Plastic Welding Experiences

Total Page:16

File Type:pdf, Size:1020Kb

Plastic Welding Experiences Plastic Welding Experiences In the past I have advocated plastic solvent welding with ABS solvent to rejoin ABS plastic parts without repainting. Solvent is inexpensive but it does takes considerable time for a solvent weld to become strong. Plastic welding is well known to be the strongest ABS repair returning the material to original strength but it is usually taken for granted that repainting will be necessary. These are experiments that have been done with plastic welding to show that it can be done without repainting. Plastic welders come in two general types. Hot air welders and soldering iron type welders. I tried both but a soldering iron or soldering type welder is by far the easier to use if repainting is not desired. This appears to be true for several reasons. Below is a photo of a Weller 60 watt soldering iron that has been used to plastic weld a fair number of ABS panels without repainting. The low power of the iron helps to prevent overheating. Figure 1 Figure 2 shows a hot air welder which uses an 800 watt adjustable heating element and a compressor to set the air flow. These two adjustments require a thermometer to set the actual welding temperature for the type of plastic being welded. One advantage of this type of welder is that 800 watts can create a high enough temperature to weld nylon at about 752 degrees F. Figure 2 The disadvantage is that the heat is spread over a larger area which is good for production work requiring speed but is a disadvantage when the opposite surface is coated with paint that is not to be damaged. Experiments with this type of welder revealed that when attempting to heat a crack in plastic, the area heated is sufficiently large that distortion of the plastic can take place due to the cracked plastic having acquired internal stresses that suddenly cause the heated plastic to to move unpredictably. Here is an example of a fairing that was heated with hot air from the back side but the front side suddenly puckered causing the cracks to open up even though the paint was not damaged by the heat. The entire area around the cracks became soft like putty and quite pliable so that sections could be moved with fingers. Plastic is a poor heat conductor so it retains heat internally for some time allowing the plastic to be manipulated to some extent in and out of the picture but it is not easy to move the sections in the plane of the photo to close the gaps that opened up. Figure 3 The plastic welder shown in figure 4 is made by the same manufacturer. It comes with stainless steel mesh which will be very useful. Based on the specifications of the manufacturer, this soldering iron type of welder should not work on ABS plastics due the specified maximum tip temperature of 525 degrees F. which is only 274 degrees C. The typical melting temperature of ABS plastic is 350 degrees C. Figure 4 A test with the welding rods shown in figure 6 revealed that this welder did not have any problem with melting the ABS rods. A subsequent measurement of the tip temperature of this welder showed that its actual tip temperature was 383 degrees C. or 721 degrees F. which is nearly 200 degrees F higher than specified. This is very fortunate since the shape of this welder's tip lends itself to reshaping cylindrical welding rods into shapes such as required for rebuilding broken mounting tabs as will be demonstrated later. Figure 5 Figure 6 The price of the welder is normally about $20 but it can be found on sale for as low as $12. The disadvantage of this welder is that the tip is not replaceable. The tip is also made of soft metal that will easily bend if it is used to apply any significant pressure to the work. The reviews on this welder show that many users have broken the tip only to find no replacement part available. In the description of the experiments below it will become apparent that the broad triangular foot of the plastic welder gives it advantages over the simple soldering iron that will speed work. The Experiments Trench with back fill Using the tip of the soldering iron push it into the material to create a trench as shown in figure 7. This tacks the two pieces together. Then back fill the the trench by moving the material that was forced out of the trench in the first step back into the trench. I found making circular motions while over the area worked well to refill the trench. Keeping a finger on the weld seam on the opposite side is a good way to determine if the plastic is getting too hot. If you cannot keep your finger on the seam it is too hot. This procedure does not take any welding rods at all and can provide sufficient strength for parts that are normally not stressed. It is not as strong as the original material because the trench is typically from 30 to 50% of the depth of the material to avoid damage to any paint on the opposite side. Figure 7 Trench with welding rod back fill This technique is similar to the above but instead of back fill with the material forced out of the trench, a welding rod is heated and pushed down into the trench. This technique can approach the strength of the original material even welding from only the unpainted side since new material is being added on the back side making the overall thickness as thick or thicker than the original plastic. With a soldering iron, circular motions around the end of the plastic welding rod will melt enough to fill the trench. A true soldering iron type plastic welder like the one in figure 4 makes this go much faster. Instead of swirling motions to melt off the end of the rod into the trench, the plastic welder's broad triangular foot can be used to melt a good section of welding rod and push it down into the trench. Figure 8 Trench with welding rod back fill and with fiberglass mesh Fiberglass is added to improve the strength of the first and second technique. The tip of the welder is used to push the fiberglass cloth into the ABS material to give it greater strength. This technique can be very useful if the total thickness of the welded part cannot be thicker than the original part since the fiberglass can be embedded into the original ABS plastic by pushing it below the surface on the back side. The following four photographs show the fiberglass used and how a small piece is slowly pushed with the soldering iron tip below the surface of the ABS plastic. Figure 12 shows the depth the fiberglass was embedded and what happens when the joint is tested to failure. While strong it is not as strong as the original ABS plastic since the failure happened at the same joint. Figure 10 Figure 9 Figure 11 Figure 12 Trench with welding rod back fill and with aluminum screen mesh This technique is similar to the above with the substitution of aluminum mesh available from most hardware stores for window screen. The aluminum works well because as the tip of the welder heats the aluminum, aluminum conducts heat well acting as an extension of the welder tip making it very easy to embed. Its strength is similar to fiberglass except that it does not work as well in applications where the plastic part might be constantly being flexed since the aluminum fibers will work harden and crack. If the plastic is stressed so that it cracks with aluminum mesh embedded in it, the aluminum fibers will stick out of the break as shown in figure 15 which can be painful if it is accidentally grabbed. Figure 14 Figure 13 Figure 16 Figure 15 Trench with welding rod back fill and with steel chicken wire screen Chicken wire is very coarse screen but is steel making it stronger than fiberglass or aluminum. Due to its coarseness, the plastic can crack but the steel fibers hold the pieces together. In the test to failure shown in figure 19, the chicken wire was actually cut with diagonal pliers for the photo because some strands of chicken wire did not break when failure occurred. Figure 18: Figure 17: Figure 19: Trench with welding rod back fill and with stainless steel mesh Stainless steel is about five times stronger than aluminum so this technique provides a very strong weld. It has the same disadvantages as aluminum mesh in that it can work harden if the part is subject to a lot of bending. This material came with the welder in figure 4 but is not easy to find in a store. Online prices for a similar size piece of material that came with the kit cost almost as much as the entire kit. Forming ABS rods into shapes for rebuilding mounting tabs on fairings This is possible due to this welders broad triangular shaped foot. Welding rod can be cut into short lengths as shown in figure 21. The ends are tacked together to hold them in position. The foot of the welder can then be placed over the rods to press them flat into any desired thickness to create flat pieces suitable for rebuilding mounting tabs. Figure 20 below shows a broken headlight mounting tab.
Recommended publications
  • Welding of Plastics: Fundamentals and New Developments
    REVIEW ARTICLE D. Grewell*, A. Benatar Agricultural and Biosystems Eingineering, Iowa State University, Ames, IA, USA Welding of Plastics: Fundamentals and New Developments serves as the material that joins the parts and transmits the load This paper provides a general introduction to welding funda- through the joint. In welding or fusion bonding, heat is used to mentals (section 2) followed by sections on a few selected melt or soften the polymer at the interface to enable polymer welding processes that have had significant developments or intermolecular diffusion across the interface and chain entan- improvements over the last few years. The processes that are glements to give the joint strength. Each of these categories is discussed are friction welding (section 3), hot plate welding comprised of a variety of joining methods that can be used in (section 4), ultrasonic welding (section 5), laser/IR welding a wide range of applications. This paper is devoted to welding (section 6), RF welding (section 7) and hot gas/extrusion weld- processes only. Accordingly, only thermoplastics are consid- ing (section 8). ered, because thermosets cannot be welded without the addi- tion of tie-layers such as thermoplastics layers. Greater details on welding processes can be found in several monographs [1 to 4]. 1 Introduction to Joining Welding processes are often categorized and identified by the heating method that is used. All processes can be divided Despite designers’ goals of molding single component pro- into two general categories: internal heating and external heat- ducts, there are many products too complex to mold as a single ing, see Fig.
    [Show full text]
  • STATE-OF-THE-ART in RIGID P.V.C. PLASTIC WELDING by HOT AIR TECHNIQUE Mahmood Alam1, (Dr.) M.I
    International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com Volume 1, Issue 2 (may-june 2013), PP. 20-23 STATE-OF-THE-ART IN RIGID P.V.C. PLASTIC WELDING BY HOT AIR TECHNIQUE Mahmood Alam1, (Dr.) M.I. Khan2 1Asstt. Professor, department of Mechanical Engineering 2 Professor, department of Mechanical Engineering Integral University, Lucknow, India while others are semi-crystalline [6]. When PVC is heated it Abstract: This paper presents the state-of-the-art in the will soften [5, 6], that allow a limited amount of chain field of plastic welding to assist in the future entanglements to assure a strong bond. developments in this field. Various important P.V.C. plastics welding parameters such as welding techniques HOT AIR TECHNIQUE in common use, equipments requirement and the effect of variables on the weld bead shape, have been discussed. Hot air technique is an external heating method. In this Problem associated with plastic welding and applications method, a weld groove and a welding rod are simultaneously have also been outlined. heated with a hot gas stream until they soften sufficiently to fuse together; the welding rod is then pressed into the weld Keywords: Poly vinyl chloride, P.V.C. welding, hot air groove to affect welding. A stream of hot air or gas technique, High-density polyethylene, linear low density (nitrogen, air, carbon dioxide, hydrogen, or oxygen) is polyethylene. directed toward the filler and the joint area using a torch. A INTRODUCTION filler rod or tap (of a similar composition as the polymer being joined) is gently pushed into the gap between the Now a day’s plastics are used in everyday life from substrates (Fig1).
    [Show full text]
  • Advances in Ultrasonic Welding of Thermoplastic Composites: a Review
    Downloaded from orbit.dtu.dk on: Oct 06, 2021 Advances in Ultrasonic Welding of Thermoplastic Composites: A Review Bhudolia, Somen K.; Gohel, Goram; Leong, Kah Fai; Islam, Aminul Published in: Materials Link to article, DOI: 10.3390/ma13061284 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Bhudolia, S. K., Gohel, G., Leong, K. F., & Islam, A. (2020). Advances in Ultrasonic Welding of Thermoplastic Composites: A Review. Materials, 13(6), [1284]. https://doi.org/10.3390/ma13061284 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. materials Review Advances in Ultrasonic Welding of Thermoplastic Composites: A Review Somen K. Bhudolia 1,2,* , Goram Gohel 1,2 , Kah Fai Leong 1,2 and Aminul Islam 3,* 1 School of Mechanical and Aerospace Engineering,
    [Show full text]
  • Automated Aerial Seed Planting Using Biodegradable Polymers
    http://researchcommons.waikato.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. Automated Aerial Seed Planting using Biodegradable Polymers A thesis submitted in fulfilment of the requirements for the degree of Masters of Engineering in Mechanical Engineering at The University of Waikato by Wade Cozens 2019 The purpose of the thesis was to undertake a preliminary product design to assess the feasibility of using drone technology to aid reforestation for automated seed planting. This product would be able to increase productivity and reduce labour costs, especially when applied in difficult to reach terrains around New Zealand. Ultimately, the final product would be a weaponised drone or a swarm of drones that can fire plastic seed capsules into soil to a specific depth to prevent predation and ensure optimal germination conditions. The proof of concept hinges on the success of three objectives: Assessing and controlling the capsule’s biodegradability in soil.
    [Show full text]
  • Plastic Welding Certification Process Executive Summary
    Plastic Welding Certification Process Executive Summary Foresight Technologies (US) and Foresight Asia Pacific Sdn. Bhd. (Malaysia) are global leaders in precision CNC machining, plastic welding and high purity assembly. With a combined staff of 250 employees, 50+ CNC machine tools and 30 Certified Plastic Welders, Foresight strives to be the preferred supplier and collaborative partner of our customers. As a provider of critical plastic systems to semiconductor, aerospace and chemical equipment markets, we struggled fitting the somewhat “Artisan Craft” of plastic welding into our process driven quality systems. We understand the criticality of the chemical systems; any leak could expose operators to unsafe conditions, cause significant downtime for wafer fabs, and potentially damage millions of dollars of product. While plastic welding has many applications, in the semiconductor industry it has an additional cosmetic requirement which conflicts with many of the standard certifications. Not only must the weld be strong, it must also have minimal pits, capillaries and fluctuations in wake flow. These cosmetic imperfections can provide dead spots where bacteria and contaminants can accumulate, and this can have a major impact on wafer device performance and yield. This white paper looks at Foresight’s process of plastic welding certification, industry standards that provide the framework for plastic welder certification and explains the necessity of repeating these processes and ensuring that they meet process requirements of advanced quality OEMs. 2 Plastic Welding Certification Process Foresight’s History of Plastic Welding Years ago, Foresight recognized the wide variability in plastic welding quality, even among 20-year veterans of the trade. Everyone had their own process and unfortunately, this caused variability in the final product.
    [Show full text]
  • Joining of Nylon's Based Plastic Components
    BASF Corporation JOINING OF NYLON BASED PLASTIC COMPONENTS -- VIBRATION AND HOT PLATE WELDING TECHNOLOGIES Abstract mechanical properties. Molded nylon parts are more resistant to creep, fatigue, repeated impact, Previously we reported to SPE’96 the and so on compared to the parts made of many optimized mechanical performance of linear less rigid thermoplastics. vibration welded nylon 6 and 66 butt joints. Under the optimized vibration welding There are more than a dozen classes of conditions (amplitude, pressure, meltdown, nylon resins, including nylon 6, nylon 66, nylon thickness of interface), the tensile strength at the 46, nylon 12, etc.). Welded nylons are used in nylon butt joints was equal to or 14% higher than many industrial products, the largest being the the tensile strength of the base polymer (matrix). automotive. In recent years, demands to use non-filled, fiber-glass reinforced and filled nylon H. Potente and A. Brubel presented to products to replace metals and thermosets in SPE’94 and SPE’98 an analysis of the welding power tools, lawn / garden equipment (leaf performance in a family of amorphous and semi- blowers, chain-saws, gas-tanks), and the crystalline thermoplastics including nylon 6 automotive (air induction, power train systems, using hot-plate welding technologies. For hot- fluids reservoirs, and other uses), have increased plate welded nylon 6 with a range of glass-fiber (1, 2). reinforcement from 0 to 40% (by weight), the tensile strength at the weld was 40–60% less On average a car uses 18 kg of nylon compared to the tensile strength of the base based plastics.
    [Show full text]
  • Starting out in Plastic Welding
    Starting out in Plastic Welding Most all plastics can be joined using mechanical means (e.g., screws) and with cements and adhesives (e.g., PVC cement). Thermoplastics--plastics that become soft when heated--can also be welded using a non-flame heat source. Examples of thermoplastics include • PVC (polyvinyl chloride) • Polypropylene • ABS (acrylonitrile Butadiene Styrene) • Nylon • Vinyl • Acrylic • Polyethylene • Polycarbonate • Acetal resin • Polystyrene There's another class of plastics that don't become soft when heated--once they're set, that's it. These thermosetting plastics can't be welded. Examples include phenolic, polyester, silicone, and epoxy. To hot-gas weld plastic, air or an inert gas is heated to between 450°F and 800°F. The gas is heated by an electric element rather than a flame. A filler rod of the same material as the pieces to be joined is heated along with the joint, and the filler rod is lightly pressed into the joint (see figure on back). Torches sometimes include a special nozzle that both preheats the filler rod and guides it into the joint. Plastic can also be welded using a heated tool, induction welding, or friction (spin) welding. Hot gas plastic welders are available from several sources, but often at high prices (e.g, $326 for the low-end Kamweld model). Harbor Freight sells one for $39.99 (item 41592-1VGA), often on sale for $29.99. It includes the torch, air hose, regulator, stand, and a small selection of filler rod for PVC, polypropylene, and ABS. The “trick” to using a hand-held hot air plastic welder seems to be in part to get the temperature right.
    [Show full text]
  • Master Proheat® Plastic Welding Kit Manual
    MASTER PLASTIC WELDING ROD REORDER INFORMATION 35297 ABS Welding Rod (Pkg. of 16) Round, 1/8” Dia. x 9” Long, Natural, for welding ABS plastics MASTER PROHEAT ® 35298 PP Welding Rod Plastic Welding Kit (Pkg. of 16) Round, 1/8” Dia. x 9” Long, Natural, for welding PP plastics 35299 PVC Welding Rod (Pkg of 16) Round, 1/8” Dia. x 9” Long, Grey, for welding PP plastics 35300 LDPE Welding Rod (Pkg of 16) Round, 1/8” Dia. x 9” Long, Natural, for welding LDPE plastics 35301 HDPE Welding Rod (Pkg. of 16) Round, 1/8” Dia. x 9” Long, Black, for welding HDPE plastics MSDS Sheets available upon request. Warning: These products contain chemicals known to the State of California to cause Welding Plastics with the cancer and birth defects or other reproductive harm. Users should independently evaluate the suitability of the product for their application. MASTER PROHEAT ® Model PH-1400WK Master Appliance Corp. 2420 18th St. Professional Quality Electronic Heat Gun Racine, WI 53403 USA Plastic Welding Kit Tel: 1-800-558-9413 (toll free in the U.S.A. and Canada) Tel: 262-633-7791 (all other Countries) Fax: 262-633-9745 Email: [email protected] www.masterappliance.com P/N 58053 REV A © 2010 Master Appliance Corp. PLASTIC WELDING MASTER PROHEAT ® Plastic Welding Kit Basic requirements for plastic welding. TIME, TEMPERATURE & PRESSURE PH-1400WK Most plastics used today are thermoplastics, which are generally suitable for repair by welding. Four basic rules for plastic welding are suggested: 1. Weld with like material. Only like materials can be welded, i.e.
    [Show full text]
  • Technological Features of Welding of Plastics Based on Polyhydroxybutyrate
    Вісник Тернопільського національного технічного університету https://doi.org/10.33108/visnyk_tntu Scientific Journal of the Ternopil National Technical University 2020, № 1 (97) https://doi.org/10.33108/visnyk_tntu2020.01 ISSN 2522-4433. Web: visnyk.tntu.edu.ua UDC: 621.384.3:621.791:615.462-035 TECHNOLOGICAL FEATURES OF WELDING OF PLASTICS BASED ON POLYHYDROXYBUTYRATE Victoriya Talanyuk1; Andriy Shadrin1; Maksym Iurzhenko1; Mykola Korab1; Andriy Agapov2 1E. O. Paton Electric Welding Institute of the NAS of Ukraine, Kyiv, Ukraine 2Technical Center of the NAS of Ukraine, Kyiv, Ukraine Summary. In particular polymers and biopolymers are increasingly used in various sectors of the economy and more recently biopolymers have been replacing traditional polymers in many applications. The problem of recycling polymeric materials can also be solved by designing products that will facilitate their further processing. In fact, biodegradation is the consistent breaking of chemical bonds of a polymer molecular chain under the action of microorganisms. Destroying a polymer, bacteria, fungi or algae uses the remnants of its molecules as a source of vital organic compounds as well as energy. Usually biodegradation occurs in an aqueous or humid environment during the process of composting. Bioplastics` wastes, like fallen leaves or other organic wastes, are stacked on soil and gradually converted into environmentally friendly material. The ability of a polymer to biodegrade mainly depends on the chemical composition of its molecule. One of the urgent tasks of research and implementation of biopolymers is the connection, in particular welding. Traditionally, plastic welding is widely used in the chemical, food, and other industries, for film packaging and packaging.
    [Show full text]
  • Thermal Welding by the Third Phase Between Polymers: a Review for Ultrasonic Weld Technology Developments
    polymers Review Thermal Welding by the Third Phase Between Polymers: A Review for Ultrasonic Weld Technology Developments Jianhui Qiu 1,*, Guohong Zhang 1 , Eiichi Sakai 1, Wendi Liu 2 and Limin Zang 3 1 Department of Mechanical Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Akita 015-0055, Japan; [email protected] (G.Z.); [email protected] (E.S.) 2 College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; [email protected] 3 MOE Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; [email protected] * Correspondence: [email protected] Received: 30 December 2019; Accepted: 8 March 2020; Published: 31 March 2020 Abstract: Ultrasonic welding (USW) is a promising method for the welds between dissimilar materials. Ultrasonic thermal welding by the third phase (TWTP) method was proposed in combination with the formation of a third phase, which was confirmed as an effective technology for polymer welding between the two dissimilar materials compared with the traditional USW. This review focused on the advances of applying the ultrasonic TWTP for thermoplastic materials. The research development on the ultrasonic TWTP of polycarbonate (PC) and polymethyl methacrylate (PMMA), polylactic acid (PLA) and polyformaldehyde (POM), and PLA and PMMA are summarized according to the preparation of the third phase, welded strength, morphologies of rupture surfaces, thermal stability, and others. The review aimed at providing guidance for using ultrasonic TWTP in polymers and a basic understanding of the welding mechanism, i.e., interdiffusion and molecular motion mechanisms between the phases.
    [Show full text]
  • Advances in Ultrasonic Welding of Thermoplastic Composites: a Review
    materials Review Advances in Ultrasonic Welding of Thermoplastic Composites: A Review Somen K. Bhudolia 1,2,* , Goram Gohel 1,2 , Kah Fai Leong 1,2 and Aminul Islam 3,* 1 School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore 639798, Singapore; [email protected] (G.G.); [email protected] (K.F.L.) 2 Institute for Sports Research, Nanyang Technological University, 50, Nanyang Avenue, Singapore 639798, Singapore 3 Department of Mechanical Engineering, Technical University of Denmark, Produktionstorvet, Building 427A, 2800 Lyngby, Denmark * Correspondence: [email protected] (S.K.B.); [email protected] (A.I.); Tel.: +65-82305882 (S.K.B.); +45-45254896 (A.I.) Received: 12 February 2020; Accepted: 11 March 2020; Published: 12 March 2020 Abstract: The ultrasonic welding (UW) technique is an ultra-fast joining process, and it is used to join thermoplastic composite structures, and provides an excellent bonding strength. It is more cost-efficient as opposed to the conventional adhesive, mechanical and other joining methods. This review paper presents the detailed progress made by the scientific and research community to date in the direction of the UW of thermoplastic composites. The focus of this paper is to review the recent development of the ultrasonic welding technique for thermoplastic composites to thermoplastic composites, and to dissimilar materials. Different ultrasonic welding modes and their processing parameters, namely, weld time, weld pressure, amplitude, type of energy directors (EDs) affecting the welding quality and the advantages and disadvantages of UW over other bonding techniques, are summarized. The current state of the ultrasonic welding of thermoplastic composites and their future perspectives are also deliberated.
    [Show full text]
  • Fabrication and Analysis of Thermo Plastics Welding
    ISSN(Online) : 2319 - 8753 ISSN (Print) : 2347 - 6710 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 4, Special Issue 6, May 2015 Fabrication and Analysis of Thermo Plastics Welding S.Harikannan 1, K.Kannan 2, V.Arun 3, R.Anusundar 4, S.Ashokraj 5 Lecturer, Department of Civil Engineering, Muthayammal Engineering College, Kakaveri ,Rasipuram, India1 Assistant Professor, Department of Mechanical Engineering, Muthayammal Engineering College, Kakaveri , Rasipuram, India2 U.G. Student, Department of Mechanical Engineering, Muthayammal Engineering College, Kakaveri ,Rasipuram, India3 U.G. Student, Department of Mechanical Engineering, Muthayammal Engineering College, Kakaveri ,Rasipuram, India4 U.G. Student, Department of Mechanical Engineering, Muthayammal Engineering College, Kakaveri ,Rasipuram, India5 I. INTRODUCTION Plastic welding is also called as heat sealing, which is the process for welding or joining plastic work pieces. Thermoplastics like Polyethylene, Polypropylene, Polyvinyl Chloride, Polyurethane and Acrylonitrile Butadiene Styrene (ABS) are frequently used in plastic welding. Plastics that can be welded are called “thermoplastics” and when they are heated to a sufficiently high temperature they will soften and welded. INFRAREDLAMP WELDING OF THERMOPLASTICS This technique is also capable of handling large surface area products, as it is a simple operation to add more emitters to the heating bank Infrared lamp welding The newly developed, high power short wave infrared emitter is also proving more efficient and effective than infrared emitters previously considered for welding applications. Its high power density, developed at a lower operating temperature, means that it can transfer energy more efficiently than halogen emitters, while its lower mass filament makes it more responsive than ceramic emitters.
    [Show full text]