywords: neutrino physics; liquid argon; TPC 1. The ICARUS T600 Detector A very promising detection technique for the study of rare events such as the neutrino interactions is based on the Liquid Argon Time Projection Chamber (LAr-TPC). These detectors, first proposed by C.Rubbia in 1977 [1], combine the imaging capabilities of the famous bubble chambers with the excellent energy measurement of huge electronic detectors.
    [Show full text]
  • Long-Baseline Neutrino Oscillation Experiments
    Long-Baseline Neutrino Oscillation Experiments The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Feldman, G. J., J. Hartnell, and T. Kobayashi. 2013. “Long-Baseline Neutrino Oscillation Experiments.” Advances in High Energy Physics 2013: 1–30. doi:10.1155/2013/475749. Published Version doi:10.1155/2013/475749 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:28237456 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Long-baseline Neutrino Oscillation Experiments G. J. Feldman Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA. E-mail: [email protected] J. Hartnell Department of Physics and Astronomy, University of Sussex, Brighton. BN1 9QH. United Kingdom. E-mail: [email protected] T. Kobayashi Institute for Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba, 305-0801, Japan. E-mail: [email protected] Abstract. A review of accelerator long-baseline neutrino oscillation experiments is provided, including all experiments performed to date and the projected sensitivity of those currently in progress. Accelerator experiments have played a crucial role in the confirmation of the neutrino oscillation phenomenon and in precision measurements of the parameters. With a fixed baseline and detectors providing good energy resolution, precise measurements of the ratio of distance/energy (L=E) on the scale of individual events have been made and the expected oscillatory pattern resolved.
    [Show full text]
  • The ICARUS Experiment
    The ICARUS experiment F. Varanini INFN Padova, Italy on behalf of the ICARUS Collaboration EPS-HEP 2017, July 7th, 2017 The LAr-TPC technology and ICARUS-T600 l ICARUS-T600 is the first large-scale liquid Argon TPC (760 tons of LAr). It is a uniform, self-triggering detector, with high granularity (~mm), 3D imaging capability, and good calorimetry. It is capable of accurately reconstructing a wide variety of ionizing events with complex topologies. l ICARUS concluded in 2013 a successful 3-year run at LNGS, with CNGS beam and cosmic neutrinos. Several relevant physics and technical results have been achieved: Ø Demonstrated the detector performances, especially in νe identification and background rejection Ø Search for LSND-like anomaly with CNGS beam, constraining the LSND 2 2 window to a narrow region at Δms <~ 1 eV . Ø Verification and rejection of the superluminal neutrino claim. l These results have marked a milestone for the LAr-TPC technology with a large impact on the future neutrino and astro-particle physics projects, like the current SBN short base-line neutrino program at FNAL with three LAr-TPCs (SBND, MicroBooNE and ICARUS) and the multi-kt DUNE LAr-TPC detector. l T600 detector underwent an overhauling at CERN before being exposed to ~0.8 GeV Booster ν beam at 600 m from target to definitely test the LSND claim - searching for νµ νe oscillations in the framework of SBN program. 2 ICARUS-T600 at LNGS LNGS -Hall B LN2 storage + cryo (behind) Cathode T600 Warm Electronics TPC wires (anodes) Two identical modules, 4 wire chambers Charge and light detectors • 3.6 x 3.9 x 19.6 m ≈ 275 m3 • 3 ‘’non-destructive’’ readout wire planes per • Total active mass ≈ 476 ton TPC, wires at 0°, ±60° (Ind1, Ind2, Coll.
    [Show full text]
  • Measurement of Neutrino Oscillations in Atmospheric Neutrinos with the Icecube Deepcore Detector
    Measurement of neutrino oscillations in atmospheric neutrinos with the IceCube DeepCore detector Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium ( Dr. rer. nat.) im Fach Physik eingereicht an der Mathematisch-Naturwissenschafltichen Fakultät I der Humboldt-Universität zu Berlin von B.Sc. Juan Pablo Yáñez Garza Präsident der Humboldt-Universität zu Berlin: Prof. Dr. Jan-Hendrik Olbertz Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I: Prof. Stefan Hecht, Ph.D. Gutachter: 1. Prof. Dr. Hermann Kolanoski 2. Prof. Dr. Allan Halgren 3. Prof. Dr. Thomas Lohse Tag der mündlichen Prüfung: 02.06.2014 iii Abstract The study of neutrino oscillations is an active Ąeld of research. During the last couple of decades many experiments have measured the efects of oscillations, pushing the Ąeld from the discovery stage towards an era of precision and deeper understanding of the phe- nomenon. The IceCube Neutrino Observatory, with its low energy subarray, DeepCore, has the possibility of contributing to this Ąeld. IceCube is a 1 km3 ice Cherenkov neutrino telescope buried deep in the Antarctic glacier. DeepCore, a region of denser instrumentation in the lower center of IceCube, permits the detection of neutrinos with energies as low as 10 GeV. Every year, thousands of atmospheric neutrinos around these energies leave a strong signature in DeepCore. Due to their energy and the distance they travel before being detected, these neutrinos can be used to measure the phenomenon of oscillations. This work starts with a study of the potential of IceCube DeepCore to measure neutrino oscillations in diferent channels, from which the disappearance of νµ is chosen to move forward.
    [Show full text]
  • History of Long-Baseline Accelerator Neutrino Experiments∗
    History of Long-Baseline Accelerator Neutrino Experiments∗ Gary J. Feldman Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, United States I will discuss the six previous and present long-baseline neutrino experiments: two first- generation general experiments, K2K and MINOS, two specialized experiments, OPERA and ICARUS, and two second-generation general experiments, T2K and NOνA. The motivations for and goals of each experiment, the reasons for the choices that each experiment made, and the outcomes will be discussed. 1 Introduction My assignment in this conference is to discuss the history of the six past and present long- baseline neutrino experiments. Both Japan and the United States have hosted first- and second- generation general experiments, K2K and T2K in Japan and MINOS and NOνA in the United States. Europe hosted two more-specialized experiments, OPERA and ICARUS. Since the only possible reason to locate a detector hundreds of kilometers from the neutrino beam target is to study neutrino oscillations, the discussion will be limited to that topic, although each of these experiments investigated other topics. Also due to the time limitation, with one exception, I will not discuss sterile neutrino searches. These experiment have not found any evidence for sterile neutrinos to date.1;2;3;4;5;6;7 The Japanese and American hosted experiments have used the comparison between a near and far de- tector to measure the effects of oscillations. This is an essential method of reducing systematic uncertain- ties, since uncertainties due flux, cross sections, and efficiencies will mostly cancel. The American experi- ments used functionally equivalent near detectors and the Japanese experiments used detectors that were func- tionally equivalent, fine-grained, or both.
    [Show full text]
  • Cross-Sections for $\Nu {\Mu} $ and $\Bar {\Nu {\Mu}} $ Induced Single
    Cross-sections for νµ and ν¯µ induced single pion production processes in the few GeV using NuWro Qudsia Gani1∗ and W. Bari2 1 Department of Physics, Govt. College for Women, M.A. Road Srinagar, 190 001, India and 2 Department of Physics, University of Kashmir, Srinagar 190006, India Abstract: For a continued progress in the pursuit of neutrino oscillation parameters, we require to have a precise knowledge of the pion production processes which act as a source of backgrounds and systematic uncertainties in neutrino oscillation experiments because pions can mimic a final state electron (positron). Therefore a pion production principal interaction may appear to be quasi- elastic if the pion is absorbed in the final state interactions. Charged-current single pion production processes induced by νµ andν ¯µ interactions with hydrocarbon target (CH2) has been studied using NuWro event generator and the cross-sections so obtained have been compared with the results of MinerνA experiment. PACS numbers: 25.30.Pt, 13.15.+g, 14.60.Lm , 12.15.Mm Keywords: cross-section, pion production, neutrino-nucleus interactions, neutrino oscillations arXiv:1710.00749v1 [hep-ph] 2 Oct 2017 ∗ Corresponding author: [email protected] 2 Introduction Advancing our understanding of neutrino oscillation parameters requires building a more complete picture of neu- trino interactions. This poses a series of important theoretical and experimental challenges. In this context neutrino event generators are an interface between theory and experiment and these play a vital role in the study of neutrino interactions from conception of an experiment to the final physics publication. Some of the important neutrino event generators based on Monte Carlo simulations are NuWro [1], GENIE [2], NEUT [3], FLUKA [4] and NUANCE [5].
    [Show full text]
  • The ICARUS Experiment
    EPJ Web of Conferences 182, 02042 (2018) https://doi.org/10.1051/epjconf/201818202042 ICNFP 2017 EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 2017 The ICARUS experiment Christian Farnese1,a, On behalf of the ICARUS collaboration 1Dep. of Physics and Astronomy G. Galilei, via Marzolo 8, 35131 Padova, Italy Abstract. The 760 ton liquid argon ICARUS T600 detector performed a successful three- year physics run at the underground LNGS laboratories, studying neutrino oscillations with the CNGS neutrino beam and searching for atmospheric neutrino interactions in cos- mic rays. A sensitive search for LSND like anomalous νe appearance has been performed, contributing to constrain the allowed parameters to a narrow region around ∆m2 eV2, ∼ where all the experimental results can be coherently accommodated at 90% C.L.. After a significant overhauling, the T600 detector will be exposed at Fermilab to the Booster Neutrino Beam acting as the far detector, in order to search for sterile neutrino within the SBN program. In the present contribution, the ICARUS LNGS achievements, the present status of the detector and the ongoing analyses also finalized to the next physics run at Fermilab will be addressed. 1 The ICARUS T600 detector: a powerful detector for the neutrino physics The Liquid Argon Time Projection Chamber (LAr-TPC), an "effective electronic bubble-chamber" first proposed by C. Rubbia in 1977 [1], is a continuously sensitive and self triggering detector, that can provide a detailed 3D imaging and a precise calorimetric reconstruction of any ionizing event.
    [Show full text]
  • Design, Construction and Tests of the ICARUS T600 Detector
    ARTICLE IN PRESS Nuclear Instruments and Methods in Physics Research A 527 (2004) 329–410 Design, construction and tests of the ICARUS T600 detector S. Amerioa, S. Amorusob, M. Antonelloc, P. Aprilid, M. Armenanteb, F. Arneodod, A. Badertschere, B. Baiboussinova, M. Baldo Ceolina, G. Battistonif, B. Bekmang, P. Benettih, E. Bernardinid, M. Bischofbergere, A. Borio di Tiglioleh, R. Brunettih, R. Bruzzeseb, A. Buenoe,i, E. Calligarichh, M. Campanellie, F. Carbonarab, C. Carpanesee, D. Cavallif, F. Cavannac, P. Cenninij, S. Centroa, A. Cesanak,f, C. Chenl, D. Chenl, D.B. Chena, Y. Chenl, R. Cidi, D.B. Clinem, K. Cieslik! n, A.G. Coccob, D. Cortia, Z. Daie, C. De Vecchih,A.Dabrowska- n, A. Di Ciccob, R. Dolfinih, A. Ereditatob, M. Felcinie, A. Ferellac, A. Ferrarij,f, F. Ferric, G. Fiorillob, S. Gallic, D. Garcia Gamezi,Y.Gee, D. Gibina, A. Gigli Berzolarih, I. Gil-Botellae, K. Graczyko, L. Grandih, A. Guglielmia,K.Hel, J. Holeczekg, X. Huangl, C. Juszczako, D. Kie"czewskap,q, J. Kisielg, T. Koz"owskip, H. Kuna- Ciska"r, M. Laffranchie,J.Łagodaq,Z.Lil, B. Lisowskim,F.Lul,J.Mal, G. Manganob, G. Mannocchis,t, M. Markiewiczn, A. Martinez de la Ossai, C. Mattheym, F. Maurih, D. Mazzac, A.J. Melgarejoi, A. Menegollih, G. Menga, M. Messinae, J.W. Mietelskin, C. Montanarih, S. Murarof, S. Navas-Conchae,i, M. Nicolettoa, J. Nowako, G. Nurziac, C. Osunai, S. Otwinowskim, Q. Ouyangl, O. Palamarad, D. Pascolia, L. Periales,t, G. Piano Mortaric, A. Piazzolih, P. Picchiu,t,s, F. Pietropaoloa,W.Po!"ch"opekv, M. Pratah, T.
    [Show full text]