Joint European Thermodynamics Conference IX

Total Page:16

File Type:pdf, Size:1020Kb

Joint European Thermodynamics Conference IX JETC IX Joint European Thermodynamics Conference IX Ecole nationale supérieure des mines de Saint-Etienne, June 12-15 2007 Proceedings Wärme Heat Chaleur Calor Θερμότητα Calore Varme חום Editors : Bernard Guy and Daniel Tondeur JETC IX – 12-15 June 2007 Joint European Thermodynamics Conference IX Ecole nationale supérieure des mines de Saint-Étienne, France Contents Foreword....................................................................................................................................1 Committees................................................................................................................................2 Acknowledgements ...................................................................................................................3 Program .....................................................................................................................................4 The Ilya Prigogine prize of thermodynamics ..........................................................................13 List of papers (alphabetic order of the first authors) ...............................................................15 List and numbers of posters...................................................................................................219 Geological field trip...............................................................................................................221 Exhibition on thermodynamics..............................................................................................223 Exhibition of old and rare books on thermodynamics...........................................................225 Ceilidh ...................................................................................................................................227 Ecast ......................................................................................................................................228 List of authors........................................................................................................................229 JETC IX – 12-15 June 2007 Joint European Thermodynamics Conference IX Ecole nationale supérieure des mines de Saint-Étienne, France Foreword Why organize a conference on thermodynamics ? Are the bases of the discipline not founded solidly enough? And are the applications now so various that the dialog between the specialists from chemistry, geology, materials science, chemical engineering etc., all using thermodynamics in their own way, is becoming impossible? As a matter of fact, thermodynamics is continuously developing and new ideas and methods do appear at all levels (concepts, scale changes, mesoscopic thermodynamics and links with the nano-sciences, ab-initio methods, optimisation etc.). For this reason, it is important that all the scientists that use it and make it progress can find a place to exchange and promote new ideas. Some new methods in a domain may also appear be useful in another. So the first aim of the conference is to make a review of current research in thermodynamics and promote interdisciplinary exchanges on the progresses of thermodynamics; the focus will be given on the concepts and on the methods rather than on the applications, or in that case mostly provided a general bearing may be given. Welcome to Saint-Etienne! Pourquoi un congrès de thermodynamique? Les bases de la discipline ne sont-elles pas fondées solidement ? Et ses applications ne sont-elles pas maintenant si dispersées que le dialogue entre les spécialistes qui l’utilisent dans des domaines aussi éloignés que la chimie, la géologie, les matériaux, le génie des procédés etc. est devenu impossible ? Non, il se trouve que la thermodynamique connaît sans cesse de nouveaux développements à tous les niveaux (concepts, changements d’échelle, thermodynamique mésoscopique et liens avec les nano-sciences, méthodes ab initio, optimisation etc.). Et, pour cette raison, il est important que tous ceux qui l’utilisent et la font progresser puissent trouver un lieu pour échanger et promouvoir de nouvelles idées : de nouvelles méthodes dans un domaine peuvent- elles servir dans un autre ? Telle est l’ambition première de ce congrès : faire le point, être un lieu d’échange pluri- et inter-disciplinaire sur les progrès de la thermodynamique, en se focalisant sur les concepts et les méthodes plus que les applications. Bienvenue à Saint-Etienne ! Bernard GUY and Daniel TONDEUR, chairs of the scientific committee of JETC IX 1 JETC IX – 12-15 June 2007 Joint European Thermodynamics Conference IX Ecole nationale supérieure des mines de Saint-Étienne, France Committees Scientific committee Bernard GUY, Ecole des mines, Saint-Etienne and Daniel TONDEUR, Ensic, Nancy chairs of the scientific committee Bjarne ANDRESEN, Niels Bohr Institute, Copenhagen Dick BEDEAUX, Leyden José CASAS-VASQUEZ, University of Barcelona Danièle CLAUSSE, UTC, Compiègne Michel COURNIL, Ecole des mines, Saint-Etienne Alexis De VOS, University of Gent Jean-Pierre DUMAS, University of Pau Jean DUBESSY, CNRS, Nancy Daniel FARGUE, Ecole des mines, Paris Walter FURST, ENSTA, Paris Daniel GARCIA, Ecole des mines, Saint-Etienne Karl-Heinz HOFFMANN, Chemnitz Christian JALLUT, CPE, Lyon François MARECHAL, Ecole polytechnique fédérale de Lausanne Jean-Karl PLATTEN, University of Mons Dominique RICHON, Ecole des mines de Paris, Fontainebleau Jacques ROUX, CNRS, Paris Michel SOUSTELLE, Ecole des mines, Saint-Etienne Annie STEINCHEN-SANFELD Marseille Antonio VALERO, Saragosse Local organization committee Bernard GUY, Ecole des mines, Saint-Etienne Grégoire BERTHEZENE, Ecole des mines (website) Gérard THOMAS, Ecole des mines Olivier BONNEFOY, Ecole des mines Jean-Luc BOUCHARDON, Ecole des mines Emilie POURCHEZ, Ecole des mines (exhibition on thermodynamics) Joëlle VERNEY, Ecole des mines (secretary) Frédéric GALLICE, Ecole des mines Organisation of geological field trip Bernard GUY, Ecole des mines Jean-Yves COTTIN, Université Jean Monnet, Saint-Etienne Jean-Luc BOUCHARDON, Ecole des mines 2 JETC IX – 12-15 June 2007 Joint European Thermodynamics Conference IX Ecole nationale supérieure des mines de Saint-Étienne, France Acknowledgements We thank the following people : Frédrérique Arcos from Tourist Office for her help in the hotel and gala organisation, Marine Triomphe from Ecole des mines and BV Conseil for their help in the public relations of the conference, Noël Paul from Saint-Etienne Métropole for funding the conference, M. Michel Thiollière, Mayor of Saint-Etienne for welcoming us in the Town-Hall and Mrs Fontanilles and Tavernier for their help, All the members of the committees (refer to page 2), especially Joëlle Verney and Grégoire Berthezène; and also all those who helped us in so many ways and do not apprear in the previous lists: the doctorate researchers: Frédéric Bard, Franck Diedro, Morad Lakhssassi and Guillaume Battaia; Marc Doumas and Jacques Moutte (Ecole des mines) ; Marie- Christine Gerbe and Peter Bowden (university of Saint-Etiennne), and all the people in Ecole des mines who worked for the organisation tasks… Our non-thermodynamicists wifes and husbands… 3 JETC IX – 12-15 June 2007 Joint European Thermodynamics Conference IX Ecole nationale supérieure des mines de Saint-Étienne, France Program Joint European Thermodynamics Conference IX, JETC IX Ecole nationale supérieure des mines de Saint-Etienne Saint-Etienne, France 12-15 June 2007 This program may still be modified… Please tell us if there is a big discrepancy with your schedule or if there are mistakes. 65 communications: 40 oral communications and 25 poster communications. The oral communications last for 20 minutes including discussion (prepare 15 minutes talks) and the oral presentations of posters last for 3 minutes (no discussion, prepare 3 slides). Please bring your ppt file in advance, i.e. before the session, to the computer in the main amphitheatre. Those participants who have written books are invited to bring copies along with them for display during the conference Posters come first! Start your day by a look at the posters between 8h 30 and 9h 30 each day! Four main themes : A. Foundations of thermodynamics : history, philosophy, teaching of thermodynamics, I. Prigogine’s legacy, new approaches B. Non-equilibrium thermodynamics: thermodiffusion, kinetics of phase transitions, transport processes, advanced concepts C. Equilibrium thermodynamics: equations of state, phase equilibria, nanosystems, computation D. Optimization and engineering systems: exergy, energy, finite-time thermodynamics 4 JETC IX – 12-15 June 2007 Joint European Thermodynamics Conference IX Ecole nationale supérieure des mines de Saint-Étienne, France Day 1: Tuesday June 12 2007 8h 30 - 9h 30: registration, installation of posters, coffee, a first look to the exhibitions (thermodynamics, books) 9h 30 – 10h 50: Welcome and session A1 - 20 minutes, chair B. Guy: - welcome addresses: Bernard Guy, Daniel Tondeur, Jean-Charles Pinoli (Ecole des mines), Noël Paul (Saint-Etienne Métropole) - announcements: exhibition on thermodynamics: Emilie Pourchez, and Ecole des mines students; exhibition on books: Thierry Veyron; Ceilidh: Peter Bowden; publication of presentations in thermodynamics journals: Daniel Tondeur ; geological excursion: B. Guy - 60 minutes: Session A1 : 3 oral communications; chair: D. Tondeur • Gian Paolo Beretta : Axiomatic definition of entropy for non-equilibrium states • Jean-François LeMaréchal: Teaching and learning thermodynamics at school • Bernard Guy:
Recommended publications
  • Proteins: a Theoretical Perspective of Dynamics, Structure, and Thermodynamics
    PROTEINS: A THEORETICAL PERSPECTIVE OF DYNAMICS, STRUCTURE, AND THERMODYNAMICS CHARLES L. BROOKS I11 Department of Chemistry. Carnegie-Mellon IJniversity, Pittsburgh, Pennsylvania MARTIN KARPLUS Department of Chemistry, Harvard University, Cambridge, Massachusetts B. MONTGOMERY PETTITT Department of Chemistry University of Houston Houston, Texas ADVANCES IN CHEMICAL PHYSICS VOLUME L.XXI Series editors Ilya Prigogine Stuart A. Rice University of Brussels Department of Chemistry Brussels. BelRium and and The James Franck Institute University of Texas University of Chicugo Austin. Texas Chicago. Illinois AN INTERSCIENCE” PUBLICATION JOHN WILEY & SONS NEW YORK CHICHESTER BRISBANE TORONTO SINGAPORE PROTEINS: A THEORETICAL PERSPECTIVE OF DYNAMICS, STRUCTURE, AND THERMODYNAMICS ADVANCES IN CHEMICAL PHYSICS VOLUME LXXI EDITORIAL BOARD C. J. BALLHAUSEN,Kobenhaven Universitets Fysisk-Kemiske Institut, Kemisk La- boratorium IV, Kobenhaven, Denmark BRUCE BERNE, Columbia University, Department of Chemistry, New York, New York, U.S.A. RICHARDB. BERNSTEIN,University of California, Department of Chemistry, LOS Angeles, California, U.S.A. G. CARERI,Instituto di Fisica “Guglielmo Marconi,” Universita delli Studi, Piazzle delle Scienze, Rome, Italy MORRELCOHEN, Exxon Research and Engineering Company, Clinton Township, An- nandale, New Jersey, U.S.A. KARLF. FREED,The James Franck Institute, The University of Chicago, Chicago, Illinois, U.S.A. ROBERTGOMER, The James Franck Institute, The University of Chicago, Chicago, Illinois, U.S.A. RAYMONDE. KAPRAL, University of Toronto, Toronto, Ontario, Canada WILLIAMKLEMPERER, Department of Chemistry, Harvard University, Cambridge, Massachusetts, U .S. A. Yu L. KLIMONTOVITCH,Moscow State University, Moscow, USSR V. KRINSKI,Institute of Biological Physics, USSR Academy of Science, Puschino, Moscow Region, USSR M. MANDEL,Chemie-Complex der Rijks-Universiteit, Wassenaarseweg, Leiden, Netherlands RUDYMARCUS, Department of Chemistry, California Institute of Technology, Pasa- dena, California, U.S.A.
    [Show full text]
  • April 17-19, 2018 the 2018 Franklin Institute Laureates the 2018 Franklin Institute AWARDS CONVOCATION APRIL 17–19, 2018
    april 17-19, 2018 The 2018 Franklin Institute Laureates The 2018 Franklin Institute AWARDS CONVOCATION APRIL 17–19, 2018 Welcome to The Franklin Institute Awards, the a range of disciplines. The week culminates in a grand United States’ oldest comprehensive science and medaling ceremony, befitting the distinction of this technology awards program. Each year, the Institute historic awards program. celebrates extraordinary people who are shaping our In this convocation book, you will find a schedule of world through their groundbreaking achievements these events and biographies of our 2018 laureates. in science, engineering, and business. They stand as We invite you to read about each one and to attend modern-day exemplars of our namesake, Benjamin the events to learn even more. Unless noted otherwise, Franklin, whose impact as a statesman, scientist, all events are free, open to the public, and located in inventor, and humanitarian remains unmatched Philadelphia, Pennsylvania. in American history. Along with our laureates, we celebrate his legacy, which has fueled the Institute’s We hope this year’s remarkable class of laureates mission since its inception in 1824. sparks your curiosity as much as they have ours. We look forward to seeing you during The Franklin From sparking a gene editing revolution to saving Institute Awards Week. a technology giant, from making strides toward a unified theory to discovering the flow in everything, from finding clues to climate change deep in our forests to seeing the future in a terahertz wave, and from enabling us to unplug to connecting us with the III world, this year’s Franklin Institute laureates personify the trailblazing spirit so crucial to our future with its many challenges and opportunities.
    [Show full text]
  • STIX 394372 1 En Bookfront
    Quantum Systems in Physics, Chemistry, and Biology Progress in Theoretical Chemistry and Physics VOLUME 30 Honorary Editors Rudolph A. Marcus (California Institute of Technology, Pasadena, CA, USA) Roy McWeeny (Università di Pisa, Pisa, Italy) Editors-in-Chief J. Maruani (formerly Laboratoire de Chimie Physique, Paris, France) S. Wilson (formerly Rutherford Appleton Laboratory, Oxfordshire, UK) Editorial Board E. Brändas (University of Uppsala, Uppsala, Sweden) L. Cederbaum (Physikalisch-Chemisches Institut, Heidelberg, Germany) G. Delgado-Barrio (Instituto de Matemáticas y Física Fundamental, Madrid, Spain) E.K.U. Gross (Freie Universität, Berlin, Germany) K. Hirao (University of Tokyo, Tokyo, Japan) Chao-Ping Hsu (Institute of Chemistry, Academia Sinica, Taipei, Taiwan) R. Lefebvre (Université Pierre-et-Marie-Curie, Paris, France) R. Levine (Hebrew University of Jerusalem, Jerusalem, Israel) K. Lindenberg (University of California at San Diego, San Diego, CA, USA) A. Lund (University of Linköping, Linköping, Sweden) M.A.C. Nascimento (Instituto de Química, Rio de Janeiro, Brazil) P. Piecuch (Michigan State University, East Lansing, MI, USA) M. Quack (ETH Zürich, Zürich, Switzerland) S.D. Schwartz (Yeshiva University, Bronx, NY, USA) O. Vasyutinskii (Russian Academy of Sciences, St Petersburg, Russia) Y.A. Wang (University of British Columbia, Vancouver, BC, Canada) Former Editors and Editorial Board Members I. Prigogine (†) W.F. van Gunsteren (*) J. Rychlewski (†) H. Hubač (*) Y.G. Smeyers (†) E. Kryachko (*) R. Daudel (†) M.P. Levy (*) M. Mateev (†) G.L. Malli (*) W.N. Lipscomb (†) P.G. Mezey (*) Y. Chauvin (†) N. Rahman (*) H.W. Kroto (†) S. Suhai (*) H. Ågren (*) O. Tapia (*) V. Aquilanti (*) P.R. Taylor (*) D. Avnir (*) R.G. Woolley (*) J. Cioslowski (*) †: deceased; *: end of term More information about this series at http://www.springer.com/series/6464 Alia Tadjer ⋅ Rossen Pavlov (†) Jean Maruani ⋅ Erkki J.
    [Show full text]
  • Nobel Lectures™ 2001-2005
    World Scientific Connecting Great Minds 逾10 0 种 诺贝尔奖得主著作 及 诺贝尔奖相关图书 我们非常荣幸得以出版超过100种诺贝尔奖得主著作 以及诺贝尔奖相关图书。 我们自1980年代开始与诺贝尔奖得主合作出版高品质 畅销书。一些得主担任我们的编辑顾问、丛书编辑, 并于我们期刊发表综述文章与学术论文。 世界科技与帝国理工学院出版社还邀得其中多位作了公 开演讲。 Philip W Anderson Sir Derek H R Barton Aage Niels Bohr Subrahmanyan Chandrasekhar Murray Gell-Mann Georges Charpak Nicolaas Bloembergen Baruch S Blumberg Hans A Bethe Aaron J Ciechanover Claude Steven Chu Cohen-Tannoudji Leon N Cooper Pierre-Gilles de Gennes Niels K Jerne Richard Feynman Kenichi Fukui Lawrence R Klein Herbert Kroemer Vitaly L Ginzburg David Gross H Gobind Khorana Rita Levi-Montalcini Harry M Markowitz Karl Alex Müller Sir Nevill F Mott Ben Roy Mottelson 诺贝尔奖相关图书 THE PERIODIC TABLE AND A MISSED NOBEL PRIZES THAT CHANGED MEDICINE NOBEL PRIZE edited by Gilbert Thompson (Imperial College London) by Ulf Lagerkvist & edited by Erling Norrby (The Royal Swedish Academy of Sciences) This book brings together in one volume fifteen Nobel Prize- winning discoveries that have had the greatest impact upon medical science and the practice of medicine during the 20th “This is a fascinating account of how century and up to the present time. Its overall aim is to groundbreaking scientists think and enlighten, entertain and stimulate. work. This is the insider’s view of the process and demands made on the Contents: The Discovery of Insulin (Robert Tattersall) • The experts of the Nobel Foundation who Discovery of the Cure for Pernicious Anaemia, Vitamin B12 assess the originality and significance (A Victor Hoffbrand) • The Discovery of
    [Show full text]
  • Nuclear Energy 2 Editorial out Ofhealthcare Taking Thepollution Unpopular Sector the Benefitsofan Nuclear Energy Tion Whichhasbeenignoredfortoolong
    954050_RDT40_EN 19-02-2004 07:51 Pagina 1 a ISSN 1024-0802 Nuclear 15 KI-AB-03-040-EN-C Energy Can we do without it? Environment Taking the pollution out of health care p. 15 Science and ethics Protecting the ‘whistle-blowers’ p. 35 954050_RDT40_EN 19-02-2004 07:51 Pagina 2 2 RTD info N° 40 February 2004 Editorial Science under pressure Sacked or suspended… while others are being individuals acting as the ‘conscience’ of sci- one and the same time. This causes confusion, prevented from publishing – it is not unusual for ence do not always have the legal or legislative conflicts and sometimes irregularities. It blurs scientists who publicly express doubts or fears tools to ensure their voices are heard and their their image and that of science along with it. about the consequences of their research to find rights are respected. In this respect, science is Aware of the problem, the publishers of certain their civic conscience causing them profes- a very human and mundane activity, with its fair journals now require their contributors to cite sional problems. At a time when science is per- share of conflicts, slip-ups and moral issues. the source of their funding as proof that an art- haps too often seen as the universal magic icle deemed to be scientifically correct is not, at Researchers must therefore be able to speak out wand, there is the temptation to have scientists the same time, potentially biased. freely on the ethical aspects of their research, say what the politicians or captains of industry subject of course to the exclusion of ‘denounce- Until researchers speak openly and transparently would like to hear.
    [Show full text]
  • Regularity and Symmetry As a Base for Efficient Realization of Reversible Logic Circuits
    Portland State University PDXScholar Electrical and Computer Engineering Faculty Publications and Presentations Electrical and Computer Engineering 2001 Regularity and Symmetry as a Base for Efficient Realization of Reversible Logic Circuits Marek Perkowski Portland State University, [email protected] Pawel Kerntopf Technical University of Warsaw Andrzej Buller ATR Kyoto, Japan Malgorzata Chrzanowska-Jeske Portland State University Alan Mishchenko Portland State University SeeFollow next this page and for additional additional works authors at: https:/ /pdxscholar.library.pdx.edu/ece_fac Part of the Electrical and Computer Engineering Commons Let us know how access to this document benefits ou.y Citation Details Perkowski, Marek; Kerntopf, Pawel; Buller, Andrzej; Chrzanowska-Jeske, Malgorzata; Mishchenko, Alan; Song, Xiaoyu; Al-Rabadi, Anas; Jozwiak, Lech; and Coppola, Alan, "Regularity and Symmetry as a Base for Efficient Realization of vRe ersible Logic Circuits" (2001). Electrical and Computer Engineering Faculty Publications and Presentations. 235. https://pdxscholar.library.pdx.edu/ece_fac/235 This Conference Proceeding is brought to you for free and open access. It has been accepted for inclusion in Electrical and Computer Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Marek Perkowski, Pawel Kerntopf, Andrzej Buller, Malgorzata Chrzanowska-Jeske, Alan Mishchenko, Xiaoyu Song, Anas Al-Rabadi, Lech Jozwiak, and Alan Coppola This conference proceeding is available at PDXScholar: https://pdxscholar.library.pdx.edu/ece_fac/235 Regularity and Symmetry as a Base for Efficient Realization of Reversible Logic Circuits Marek Perkowski, Pawel Kerntopf+, Andrzej Buller*, Malgorzata Chrzanowska-Jeske, Alan Mishchenko, Xiaoyu Song, Anas Al-Rabadi, Lech Jozwiak@, Alan Coppola$ and Bart Massey PORTLAND QUANTUM LOGIC GROUP, Portland State University, Portland, Oregon 97207-0751.
    [Show full text]
  • Optimization of Reversible Circuits Using Toffoli Decompositions with Negative Controls
    S S symmetry Article Optimization of Reversible Circuits Using Toffoli Decompositions with Negative Controls Mariam Gado 1,2,* and Ahmed Younes 1,2,3 1 Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria 21568, Egypt; [email protected] 2 Academy of Scientific Research and Technology(ASRT), Cairo 11516, Egypt 3 School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK * Correspondence: [email protected]; Tel.: +203-39-21595; Fax: +203-39-11794 Abstract: The synthesis and optimization of quantum circuits are essential for the construction of quantum computers. This paper proposes two methods to reduce the quantum cost of 3-bit reversible circuits. The first method utilizes basic building blocks of gate pairs using different Toffoli decompositions. These gate pairs are used to reconstruct the quantum circuits where further optimization rules will be applied to synthesize the optimized circuit. The second method suggests using a new universal library, which provides better quantum cost when compared with previous work in both cost015 and cost115 metrics; this proposed new universal library “Negative NCT” uses gates that operate on the target qubit only when the control qubit’s state is zero. A combination of the proposed basic building blocks of pairs of gates and the proposed Negative NCT library is used in this work for synthesis and optimization, where the Negative NCT library showed better quantum cost after optimization compared with the NCT library despite having the same circuit size. The reversible circuits over three bits form a permutation group of size 40,320 (23!), which Citation: Gado, M.; Younes, A.
    [Show full text]
  • A Contextual Foundation for Mechanics, Thermodynamics, and Evolution
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 August 2020 doi:10.20944/preprints202007.0469.v2 Article A Contextual Foundation for Mechanics, Thermodynamics, and Evolution Harrison Crecraft 1,* 1 GeoEx Analytics: [email protected] * Correspondence: [email protected] Abstract: The prevailing interpretations of physics are based on deeply entrenched assumptions, rooted in classical mechanics. Logical implications include: the denial of entropy and irreversible change as fundamental properties of state; the inability to explain random quantum measurements and nonlocality without unjustifiable assumptions and untestable metaphysical implications; and the inability to explain or even define the evolution of complexity. The dissipative conceptual model (DCM) is based on empirically justified assumptions. It generalizes mechanics’ definition of state by acknowledging the contextual relationship between a physical system and its positive-temperature ambient background, and it defines the DCM entropy as a fundamental contextual property of physical states. The irreversible production of entropy establishes the thermodynamic arrow of time and a system’s process of dissipation as fundamental. The DCM defines a system’s utilization by the measurable rate of internal work on its components and as an objective measure of stability for a dissipative process. The spontaneous transition of dissipative processes to higher utilization and stability defines two evolutionary paths. The evolution of life proceeded by both competition for resources and cooperation to evolve and sustain higher functional complexity. The DCM accommodates classical and quantum mechanics and thermodynamics as idealized non-contextual special cases. Keywords: Physical Foundations; Quantum mechanics; Nonlocality; Time; Entropy; Thermodynamics; Origin of Life 1. Introduction Physics has had a foundational crisis since the early Twentieth Century, when classical mechanics ceded its supremacy to quantum mechanics and relativity as fundamental descriptions of physics.
    [Show full text]
  • Energy Recovery and Logical Reversibility in Adiabatic CMOS Multiplier
    Energy Recovery and Logical Reversibility in Adiabatic CMOS Multiplier Ismo Hänninen, Hao Lu, Craig S. Lent, Gregory L. Snider University of Notre Dame, Center for Nano Science and Technology, Notre Dame, IN 46556, USA {ismo.hanninen, hlu1, lent, snider.7}@nd.edu Abstract. Overcoming the IC power challenge requires signal energy recovery, which can be achieved utilizing adiabatic charging principles and logically reversible computing in the circuit design. This paper demonstrates the energy- efficiency of a Bennett-clocked adiabatic CMOS multiplier via a simulation model. The design is analyzed on the logic gate level to determine an estimate for the number of irreversible bit erasures occurring in a combinatorial implementation, showing considerable potential for minimizing the logical information loss. Keywords: Multipliers, computer arithmetic, adiabatic charging, reversible logic. 1 Introduction Reversible logic is a strict requirement for quantum computing, however, overcoming the power challenge of the traditional digital integrated circuits potentially benefits from the associated energy recovery enabled by the reversible computation principles. Standard Complementary Metal Oxide Semiconductor (CMOS) technology does not recover signal energy, which leads to considerable energy waste and heat dissipation, limiting the attainable device densities and operating frequencies, and thereby, also the available computing power. While the technology scales down, expected to follow the predictions of the International Roadmap for Semiconductors (ITRS), the loss of signal energy and limiting the related heat become all the more important factors for circuit design. [1] Adiabatically charged logic recovers part of the signal energy, and if the circuits are slowed down, asymptotically nearly all of the energy can be recovered.
    [Show full text]
  • Time, Space, and Energy in Reversible Computing
    Time, Space, and Energy in Reversible Computing Paul Vitan´ yi ¤ CWI University of Amsterdam National ICT of Australia ABSTRACT sipate energy by generating a corresponding amount of entropy for We survey results of a quarter century of work on computation by every bit of information that gets irreversibly erased; the logically reversible general-purpose computers (in this setting Turing ma- reversible operations can in principle be performed dissipation-free. chines), and general reversible simulation of irreversible computa- One should sharply distinguish between the issue of logical re- tions, with respect to energy-, time- and space requirements. versibility and the issue of energy dissipation freeness. If a com- Categories and Subject Descriptors: F.2 [Algorithms], F.1.3 puter operates in a logically reversible manner, then it still may dis- [Performance] sipate heat. For such a computer we know that the laws of physics General Terms: Algorithms, Performance do not preclude that one can invent a technology in which to im- plement a logically similar computer to operate physically in a dis- Keywords: Reversible computing, reversible simulation, adia- sipationless manner. Computers built from reversible circuits, or batic computing, low-energy computing, computational complex- the reversible Turing machine, [1, 2, 7], implemented with cur- ity, time complexity, space complexity, energy dissipation com- rent technology will presumably dissipate energy but may conceiv- plexity, tradeoffs. ably be implemented by future technology in an adiabatic fashion. But for logically irreversible computers adiabatic implementation 1. INTRODUCTION is widely considered impossible. Computer power has roughly doubled every 18 months for the Thought experiments can exhibit a computer that is both logi- last half-century (Moore’s law).
    [Show full text]
  • Chapter 2 Quantum Gates
    Chapter 2 Quantum Gates “When we get to the very, very small world—say circuits of seven atoms—we have a lot of new things that would happen that represent completely new opportunities for design. Atoms on a small scale behave like nothing on a large scale, for they satisfy the laws of quantum mechanics. So, as we go down and fiddle around with the atoms down there, we are working with different laws, and we can expect to do different things. We can manufacture in different ways. We can use, not just circuits, but some system involving the quantized energy levels, or the interactions of quantized spins.” – Richard P. Feynman1 Currently, the circuit model of a computer is the most useful abstraction of the computing process and is widely used in the computer industry in the design and construction of practical computing hardware. In the circuit model, computer scien- tists regard any computation as being equivalent to the action of a circuit built out of a handful of different types of Boolean logic gates acting on some binary (i.e., bit string) input. Each logic gate transforms its input bits into one or more output bits in some deterministic fashion according to the definition of the gate. By compos- ing the gates in a graph such that the outputs from earlier gates feed into the inputs of later gates, computer scientists can prove that any feasible computation can be performed. In this chapter we will look at the types of logic gates used within circuits and how the notions of logic gates need to be modified in the quantum context.
    [Show full text]
  • A Quantum of Thermodynamics
    Henrik Wilming A Quantum of Thermodynamics From ground state cooling to spontaneous symmetry breaking Im Fachbereich Physik der Freien Universität Berlin eingereichte Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften. Berlin, 2017 Erstgutachter: Prof. Dr. Jens Eisert Zweitgutachter: Prof. Felix von Oppen, PhD Datum der Disputation: 19.7.2018 Publications of the author of this thesis Peer-reviewed publications: [1] H. Wilming, R. Gallego, and J. Eisert. “Second law of thermodynamics under con- trol restrictions”. Phys. Rev. E 93.4 (2016). DOI: 10.1103/physreve.93. 042126. [2] R. Gallego, J. Eisert, and H. Wilming. “Thermodynamic work from operational principles”. New J. Phys. 18.10 (2016), p. 103017. DOI: 10 . 1088 / 1367 - 2630/18/10/103017. [3] M. Perarnau-Llobet, A. Riera, R. Gallego, H. Wilming, and J. Eisert. “Work and entropy production in generalised Gibbs ensembles”. New J. Phys. 18.12 (2016), p. 123035. DOI: 10.1088/1367-2630/aa4fa6. [4] H. Wilming, M. J. Kastoryano, A. H. Werner, and J. Eisert. “Emergence of spon- taneous symmetry breaking in dissipative lattice systems”. J. Math. Phys. 58.3 (2017), p. 033302. DOI: 10.1063/1.4978328. [5] F. Pastawski, J. Eisert, and H. Wilming. “Towards Holography via Quantum Source- Channel Codes”. Phys. Rev. Lett. 119.2 (2017), p. 020501. DOI: 10 . 1103 / PhysRevLett.119.020501. [6] J Lekscha, H Wilming, J Eisert, and R Gallego. “Quantum thermodynamics with local control”. Phys. Rev. E 97.2 (2018), p. 022142. DOI: 10.1103/PhysRevE. 97.022142. arXiv: 10.1103/PhysRevD.97.086015. [7] H. Wilming, R. Gallego, and J. Eisert. “Axiomatic Characterization of the Quan- tum Relative Entropy and Free Energy”.
    [Show full text]