Reports from the Fifth Edition of CAGI: the Critical Assessment of Genome Interpretation

Total Page:16

File Type:pdf, Size:1020Kb

Reports from the Fifth Edition of CAGI: the Critical Assessment of Genome Interpretation Received: 16 July 2019 | Accepted: 19 July 2019 DOI: 10.1002/humu.23876 OVERVIEW Reports from the fifth edition of CAGI: The Critical Assessment of Genome Interpretation Gaia Andreoletti1 | Lipika R. Pal2 | John Moult2,3 | Steven E. Brenner1,4 1Department of Plant and Microbial Biology, University of California, Berkeley, California Abstract 2Institute for Bioscience and Biotechnology Interpretation of genomic variation plays an essential role in the analysis of Research, University of Maryland, Rockville, cancer and monogenic disease, and increasingly also in complex trait disease, with Maryland 3Department of Cell Biology and Molecular applications ranging from basic research to clinical decisions. Many computational Genetics, University of Maryland, College impact prediction methods have been developed, yet the field lacks a clear consensus Park, Maryland on their appropriate use and interpretation. The Critical Assessment of Genome 4Center for Computational Biology, University of California, Berkeley, California Interpretation (CAGI, /'kā‐jē/) is a community experiment to objectively assess computational methods for predicting the phenotypic impacts of genomic variation. Correspondence John Moult, Institute for Bioscience and CAGI participants are provided genetic variants and make blind predictions of Biotechnology Research, University of resulting phenotype. Independent assessors evaluate the predictions by comparing Maryland, 9600 Gudelsky Drive, Rockville, MD 20850. with experimental and clinical data. Email: [email protected] CAGI has completed five editions with the goals of establishing the state of art in Steven E. Brenner, Department of Plant and genome interpretation and of encouraging new methodological developments. This Microbial Biology, University of California, special issue (https://onlinelibrary.wiley.com/toc/10981004/2019/40/9) comprises Berkeley, CA 94720. Email: [email protected] reports from CAGI, focusing on the fifth edition that culminated in a conference that took place 5 to 7 July 2018. CAGI5 was comprised of 14 challenges and engaged Funding information National Human Genome Research Institute hundreds of participants from a dozen countries. This edition had a notable increase and National Cancer Institute, Grant/Award in splicing and expression regulatory variant challenges, while also continuing Number: U41 HG007346 and R13 HG006650 challenges on clinical genomics, as well as complex disease datasets and missense variants in diseases ranging from cancer to Pompe disease to schizophrenia. Full information about CAGI is at https://genomeinterpretation.org. KEYWORDS CAGI, Critical Assessment of Genome Interpretation, genomics, genetic variation, cancer genetics, variant impact predictors, SNP 1 | INTRODUCTION The Critical Assessment of Genome Interpretation (CAGI, pronounced /'kā‐jē/) addresses this need by providing an objective Interpretation of genome sequence variation plays a major and evaluation of the state‐of‐the‐art in relating human genetic variation increasing role in both basic research and in clinical medicine. to phenotype, particularly health. Each edition of CAGI provides These applications necessitate robust and reliable computational about a dozen challenges to understand performance of prediction approaches to aid in determining the phenotypic impact of methods in a given scenario. Participants in a challenge are provided variants. Many such methods have been developed (see genetic variants and make predictions of resulting molecular, cellular, Hu et al., 2019 in this issue). However, the appropriate use or organismal phenotypes. Data sets for the challenges include and accuracy of most methods have not been objectively germline and somatic cancer variation, rare disease, common disease, determined. and pharmacogenomics. The scale of challenges ranges from single Human Mutation. 2019;40:1197–1201. wileyonlinelibrary.com/journal/humu © 2019 Wiley Periodicals, Inc. | 1197 1198 | ANDREOLETTI ET AL. nucleotides to whole genomes, as well as complementary multiomics CAGI4 SickKids challenge, also described in the assessment paper and environmental information. Variant types include those affecting here. expression, splicing, and amino acid sequence, and may be single base Over all CAGI editions, the plurality of challenges have been on changes, insertions or deletions, and structural variation. the interpretation of isolated missense variants, and CAGI5 The CAGI cycle commences with the organizers soliciting data continues that trend. There are assessment, data provider, and sets from researchers and clinicians, whose studies demonstrate participant papers for the prediction of the destabilizing effect of relationships between genotype and phenotype. Such data sets must missense mutations in a cancer‐relevant protein (Frataxin, with be fully developed (“ripe”) but not publicly available (“spoiled”) until biophysical measurements of protein stability; Petrosino et al., 2019; after the CAGI prediction season. Data providers and organizers Savojardo, Petrosino et al., 2019; Strokach, Corbi‐Verge, & Kim, work together to develop these data sets into prediction challenges 2019); on the effect of missense changes in a human calmodulin, with well‐defined data sets and goals. The CAGI Ethics Forum assayed using a high‐throughput yeast complementation assay evaluates and adjusts these challenges for suitability and sensitivity. (Zhang et al., 2019); the effect of missense mutations related to In parallel, predictors are enrolled, bound by the CAGI Data Use schizophrenia in human Pericentriolar Material 1 (PCM1), using a Agreement [https://genomeinterpretation.org/data‐use‐agreement], zebrafish development model (Miller, Wang, & Bromberg, 2019; and vetted for access to the CAGI experiment with tiers reflecting Monzon et al., 2019); the effect of missense mutations in two the sensitivity of the data. The prediction season launches with cancer‐related proteins, PTEN and TPMT, on intracellular protein release of the challenges and concludes with the submission of levels, measured in a high‐throughput assay (Pejaver et al., 2019); predictions from predictors. For the fifth edition of CAGI (CAGI5), and the effect of missense changes in a monogenic disease related the prediction season extended until May 2018. The submitted protein, acid alpha‐glucosidase (GAA), with measurements of total predictions are evaluated by independent assessors. Each CAGI intracellular enzyme activity (Adhikari, 2019). Three participant edition culminates in a conference to discuss the outcome; the papers describe results on all the missense challenges (Garg & Pal, CAGI5 conference was held from 5 to 7 July 2018, for which videos 2019; Katsonis & Lichtarge, 2019; Savojardo, Babbi et al., 2019). The and slide sets are publicly available to registered CAGI members. issue also contains assessment articles from two earlier missense [https://genomeinterpretation.org/content/5‐conference] challenges on monogenic disease related proteins: N‐acetyl‐glucosa- Results from the previous CAGI edition (CAGI4) were published minidase (NAGLU; Clark et al., 2019), with total intracellular enzyme in a special issue of this journal (Hoskins et al., 2017). The present activity measured; and cystathionine beta‐synthase (CBS), using the issue contains assessment and participant papers primarily from the metric of yeast growth in a complication assay (Kasak, Bakolitsa most recent experiment, CAGI5, which included 14 challenges and et al., 2019). attracted participants from 12 countries. In addition to the other cancer‐related challenges outlined above, Notable in this CAGI edition is the increasing representation of there are two that required prediction of the pathogenicity of regulatory and noncoding variant challenges. Previously, CAGI has germline variants in cancer‐related proteins: one for breast cancer had just one small splicing challenge [https://genomeinterpretation. risk from variants in BRCA1 and BRCA2 as characterized by the org/content/Splicing‐2012]. CAGI5 included two full‐scale splicing ENIGMA consortium (Cao et al., 2019; Cline et al., 2019; Padilla et al., challenges (Mount et al., 2019) and these have resulted in five papers 2019; Parsons et al., 2019), and the other for cancer risk of variants from participants (Chen, Lu, Zhao, & Yang, 2019; Cheng, Çelik, in CHEK2 in Latina breast cancer cases and ancestry matched Nguyen, Avsec, & Gagneur, 2019; Gotea, Margolin, & Elnitski, 2019; controls (Voskanian et al., 2019). Naito, 2019; Wang, Wang, & Hu, 2019). The issue also contains an CAGI5 will continue to bear fruit. This edition introduced a time‐ overview paper from one of the splicing data providers (Rhine et al., based challenge in association with dbNSFP, whereby CAGI accepted 2019). There had also been only one previous expression regulatory predictions for all possible missense variants in the genome. The variant challenge, in CAGI4 (Kreimer et al., 2017). CAGI5 has a new results are to be vetted periodically in the future as the impact of expression regulatory challenge (Shigaki et al., 2019), and there are some of these variants are experimentally or clinically established. also two participant papers (Dong & Boyle, 2019; Kreimer, Yan, Additional papers on the challenges and other aspects of CAGI are Ahituv, & Yosef, 2019). presently in development and will be added to the CAGI5 papers CAGI5 continued the emphasis on the interpretation of clinically collection at Human Mutation (https://onlinelibrary.wiley.com/toc/
Recommended publications
  • Applied Category Theory for Genomics – an Initiative
    Applied Category Theory for Genomics { An Initiative Yanying Wu1,2 1Centre for Neural Circuits and Behaviour, University of Oxford, UK 2Department of Physiology, Anatomy and Genetics, University of Oxford, UK 06 Sept, 2020 Abstract The ultimate secret of all lives on earth is hidden in their genomes { a totality of DNA sequences. We currently know the whole genome sequence of many organisms, while our understanding of the genome architecture on a systematic level remains rudimentary. Applied category theory opens a promising way to integrate the humongous amount of heterogeneous informations in genomics, to advance our knowledge regarding genome organization, and to provide us with a deep and holistic view of our own genomes. In this work we explain why applied category theory carries such a hope, and we move on to show how it could actually do so, albeit in baby steps. The manuscript intends to be readable to both mathematicians and biologists, therefore no prior knowledge is required from either side. arXiv:2009.02822v1 [q-bio.GN] 6 Sep 2020 1 Introduction DNA, the genetic material of all living beings on this planet, holds the secret of life. The complete set of DNA sequences in an organism constitutes its genome { the blueprint and instruction manual of that organism, be it a human or fly [1]. Therefore, genomics, which studies the contents and meaning of genomes, has been standing in the central stage of scientific research since its birth. The twentieth century witnessed three milestones of genomics research [1]. It began with the discovery of Mendel's laws of inheritance [2], sparked a climax in the middle with the reveal of DNA double helix structure [3], and ended with the accomplishment of a first draft of complete human genome sequences [4].
    [Show full text]
  • Functional Effects Detailed Research Plan
    GeCIP Detailed Research Plan Form Background The Genomics England Clinical Interpretation Partnership (GeCIP) brings together researchers, clinicians and trainees from both academia and the NHS to analyse, refine and make new discoveries from the data from the 100,000 Genomes Project. The aims of the partnerships are: 1. To optimise: • clinical data and sample collection • clinical reporting • data validation and interpretation. 2. To improve understanding of the implications of genomic findings and improve the accuracy and reliability of information fed back to patients. To add to knowledge of the genetic basis of disease. 3. To provide a sustainable thriving training environment. The initial wave of GeCIP domains was announced in June 2015 following a first round of applications in January 2015. On the 18th June 2015 we invited the inaugurated GeCIP domains to develop more detailed research plans working closely with Genomics England. These will be used to ensure that the plans are complimentary and add real value across the GeCIP portfolio and address the aims and objectives of the 100,000 Genomes Project. They will be shared with the MRC, Wellcome Trust, NIHR and Cancer Research UK as existing members of the GeCIP Board to give advance warning and manage funding requests to maximise the funds available to each domain. However, formal applications will then be required to be submitted to individual funders. They will allow Genomics England to plan shared core analyses and the required research and computing infrastructure to support the proposed research. They will also form the basis of assessment by the Project’s Access Review Committee, to permit access to data.
    [Show full text]
  • Algorithms for Computational Biology 8Th International Conference, Alcob 2021 Missoula, MT, USA, June 7–11, 2021 Proceedings
    Lecture Notes in Bioinformatics 12715 Subseries of Lecture Notes in Computer Science Series Editors Sorin Istrail Brown University, Providence, RI, USA Pavel Pevzner University of California, San Diego, CA, USA Michael Waterman University of Southern California, Los Angeles, CA, USA Editorial Board Members Søren Brunak Technical University of Denmark, Kongens Lyngby, Denmark Mikhail S. Gelfand IITP, Research and Training Center on Bioinformatics, Moscow, Russia Thomas Lengauer Max Planck Institute for Informatics, Saarbrücken, Germany Satoru Miyano University of Tokyo, Tokyo, Japan Eugene Myers Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany Marie-France Sagot Université Lyon 1, Villeurbanne, France David Sankoff University of Ottawa, Ottawa, Canada Ron Shamir Tel Aviv University, Ramat Aviv, Tel Aviv, Israel Terry Speed Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia Martin Vingron Max Planck Institute for Molecular Genetics, Berlin, Germany W. Eric Wong University of Texas at Dallas, Richardson, TX, USA More information about this subseries at http://www.springer.com/series/5381 Carlos Martín-Vide • Miguel A. Vega-Rodríguez • Travis Wheeler (Eds.) Algorithms for Computational Biology 8th International Conference, AlCoB 2021 Missoula, MT, USA, June 7–11, 2021 Proceedings 123 Editors Carlos Martín-Vide Miguel A. Vega-Rodríguez Rovira i Virgili University University of Extremadura Tarragona, Spain Cáceres, Spain Travis Wheeler University of Montana Missoula, MT, USA ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Bioinformatics ISBN 978-3-030-74431-1 ISBN 978-3-030-74432-8 (eBook) https://doi.org/10.1007/978-3-030-74432-8 LNCS Sublibrary: SL8 – Bioinformatics © Springer Nature Switzerland AG 2021 This work is subject to copyright.
    [Show full text]
  • Computational Pan-Genomics: Status, Promises and Challenges
    bioRxiv preprint doi: https://doi.org/10.1101/043430; this version posted March 12, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Computational Pan-Genomics: Status, Promises and Challenges Tobias Marschall1,2, Manja Marz3,60,61,62, Thomas Abeel49, Louis Dijkstra6,7, Bas E. Dutilh8,9,10, Ali Ghaffaari1,2, Paul Kersey11, Wigard P. Kloosterman12, Veli M¨akinen13, Adam Novak15, Benedict Paten15, David Porubsky16, Eric Rivals17,63, Can Alkan18, Jasmijn Baaijens5, Paul I. W. De Bakker12, Valentina Boeva19,64,65,66, Francesca Chiaromonte20, Rayan Chikhi21, Francesca D. Ciccarelli22, Robin Cijvat23, Erwin Datema24,25,26, Cornelia M. Van Duijn27, Evan E. Eichler28, Corinna Ernst29, Eleazar Eskin30,31, Erik Garrison32, Mohammed El-Kebir5,33,34, Gunnar W. Klau5, Jan O. Korbel11,35, Eric-Wubbo Lameijer36, Benjamin Langmead37, Marcel Martin59, Paul Medvedev38,39,40, John C. Mu41, Pieter Neerincx36, Klaasjan Ouwens42,67, Pierre Peterlongo43, Nadia Pisanti44,45, Sven Rahmann29, Ben Raphael46,47, Knut Reinert48, Dick de Ridder50, Jeroen de Ridder49, Matthias Schlesner51, Ole Schulz-Trieglaff52, Ashley Sanders53, Siavash Sheikhizadeh50, Carl Shneider54, Sandra Smit50, Daniel Valenzuela13, Jiayin Wang70,71,72, Lodewyk Wessels56, Ying Zhang23,5, Victor Guryev16,12, Fabio Vandin57,34, Kai Ye68,69,72 and Alexander Sch¨onhuth5 1Center for Bioinformatics, Saarland University, Saarbr¨ucken, Germany; 2Max Planck Institute for Informatics, Saarbr¨ucken,
    [Show full text]
  • Hmms Representing All Proteins of Known Structure. SCOP Sequence Searches, Alignments and Genome Assignments Julian Gough* and Cyrus Chothia
    268–272 Nucleic Acids Research, 2002, Vol. 30, No. 1 © 2002 Oxford University Press SUPERFAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments Julian Gough* and Cyrus Chothia MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK Received September 28, 2001; Revised and Accepted October 30, 2001 ABSTRACT (currently 59) covering approximately half of the The SUPERFAMILY database contains a library of soluble protein domains. The assignments, super- family breakdown and statistics on them are available hidden Markov models representing all proteins of from the server. The database is currently used by known structure. The database is based on the SCOP this group and others for genome annotation, structural ‘superfamily’ level of protein domain classification genomics, gene prediction and domain-based genomic which groups together the most distantly related studies. proteins which have a common evolutionary ancestor. There is a public server at http://supfam.org which provides three services: sequence searching, INTRODUCTION multiple alignments to sequences of known structure, The SUPERFAMILY database is based on the SCOP (1) and structural assignments to all complete genomes. classification of protein domains. SCOP is a structural domain- Given an amino acid or nucleotide query sequence based heirarchical classification with several levels including the server will return the domain architecture and the ‘superfamily’ level. Proteins grouped together at the super- SCOP classification. The server produces alignments family level are defined as having structural, functional and sequence evidence for a common evolutionary ancestor. It is at of the query sequences with sequences of known this level, as the name suggests, that SUPERFAMILY operates structure, and includes multiple alignments of because it is the level with the most distantly related protein genome and PDB sequences.
    [Show full text]
  • Classifying Transport Proteins Using Profile Hidden Markov Models And
    Classifying Transport Proteins Using Profile Hidden Markov Models and Specificity Determining Sites Qing Ye A Thesis in The Department of Computer Science and Software Engineering Presented in Partial Fulfillment of the Requirements for the Degree of Master of Computer Science (MCompSc) at Concordia University Montréal, Québec, Canada April 2019 ⃝c Qing Ye, 2019 CONCORDIA UNIVERSITY School of Graduate Studies This is to certify that the thesis prepared By: Qing Ye Entitled: Classifying Transport Proteins Using Profile Hidden Markov Models and Specificity Determining Sites and submitted in partial fulfillment of the requirements for the degree of Master of Computer Science (MCompSc) complies with the regulations of this University and meets the accepted standards with respect to originality and quality. Signed by the Final Examining Committee: Chair Dr. T.-H. Chen Examiner Dr. T. Glatard Examiner Dr. A. Krzyzak Supervisor Dr. G. Butler Approved by Martin D. Pugh, Chair Department of Computer Science and Software Engineering 2019 Amir Asif, Dean Faculty of Engineering and Computer Science Abstract Classifying Transport Proteins Using Profile Hidden Markov Models and Specificity Determining Sites Qing Ye This thesis develops methods to classifiy the substrates transported across a membrane by a given transmembrane protein. Our methods use tools that predict specificity determining sites (SDS) after computing a multiple sequence alignment (MSA), and then building a profile Hidden Markov Model (HMM) using HMMER. In bioinformatics, HMMER is a set of widely used applications for sequence analysis based on profile HMM. Specificity determining sites (SDS) are the key positions in a protein sequence that play a crucial role in functional variation within the protein family during the course of evolution.
    [Show full text]
  • 120421-24Recombschedule FINAL.Xlsx
    Friday 20 April 18:00 20:00 REGISTRATION OPENS in Fira Palace 20:00 21:30 WELCOME RECEPTION in CaixaForum (access map) Saturday 21 April 8:00 8:50 REGISTRATION 8:50 9:00 Opening Remarks (Roderic GUIGÓ and Benny CHOR) Session 1. Chair: Roderic GUIGÓ (CRG, Barcelona ES) 9:00 10:00 Richard DURBIN The Wellcome Trust Sanger Institute, Hinxton UK "Computational analysis of population genome sequencing data" 10:00 10:20 44 Yaw-Ling Lin, Charles Ward and Steven Skiena Synthetic Sequence Design for Signal Location Search 10:20 10:40 62 Kai Song, Jie Ren, Zhiyuan Zhai, Xuemei Liu, Minghua Deng and Fengzhu Sun Alignment-Free Sequence Comparison Based on Next Generation Sequencing Reads 10:40 11:00 178 Yang Li, Hong-Mei Li, Paul Burns, Mark Borodovsky, Gene Robinson and Jian Ma TrueSight: Self-training Algorithm for Splice Junction Detection using RNA-seq 11:00 11:30 coffee break Session 2. Chair: Bonnie BERGER (MIT, Cambrige US) 11:30 11:50 139 Son Pham, Dmitry Antipov, Alexander Sirotkin, Glenn Tesler, Pavel Pevzner and Max Alekseyev PATH-SETS: A Novel Approach for Comprehensive Utilization of Mate-Pairs in Genome Assembly 11:50 12:10 171 Yan Huang, Yin Hu and Jinze Liu A Robust Method for Transcript Quantification with RNA-seq Data 12:10 12:30 120 Zhanyong Wang, Farhad Hormozdiari, Wen-Yun Yang, Eran Halperin and Eleazar Eskin CNVeM: Copy Number Variation detection Using Uncertainty of Read Mapping 12:30 12:50 205 Dmitri Pervouchine Evidence for widespread association of mammalian splicing and conserved long range RNA structures 12:50 13:10 169 Melissa Gymrek, David Golan, Saharon Rosset and Yaniv Erlich lobSTR: A Novel Pipeline for Short Tandem Repeats Profiling in Personal Genomes 13:10 13:30 217 Rory Stark Differential oestrogen receptor binding is associated with clinical outcome in breast cancer 13:30 15:00 lunch break Session 3.
    [Show full text]
  • BIOGRAPHICAL SKETCH NAME: Berger
    BIOGRAPHICAL SKETCH NAME: Berger, Bonnie eRA COMMONS USER NAME (credential, e.g., agency login): BABERGER POSITION TITLE: Simons Professor of Mathematics and Professor of Electrical Engineering and Computer Science EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, include postdoctoral training and residency training if applicable. Add/delete rows as necessary.) EDUCATION/TRAINING DEGREE Completion (if Date FIELD OF STUDY INSTITUTION AND LOCATION applicable) MM/YYYY Brandeis University, Waltham, MA AB 06/1983 Computer Science Massachusetts Institute of Technology SM 01/1986 Computer Science Massachusetts Institute of Technology Ph.D. 06/1990 Computer Science Massachusetts Institute of Technology Postdoc 06/1992 Applied Mathematics A. Personal Statement Advances in modern biology revolve around automated data collection and sharing of the large resulting datasets. I am considered a pioneer in the area of bringing computer algorithms to the study of biological data, and a founder in this community that I have witnessed grow so profoundly over the last 26 years. I have made major contributions to many areas of computational biology and biomedicine, largely, though not exclusively through algorithmic innovations, as demonstrated by nearly twenty thousand citations to my scientific papers and widely-used software. In recognition of my success, I have just been elected to the National Academy of Sciences and in 2019 received the ISCB Senior Scientist Award, the pinnacle award in computational biology. My research group works on diverse challenges, including Computational Genomics, High-throughput Technology Analysis and Design, Biological Networks, Structural Bioinformatics, Population Genetics and Biomedical Privacy. I spearheaded research on analyzing large and complex biological data sets through topological and machine learning approaches; e.g.
    [Show full text]
  • AUTOPHY by Deepika Prasad a Thesis
    ANALYZING MARKER GENE DIVERSITY USING AN AUTOMATED PHYLOGENETIC TOOL: AUTOPHY by Deepika Prasad A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science in Bioinformatics and Computational Biology Spring 2017 © 2017 Deepika Prasad All Rights Reserved ANALYZING MARKER GENE DIVERSITY USING AN AUTOMATED PHYLOGENETIC TOOL: AUTOPHY by Deepika Prasad Approved: __________________________________________________________ Shawn Polson, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: __________________________________________________________ Kathleen F.McCoy, Ph.D. Chair of the Department of Computer and Information Sciences Approved: __________________________________________________________ Babatunde A. Ogunnaike, Ph.D. Dean of the College of Engineering Approved: __________________________________________________________ Ann L. Ardis, Ph.D. Senior Vice Provost for Graduate and Professional Education ACKNOWLEDGMENTS I want to express my sincerest gratitude to Professor Shawn Polson for his patience, continuous support, and enthusiasm. I could not have imagined having a better mentor to guide me through the process of my Master’s thesis. I would like to thank my committee members, Professor Eric Wommack and Honzhan Huang for their insightful comments and guidance in the thesis. I would also like to express my gratitude to Barbra Ferrell for asking important questions throughout my thesis research and helping me with the writing process. I would like to thank my friend Sagar Doshi, and lab mates Daniel Nasko, and Prasanna Joglekar, for helping me out with data, presentations, and giving important advice, whenever necessary. Last but not the least, I would like to thank my family, for being my pillars of strength.
    [Show full text]
  • Program Book
    Pacific Symposium on Biocomputing 2016 January 4-8, 2016 Big Island of Hawaii Program Book PACIFIC SYMPOSIUM ON BIOCOMPUTING 2016 Big Island of Hawaii, January 4-8, 2016 Welcome to PSB 2016! We have prepared this program book to give you quick access to information you need for PSB 2016. Enclosed you will find • Logistics information • Menus for PSB hosted meals • Full conference schedule • Call for Session and Workshop Proposals for PSB 2017 • Poster/abstract titles and authors • Participant List Conference materials are also available online at http://psb.stanford.edu/conference-materials/. PSB 2016 gratefully acknowledges the support the Institute for Computational Biology, a collaborative effort of Case Western Reserve University, the Cleveland Clinic Foundation, and University Hospitals; the National Institutes of Health (NIH), the National Science Foundation (NSF); and the International Society for Computational Biology (ISCB). If you or your institution are interested in sponsoring, PSB, please contact Tiffany Murray at [email protected] If you have any questions, the PSB registration staff (Tiffany Murray, Georgia Hansen, Brant Hansen, Kasey Miller, and BJ Morrison-McKay) are happy to help you. Aloha! Russ Altman Keith Dunker Larry Hunter Teri Klein Maryln Ritchie The PSB 2016 Organizers PACIFIC SYMPOSIUM ON BIOCOMPUTING 2016 Big Island of Hawaii, January 4-8, 2016 SPEAKER INFORMATION Oral presentations of accepted proceedings papers will take place in Salon 2 & 3. Speakers are allotted 10 minutes for presentation and 5 minutes for questions for a total of 15 minutes. Instructions for uploading talks were sent to authors with oral presentations. If you need assistance with this, please see Tiffany Murray or another PSB staff member.
    [Show full text]
  • Multi-Class Protein Classification Using Adaptive Codes
    Journal of Machine Learning Research 8 (2007) 1557-1581 Submitted 8/06; Revised 4/07; Published 7/07 Multi-class Protein Classification Using Adaptive Codes Iain Melvin∗ [email protected] NEC Laboratories of America Princeton, NJ 08540, USA Eugene Ie∗ [email protected] Department of Computer Science and Engineering University of California San Diego, CA 92093-0404, USA Jason Weston [email protected] NEC Laboratories of America Princeton, NJ 08540, USA William Stafford Noble [email protected] Department of Genome Sciences Department of Computer Science and Engineering University of Washington Seattle, WA 98195, USA Christina Leslie [email protected] Center for Computational Learning Systems Columbia University New York, NY 10115, USA Editor: Nello Cristianini Abstract Predicting a protein’s structural class from its amino acid sequence is a fundamental problem in computational biology. Recent machine learning work in this domain has focused on develop- ing new input space representations for protein sequences, that is, string kernels, some of which give state-of-the-art performance for the binary prediction task of discriminating between one class and all the others. However, the underlying protein classification problem is in fact a huge multi- class problem, with over 1000 protein folds and even more structural subcategories organized into a hierarchy. To handle this challenging many-class problem while taking advantage of progress on the binary problem, we introduce an adaptive code approach in the output space of one-vs- the-rest prediction scores. Specifically, we use a ranking perceptron algorithm to learn a weight- ing of binary classifiers that improves multi-class prediction with respect to a fixed set of out- put codes.
    [Show full text]
  • Conference Proceedingssmall
    1 COMMITTEES Steering Committee Phil Bourne - University of California, San Diego Eric Davidson - California Institute of Technology Steven Salzberg - The Institute for Genomic Research John Wooley - University of California San Diego, San Diego Supercomputer Center Organizing Committee Pat Blauvelt – LSS Membership Director Karen Hauge – Palo Alto Medical Foundation, Local Arangements Kass Goldfein - Finance Consultant AlishaHolloway – The J. David Gladstone Institutes, Tutorial Chair Sami Khuri – San Jose State University, Poster Chair Ann Loraine – University of North Carolina at Charlotte, CSB Publication Chair Fenglou Mao – University of Georgia, On-Line Registration and Refereeing Website Peter Markstein – in silico Labs, Program Co-Chair Vicky Markstein - Life Sciences Society, Conference Chair, LSS President Jean Tsukamoto - Graphics Design Bill Wang - Sun Microsystems Inc, LSS Information Technology Director Ying Xu – University of Georgia, Program Co-Chair Program Committee Tatsuya Akutsu – Kyoto University Chris Bailey-Kellogg – Dartmouth College Pierre Baldi – University of California Irvine Liming Cai – University of Georgia Bill Cannon – Pacific Northwest National Laboratory Jake Chen – Indiana University Bhaskar DasGupta – University of Illinois Chicago Andrey Gorin – Oak Ridge National Laboratory Matt Hibbs – Princeton University Wen-Lian Hsu – Academia Sinica Tamer Kahveci – University of Florida Carl Kingsford – University of Maryland Christina Leslie – Memorial Sloan-Kettering Cancer Center Jing Li – Case Western Reserve
    [Show full text]