Probing Particle Physics with Icecube
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Presentation File
The Future of High Energy Physics and China’s Role Yifang Wang Institute of High Energy Physics, Beijing HKUST, Sep. 24, 2018 A Very Active Field ILC,FCC, China-based LHC: ATLAS/CMS CEPC/SPPC High China-participated Others Energy Compositeness AMS, PAMELA Extra-dimensions Supersymmetry Antimatter Higgs CP violation Daya Bay, JUNO,T2K,Nova, SuperK,HyperK,LBNF/DUNE, Icecube/PINGU, KM3net/ORKA, Neutrinos SNO+,EXO/nEXO, KamLAND-Zen, Precision Standard COMET, tests Model Gerda,Katrin… mu2e, g-2, K-decays,… Hadron physics Cosmology & QCD Standard Model of Cosmology Rare decays Dark matter LUX, Xenon, LZ, BESIII,LHCb, Axions PandaX, CDEX, High BELLEII, Darkside, … precision PANDA,… ADMX,… Fermi, DAMPE, AMS,… 2 Roadmaps of HEP in the World • Japan (2012) – If new particles(e.g. Higgs) are discovered, build ILC – If θ13 is big enough, build HyperK and T2HK • EU (2013) – Continue LHC, upgrade its luminosity, until 2035 – Study future circular collider (FCC-hh or FCC-ee) • US (2014) – Build long baseline neutrino facility LBNF/DUNE – Study future colliders A new round of roadmap study is starting 3 Where Are We Going ? • ILC is a machine we planned for ~30 years, way before the Higgs boson was discovered. Is it still the only machine for our future ? • Shall we wait for results from LHC/HL-LHC to decide our next step ? • What if ILC could not be approved ? • What is the future of High Energy Physics ? • A new route: – Thanks to the low mass Higgs, there is a possibility to build a circular e+e- collider(Higgs factory) followed by a proton machine in the same tunnel – This idea was reported for the first time at the “Higgs Factory workshop(HF2012)” in Oct. -
The Story of Large Electron Positron Collider 1
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications of the IAS Fellows GENERAL ç ARTICLE The Story of Large Electron Positron Collider 1. Fundamental Constituents of Matter S N Ganguli I nt roduct ion The story of the large electron positron collider, in short LEP, is linked intimately with our understanding of na- ture'sfundamental particlesand theforcesbetween them. We begin our story by giving a brief account of three great discoveries that completely changed our thinking Som Ganguli is at the Tata Institute of Fundamental and started a new ¯eld we now call particle physics. Research, Mumbai. He is These discoveries took place in less than three years currently participating in an during 1895 to 1897: discovery of X-rays by Wilhelm experiment under prepara- Roentgen in 1895, discovery of radioactivity by Henri tion for the Large Hadron Becquerel in 1896 and the identi¯cation of cathode rays Collider (LHC) at CERN, Geneva. He has been as electrons, a fundamental constituent of atom by J J studying properties of Z and Thomson in 1897. It goes without saying that these dis- W bosons produced in coveries were rewarded by giving Nobel Prizes in 1901, electron-positron collisions 1903 and 1906, respectively. X-rays have provided one at the Large Electron of the most powerful tools for investigating the struc- Positron Collider (LEP). During 1970s and early ture of matter, in particular the study of molecules and 1980s he was studying crystals; it is also an indispensable tool in medical diag- production and decay nosis. -
The Gran Sasso Underground Laboratory Program
The Gran Sasso Underground Laboratory Program Eugenio Coccia INFN Gran Sasso and University of Rome “Tor Vergata” [email protected] XXXIII International Meeting on Fundamental Physics Benasque - March 7, 2005 Underground Laboratories Boulby UK Modane France Canfranc Spain INFN Gran Sasso National Laboratory LNGSLNGS ROME QuickTime™ and a Photo - JPEG decompressor are needed to see this picture. L’AQUILA Tunnel of 10.4 km TERAMO In 1979 A. Zichichi proposed to the Parliament the project of a large underground laboratory close to the Gran Sasso highway tunnel, then under construction In 1982 the Parliament approved the construction, finished in 1987 In 1989 the first experiment, MACRO, started taking data LABORATORI NAZIONALI DEL GRAN SASSO - INFN Largest underground laboratory for astroparticle physics 1400 m rock coverage cosmic µ reduction= 10–6 (1 /m2 h) underground area: 18 000 m2 external facilities Research lines easy access • Neutrino physics 756 scientists from 25 countries Permanent staff = 66 positions (mass, oscillations, stellar physics) • Dark matter • Nuclear reactions of astrophysics interest • Gravitational waves • Geophysics • Biology LNGS Users Foreigners: 356 from 24 countries Italians: 364 Permanent Staff: 64 people Administration Public relationships support Secretariats (visa, work permissions) Outreach Environmental issues Prevention, safety, security External facilities General, safety, electrical plants Civil works Chemistry Cryogenics Mechanical shop Electronics Computing and networks Offices Assembly halls Lab -
Effective Neutrino Masses in KATRIN and Future Tritium Beta-Decay Experiments
PHYSICAL REVIEW D 101, 016003 (2020) Effective neutrino masses in KATRIN and future tritium beta-decay experiments † ‡ Guo-yuan Huang,1,2,* Werner Rodejohann ,3, and Shun Zhou1,2, 1Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany (Received 25 October 2019; published 3 January 2020) Past and current direct neutrino mass experiments set limits on the so-called effective neutrino mass, which is an incoherent sum of neutrino masses and lepton mixing matrix elements. The electron energy spectrum which neglects the relativistic and nuclear recoil effects is often assumed. Alternative definitions of effective masses exist, and an exact relativistic spectrum is calculable. We quantitatively compare the validity of those different approximations as function of energy resolution and exposure in view of tritium beta decays in the KATRIN, Project 8, and PTOLEMY experiments. Furthermore, adopting the Bayesian approach, we present the posterior distributions of the effective neutrino mass by including current experimental information from neutrino oscillations, beta decay, neutrinoless double-beta decay, and cosmological observations. Both linear and logarithmic priors for the smallest neutrino mass are assumed. DOI: 10.1103/PhysRevD.101.016003 I. INTRODUCTION region close to its end point will be distorted in com- parisontothatinthelimitofzeroneutrinomasses.This Neutrino oscillation experiments have measured with kinematic effect is usually described by the effective very good precision the three leptonic flavor mixing neutrino mass [7] angles fθ12; θ13; θ23g and two independent neutrino 2 2 2 2 mass-squared differences Δm21 ≡ m2 − m1 and jΔm31j≡ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 − 2 2 2 2 2 2 2 jm3 m1j. -
The Muon Range Detector at Sciboone Joseph Walding
The Muon Range Detector at SciBooNE Joseph Walding High Energy Physics Department, Blackett Laboratory, Imperial College, London Abstract. SciBooNE is a new neutrino experiment at Fermilab. The detector will undertake a number of measurements, principally sub-GeV neutrino cross-section measurements applicable to T2K. The detector consists of 3 sub-detectors; SciBar and the Electron-Catcher were both used in the K2K experiment at KEK, Japan, whilst the Muon Range Detector is a new detector constructed at Fermilab using recycled materials from previous Fermilab experiments. A description of the detector, its construction and software is presented here. Keywords: neutrino, neutrino detector, SciBooNE PACS: 01.30.Cc, 13.15.+g, 95.55.Vj SCIBOONE SciBooNE’s principal measurements are sub-GeV neutrino cross-section measurements applicable to T2K [1]. SciBooNE sits in the Booster neutrino beam 100 m downstream from the beam target. As well as carrying out sub-GeV cross-section measurements SciBooNE will also be used as a near detector for the MiniBooNE experiment [2]. The Muon Range Detector (MRD) is one of 3 sub-detectors that make up the SciBooNE detector [3]. It sits downstream of both SciBar and the Electron-Catcher (EC) both originally used in the K2K experiment [4] at KEK, Japan. The Muon Range Detector is made up largely from recycled materials from previous Fermilab experiments including all the PMTs, scintillator, iron absorber and data acquisition (DAQ) electronics. THE MUON RANGE DETECTOR The role of the Muon Range Detector is to confine the muons produced in charge-current quasi-elastic (CCQE) interactions, which is the dominant process in SciBooNE. -
12 from Neutral Currents to Weak Vector Bosons
12 From neutral currents to weak vector bosons The unification of weak and electromagnetic interactions, 1973{1987 Fermi's theory of weak interactions survived nearly unaltered over the years. Its basic structure was slightly modified by the addition of Gamow-Teller terms and finally by the determination of the V-A form, but its essence as a four fermion interaction remained. Fermi's original insight was based on the analogy with elec- tromagnetism; from the start it was clear that there might be vector particles transmitting the weak force the way the photon transmits the electromagnetic force. Since the weak interaction was of short range, the vector particle would have to be heavy, and since beta decay changed nuclear charge, the particle would have to carry charge. The weak (or W) boson was the object of many searches. No evidence of the W boson was found in the mass region up to 20 GeV. The V-A theory, which was equivalent to a theory with a very heavy W , was a satisfactory description of all weak interaction data. Nevertheless, it was clear that the theory was not complete. As described in Chapter 6, it predicted cross sections at very high energies that violated unitarity, the basic principle that says that the probability for an individual process to occur must be less than or equal to unity. A consequence of unitarity is that the total cross section for a process with 2 angular momentum J can never exceed 4π(2J + 1)=pcm. However, we have seen that neutrino cross sections grow linearly with increasing center of mass energy. -
Neutrino Mass Analysis with KATRIN
Technical University Munich Max Planck Institute for Physics Physics Department Werner Heisenberg Institute Advanced Lab Course Neutrino Mass Analysis with KATRIN Christian Karl, Susanne Mertens, Martin Slezák Last edited: September 2, 2020 Contents 1 Introduction 3 2 The KATRIN Experiment5 2.1 Neutrino Mass Determination from Beta-Decay............................5 2.2 Molecular Tritium as Beta-Decay Source................................6 2.3 Measuring Principle: MAC-E Filter Electron Spectroscopy.....................7 2.4 Experimental Setup.............................................8 2.4.1 Rear Section.............................................8 2.4.2 Windowless Gaseous Tritium Source..............................8 2.4.3 Pumping Sections.........................................9 2.4.4 Pre- and Main-Spectrometer...................................9 2.4.5 Focal Plane Detector........................................ 10 2.5 Modelling of the Integrated Beta-Decay Spectrum.......................... 10 2.5.1 Final State Distribution...................................... 10 2.5.2 Doppler Effect........................................... 11 2.5.3 Response Function......................................... 12 2.5.4 Model of the Rate Expectation................................. 13 3 Basic Principles of Data Analysis 15 3.1 Maximum Likelihood Analysis...................................... 15 3.2 Interval Estimation............................................. 16 4 Tasks 18 4.1 Understanding the Model........................................ -
Search for Neutrinos from TANAMI Observed AGN Using Fermi
Search for neutrinos from TANAMI observed AGN using Fermi lightcurves with ANTARES Suche nach Neutrinos von TANAMI-AGN unter Verwendung von Fermi-Lichtkurven mit ANTARES Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrads Dr. rer. nat. vorgelegt von Kerstin Fehn Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 24.03.2015 Vorsitzender des Promotionsorgans: Prof. Dr. Jörn Wilms Gutachter/in: Prof. Dr. Gisela Anton Prof. Dr. Ulrich Katz ν Abstract Active galactic nuclei (AGN) are promising candidates for hadronic acceleration. The combination of radio, gamma ray and neutrino data should give information on their properties, especially concerning the sources of the high-energetic cosmic rays. Assuming a temporal correlation of gamma and neutrino emission in AGN the background of neutrino telescopes can be reduced using gamma ray lightcurves. Thereby the sensitivity for discovering cosmic neutrino sources is enhanced. In the present work a stacked search for a group of AGN with the ANTARES neutrino telescope in the Mediterranean is presented. The selection of AGN is based on the source sample of TANAMI, a multiwavelength observation program (radio to gamma rays) of extragalactic jets southerly of −30◦ declination. In the analysis lightcurves of the gamma satellite Fermi are used. In an unbinned maximum likelihood approach the test statistic in the background only case and in the signal and background case is determined. For the investigated 10% of data of ANTARES within the measurement time between 01.09.2008 and 30.07.2012 no significant excess is observed. -
The Standard Model Part II: Charged Current Weak Interactions I
Prepared for submission to JHEP The Standard Model Part II: Charged Current weak interactions I Keith Hamiltona aDepartment of Physics and Astronomy, University College London, London, WC1E 6BT, UK E-mail: [email protected] Abstract: Rough notes on ... Introduction • Relation between G and g • F W Leptonic CC processes, ⌫e− scattering • Estimated time: 3 hours ⇠ Contents 1 Charged current weak interactions 1 1.1 Introduction 1 1.2 Leptonic charge current process 9 1 Charged current weak interactions 1.1 Introduction Back in the early 1930’s we physicists were puzzled by nuclear decay. • – In particular, the nucleus was observed to decay into a nucleus with the same mass number (A A) and one atomic number higher (Z Z + 1), and an emitted electron. ! ! – In such a two-body decay the energy of the electron in the decay rest frame is constrained by energy-momentum conservation alone to have a unique value. – However, it was observed to have a continuous range of values. In 1930 Pauli first introduced the neutrino as a way to explain the observed continuous energy • spectrum of the electron emitted in nuclear beta decay – Pauli was proposing that the decay was not two-body but three-body and that one of the three decay products was simply able to evade detection. To satisfy the history police • – We point out that when Pauli first proposed this mechanism the neutron had not yet been discovered and so Pauli had in fact named the third mystery particle a ‘neutron’. – The neutron was discovered two years later by Chadwick (for which he was awarded the Nobel Prize shortly afterwards in 1935). -
Nuclear Physics
Nuclear Physics Overview One of the enduring mysteries of the universe is the nature of matter—what are its basic constituents and how do they interact to form the properties we observe? The largest contribution by far to the mass of the visible matter we are familiar with comes from protons and heavier nuclei. The mission of the Nuclear Physics (NP) program is to discover, explore, and understand all forms of nuclear matter. Although the fundamental particles that compose nuclear matter—quarks and gluons—are themselves relatively well understood, exactly how they interact and combine to form the different types of matter observed in the universe today and during its evolution remains largely unknown. Nuclear physicists seek to understand not just the familiar forms of matter we see around us, but also exotic forms such as those that existed in the first moments after the Big Bang and that exist today inside neutron stars, and to understand why matter takes on the specific forms now observed in nature. Nuclear physics addresses three broad, yet tightly interrelated, scientific thrusts: Quantum Chromodynamics (QCD); Nuclei and Nuclear Astrophysics; and Fundamental Symmetries: . QCD seeks to develop a complete understanding of how the fundamental particles that compose nuclear matter, the quarks and gluons, assemble themselves into composite nuclear particles such as protons and neutrons, how nuclear forces arise between these composite particles that lead to nuclei, and how novel forms of bulk, strongly interacting matter behave, such as the quark-gluon plasma that formed in the early universe. Nuclei and Nuclear Astrophysics seeks to understand how protons and neutrons combine to form atomic nuclei, including some now being observed for the first time, and how these nuclei have arisen during the 13.8 billion years since the birth of the cosmos. -
THE BOREXINO IMPACT in the GLOBAL ANALYSIS of NEUTRINO DATA Settore Scientifico Disciplinare FIS/04
UNIVERSITA’ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA SCUOLA DI DOTTORATO IN FISICA, ASTROFISICA E FISICA APPLICATA CICLO XXIV THE BOREXINO IMPACT IN THE GLOBAL ANALYSIS OF NEUTRINO DATA Settore Scientifico Disciplinare FIS/04 Tesi di Dottorato di: Alessandra Carlotta Re Tutore: Prof.ssa Emanuela Meroni Coordinatore: Prof. Marco Bersanelli Anno Accademico 2010-2011 Contents Introduction1 1 Neutrino Physics3 1.1 Neutrinos in the Standard Model . .4 1.2 Massive neutrinos . .7 1.3 Solar Neutrinos . .8 1.3.1 pp chain . .9 1.3.2 CNO chain . 13 1.3.3 The Standard Solar Model . 13 1.4 Other sources of neutrinos . 17 1.5 Neutrino Oscillation . 18 1.5.1 Vacuum oscillations . 20 1.5.2 Matter-enhanced oscillations . 22 1.5.3 The MSW effect for solar neutrinos . 26 1.6 Solar neutrino experiments . 28 1.7 Reactor neutrino experiments . 33 1.8 The global analysis of neutrino data . 34 2 The Borexino experiment 37 2.1 The LNGS underground laboratory . 38 2.2 The detector design . 40 2.3 Signal processing and Data Acquisition System . 44 2.4 Calibration and monitoring . 45 2.5 Neutrino detection in Borexino . 47 2.5.1 Neutrino scattering cross-section . 48 2.6 7Be solar neutrino . 48 2.6.1 Seasonal variations . 50 2.7 Radioactive backgrounds in Borexino . 51 I CONTENTS 2.7.1 External backgrounds . 53 2.7.2 Internal backgrounds . 54 2.8 Physics goals and achieved results . 57 2.8.1 7Be solar neutrino flux measurement . 57 2.8.2 The day-night asymmetry measurement . 58 2.8.3 8B neutrino flux measurement . -
BOREXINO - Status and Calibration
BOREXINO - Status and Calibration International Workshop on "Double Beta Decay and Neutrinos" Osaka, June 12, 2007 Christian Grieb for the Borexino Collaboration Virginia Tech Borexino Collaboration • College de France (France) • Technische Unversität München (Germany) • JINR Dubna (Russia) • Kurchatov Institute Moscow (Russia) • MPI Heidelberg (Germany) • Jagellonian University Cracow (Poland) • INFN – Milano (Italy) • INFN – Genova (Italy) • INFN – Perugia (Italy) • INFN – LNGS (Italy) • Princeton Univeristy (USA) NSF funded • Virginia Tech (USA) } Borexino Christian Grieb, Virginia Tech, June 2007 Borexino • Designed to spectroscopically measure low energy solar neutrinos, especially 7Be • Liquid Scintillator Spectrometer • ν + e - → ν’ + e -’ • Charged Current • Neutral Current Borexino Christian Grieb, Virginia Tech, June 2007 Signal in Borexino 7 +++ −−− →→→ 7 +++ ννν Be e Li e Monochromatic E ννν=862 keV Φ 9 ν 2 SSM =4.8x10 /sec/cm ννν ννν e x Expected rate (LMA) is ~35 counts/day between 0.25-0.8 MeV Borexino Christian Grieb, Virginia Tech, June 2007 Science in Borexino • Measure 7Be solar neutrinos (0.25-0.8 MeV) • Measured vs MSW-LMA predicted event rate • 1/r^2 solar signature • Study CNO and pep (~1-2 pep ev/d) neutrinos (0.8-1.3 MeV) (rejection of 11 C 8B-neutrinos cosmogenic background – proven in CTF (SuperK, SNO) hep-ex/0601035) • Geoneutrinos (10 – 30 ev/year) • Supernova Neutrinos (~120 ev from GC 7 supernova) Be neutrinos (BOREXINO) • Double beta decay with Xenon? (Phys.Rev.Lett. 72:1411,1994) • ... Borexino Christian Grieb, Virginia Tech, June 2007 Publications (since 2002) • The Nylon Scintillator Containment Vessels for the Borexino Solar Neutrino Experiment. • J. Benziger et al. Feb 2007 physics/0702162 • CNO and pep neutrino spectroscopy in Borexino: Measurement of the deep-underground production of cosmogenic C11 in an organic liquid scintillator • H.