Sequences and Summations

Total Page:16

File Type:pdf, Size:1020Kb

Sequences and Summations CS 441 Discrete Mathematics for CS Lecture 10 Sequences and summations Milos Hauskrecht [email protected] 5329 Sennott Square CS 441 Discrete mathematics for CS M. Hauskrecht Sequences Definition: A sequence is a function from a subset of the set of integers (typically the set {0,1,2,...} or the set {1,2,3,...} to a set S. We use the notation an to denote the image of the integer n. We call an a term of the sequence. Notation: {an} is used to represent the sequence (note {} is the same notation used for sets, so be careful). {an} represents the ordered list a1, a2, a3, ... 1 2 3 4 5 6 …. a1 a2 a3 a4 a5 a6 …. {an} CS 441 Discrete mathematics for CS M. Hauskrecht 1 Sequences Examples: 2 • (1) an = n , where n = 1,2,3... – What are the elements of the sequence? 1, 4, 9, 16, 25, ... n • (2) an = (-1) , where n=0,1,2,3,... – Elements of the sequence? 1, -1, 1, -1, 1, ... n • 3) an = 2 , where n=0,1,2,3,... – Elements of the sequence? 1, 2, 4, 8, 16, 32, ... CS 441 Discrete mathematics for CS M. Hauskrecht Arithmetic progression Definition: An arithmetic progression is a sequence of the form a, a+d,a+2d, …, a+nd where a is the initial term and d is common difference, such that both belong to R. Example: •sn= -1+4n for n=0,1,2,3, … • members: -1, 3, 7, 11, … CS 441 Discrete mathematics for CS M. Hauskrecht 2 Geometric progression Definition A geometric progression is a sequence of the form: a, ar, ar2, ..., ark, where a is the initial term, and r is the common ratio. Both a and r belong to R. Example: n •an = ( ½ ) for n = 0,1,2,3, … members: 1,½, ¼, 1/8, ….. CS 441 Discrete mathematics for CS M. Hauskrecht Sequences • Given a sequence finding a rule for generating the sequence is not always straightforward Example: • Assume the sequence: 1,3,5,7,9, …. • What is the formula for the sequence? • Each term is obtained by adding 2 to the previous term. 1, 1+2=3, 3+2=5, 5+2=7 • What type of progression this suggest? CS 441 Discrete mathematics for CS M. Hauskrecht 3 Sequences • Given a sequence finding a rule for generating the sequence is not always straightforward Example: • Assume the sequence: 1,3,5,7,9, …. • What is the formula for the sequence? • Each term is obtained by adding 2 to the previous term. • 1, 1+2=3, 3+2=5, 5+2=7 • It suggests an arithmetic progression: a+nd with a=1 and d=2 •an=1+2n CS 441 Discrete mathematics for CS M. Hauskrecht Sequences • Given a sequence finding a rule for generating the sequence is not always straightforward Example 2: • Assume the sequence: 1, 1/3, 1/9, 1/27, … • What is the sequence? • The denominators are powers of 3. 1, 1/3= 1/3, (1/3)/3=1/(3*3)=1/9, (1/9)/3=1/27 • This suggests a geometric progression: ark with a=1 and r=1/3 • (1/3 )n CS 441 Discrete mathematics for CS M. Hauskrecht 4 Recursively defined sequences • The n-th element of the sequence {an} is defined recursively in terms of the previous elements of the sequence and the initial elements of the sequence. Example : •an = an-1 + 2 assuming a0 = 1; •a0 = 1; •a1 = 3; •a2 = 5; •a3 = 7; • Can you write an non-recursively using n? •an = 1 + 2n CS 441 Discrete mathematics for CS M. Hauskrecht Fibonacci sequence • Recursively defined sequence, where •f0 = 0; •f1 = 1; •fn = fn-1 + fn-2 for n = 2,3, … •f2 = 1 •f3 = 2 •f4 = 3 •f5 = 5 CS 441 Discrete mathematics for CS M. Hauskrecht 5 Summations Summation of the terms of a sequence: n a j a m a m 1 ... a n j m The variable j is referred to as the index of summation. • m is the lower limit and • n is the upper limit of the summation. CS 441 Discrete mathematics for CS M. Hauskrecht Summations Example: • 1) Sum the first 7 terms of {n2} where n=1,2,3, ... • 7 7 2 a j j 1 4 16 25 36 49 140 jj1 1 • 2) What is the value of 8 8 j a j ( 1) 1 ( 1) 1 ( 1) 1 1 kk4 4 CS 441 Discrete mathematics for CS M. Hauskrecht 6 Arithmetic series Definition: The sum of the terms of the arithmetic progression a, a+d,a+2d, …, a+nd is called an arithmetic series. Theorem: The sum of the terms of the arithmetic progression a, a+d,a+2d, …, a+nd is n n n(n 1) S (a jd) na d j na d j11j 2 • Why? CS 441 Discrete mathematics for CS M. Hauskrecht Arithmetic series Theorem: The sum of the terms of the arithmetic progression a, a+d,a+2d, …, a+nd is n n n(n 1) S (a jd) na d j na d j11j 2 Proof: n n n n S (a jd) a jd na d j j11j1 j j1 n j 1 2 3 4 .... (n 2) (n 1) n j1 CS 441 Discrete mathematics for CS M. Hauskrecht 7 Arithmetic series Theorem: The sum of the terms of the arithmetic progression a, a+d,a+2d, …, a+nd is n n n(n 1) S (a jd) na d j na d j11j 2 Proof: n n n n S (a jd) a jd na d j j11j1 j j1 n j 1 2 3 4 .... (n 2) (n 1) n j1 n+1 n+1 … n+1 n *(n 1) 2 CS 441 Discrete mathematics for CS M. Hauskrecht Arithmetic series 5 Example: S (2 j3) j1 5 5 2 j3 jj1 1 5 5 21 3 j jj1 1 5 2*5 3 j j1 (5 1) 10 3 *5 2 10 45 55 CS 441 Discrete mathematics for CS M. Hauskrecht 8 Arithmetic series 5 Example 2: S (2 j3) j3 5 2 (2 j3) (2 j3) Trick j1 j1 5 5 2 2 21 3 j 21 3 j jj1 1 jj1 1 5513 42 CS 441 Discrete mathematics for CS M. Hauskrecht Double summations 4 2 Example: S (2i j) ij1 1 4 2 2 2i j ij1 1 j 1 4 2 2 2i 1 j ijj1 1 1 4 2 2i*2 j ij1 1 4 2i*2 3 i1 4 4 4i 3 ii1 1 4 4 4i 3 1 4*10 3*4 28 ii1 1 CS 441 Discrete mathematics for CS M. Hauskrecht 9 Geometric series Definition: The sum of the terms of a geometric progression a, ar, ar2, ..., ark is called a geometric series. Theorem: The sum of the terms of a geometric progression a, ar, ar2, ..., arn is n n n1 j j r 1 S (ar ) a r a j00j r 1 CS 441 Discrete mathematics for CS M. Hauskrecht Geometric series Theorem: The sum of the terms of a geometric progression a, ar, 2 n ar , ..., ar is n n n1 j j r 1 S (ar ) a r a j00j r 1 Proof: n S ar j a ar ar 2 ar 3 ... ar n j0 • multiply S by r n rS rar j ar ar 2 ar 3 ... ar n1 j0 • Substract rS S ar ar 2 ar 3 ... ar n1 a ar ar 2.. ar n ar n1 a ar n1 a r n1 1 S a r 1 r 1 CS 441 Discrete mathematics for CS M. Hauskrecht 10 Geometric series Example: 3 S 2(5) j j0 General formula: n n n1 j j r 1 S (ar ) a r a j00j r 1 3 54 1 S 2(5) j 2* j0 5 1 625 1 624 2* 2* 2*156 312 4 4 CS 441 Discrete mathematics for CS M. Hauskrecht Infinite geometric series • Infinite geometric series can be computed in the closed form for x<1 • How? k k 1 n n x 1 1 1 x lim k x lim k n0 n0 x 1 x 1 1 x • Thus: 1 x n n 0 1 x CS 441 Discrete mathematics for CS M. Hauskrecht 11.
Recommended publications
  • Methods of Measuring Population Change
    Methods of Measuring Population Change CDC 103 – Lecture 10 – April 22, 2012 Measuring Population Change • If past trends in population growth can be expressed in a mathematical model, there would be a solid justification for making projections on the basis of that model. • Demographers developed an array of models to measure population growth; four of these models are usually utilized. 1 Measuring Population Change Arithmetic (Linear), Geometric, Exponential, and Logistic. Arithmetic Change • A population growing arithmetically would increase by a constant number of people in each period. • If a population of 5000 grows by 100 annually, its size over successive years will be: 5100, 5200, 5300, . • Hence, the growth rate can be calculated by the following formula: • (100/5000 = 0.02 or 2 per cent). 2 Arithmetic Change • Arithmetic growth is the same as the ‘simple interest’, whereby interest is paid only on the initial sum deposited, the principal, rather than on accumulating savings. • Five percent simple interest on $100 merely returns a constant $5 interest every year. • Hence, arithmetic change produces a linear trend in population growth – following a straight line rather than a curve. Arithmetic Change 3 Arithmetic Change • The arithmetic growth rate is expressed by the following equation: Geometric Change • Geometric population growth is the same as the growth of a bank balance receiving compound interest. • According to this, the interest is calculated each year with reference to the principal plus previous interest payments, thereby yielding a far greater return over time than simple interest. • The geometric growth rate in demography is calculated using the ‘compound interest formula’.
    [Show full text]
  • Topic 7 Notes 7 Taylor and Laurent Series
    Topic 7 Notes Jeremy Orloff 7 Taylor and Laurent series 7.1 Introduction We originally defined an analytic function as one where the derivative, defined as a limit of ratios, existed. We went on to prove Cauchy's theorem and Cauchy's integral formula. These revealed some deep properties of analytic functions, e.g. the existence of derivatives of all orders. Our goal in this topic is to express analytic functions as infinite power series. This will lead us to Taylor series. When a complex function has an isolated singularity at a point we will replace Taylor series by Laurent series. Not surprisingly we will derive these series from Cauchy's integral formula. Although we come to power series representations after exploring other properties of analytic functions, they will be one of our main tools in understanding and computing with analytic functions. 7.2 Geometric series Having a detailed understanding of geometric series will enable us to use Cauchy's integral formula to understand power series representations of analytic functions. We start with the definition: Definition. A finite geometric series has one of the following (all equivalent) forms. 2 3 n Sn = a(1 + r + r + r + ::: + r ) = a + ar + ar2 + ar3 + ::: + arn n X = arj j=0 n X = a rj j=0 The number r is called the ratio of the geometric series because it is the ratio of consecutive terms of the series. Theorem. The sum of a finite geometric series is given by a(1 − rn+1) S = a(1 + r + r2 + r3 + ::: + rn) = : (1) n 1 − r Proof.
    [Show full text]
  • Formal Power Series - Wikipedia, the Free Encyclopedia
    Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series
    [Show full text]
  • Writing Mathematical Expressions in Plain Text – Examples and Cautions Copyright © 2009 Sally J
    Writing Mathematical Expressions in Plain Text – Examples and Cautions Copyright © 2009 Sally J. Keely. All Rights Reserved. Mathematical expressions can be typed online in a number of ways including plain text, ASCII codes, HTML tags, or using an equation editor (see Writing Mathematical Notation Online for overview). If the application in which you are working does not have an equation editor built in, then a common option is to write expressions horizontally in plain text. In doing so you have to format the expressions very carefully using appropriately placed parentheses and accurate notation. This document provides examples and important cautions for writing mathematical expressions in plain text. Section 1. How to Write Exponents Just as on a graphing calculator, when writing in plain text the caret key ^ (above the 6 on a qwerty keyboard) means that an exponent follows. For example x2 would be written as x^2. Example 1a. 4xy23 would be written as 4 x^2 y^3 or with the multiplication mark as 4*x^2*y^3. Example 1b. With more than one item in the exponent you must enclose the entire exponent in parentheses to indicate exactly what is in the power. x2n must be written as x^(2n) and NOT as x^2n. Writing x^2n means xn2 . Example 1c. When using the quotient rule of exponents you often have to perform subtraction within an exponent. In such cases you must enclose the entire exponent in parentheses to indicate exactly what is in the power. x5 The middle step of ==xx52− 3 must be written as x^(5-2) and NOT as x^5-2 which means x5 − 2 .
    [Show full text]
  • Sequence Rules
    SEQUENCE RULES A connected series of five of the same colored chip either up or THE JACKS down, across or diagonally on the playing surface. There are 8 Jacks in the card deck. The 4 Jacks with TWO EYES are wild. To play a two-eyed Jack, place it on your discard pile and place NOTE: There are printed chips in the four corners of the game board. one of your marker chips on any open space on the game board. The All players must use them as though their color marker chip is in 4 jacks with ONE EYE are anti-wild. To play a one-eyed Jack, place the corner. When using a corner, only four of your marker chips are it on your discard pile and remove one marker chip from the game needed to complete a Sequence. More than one player may use the board belonging to your opponent. That completes your turn. You same corner as part of a Sequence. cannot place one of your marker chips on that same space during this turn. You cannot remove a marker chip that is already part of a OBJECT OF THE GAME: completed SEQUENCE. Once a SEQUENCE is achieved by a player For 2 players or 2 teams: One player or team must score TWO SE- or a team, it cannot be broken. You may play either one of the Jacks QUENCES before their opponents. whenever they work best for your strategy, during your turn. For 3 players or 3 teams: One player or team must score ONE SE- DEAD CARD QUENCE before their opponents.
    [Show full text]
  • Appendix a Short Course in Taylor Series
    Appendix A Short Course in Taylor Series The Taylor series is mainly used for approximating functions when one can identify a small parameter. Expansion techniques are useful for many applications in physics, sometimes in unexpected ways. A.1 Taylor Series Expansions and Approximations In mathematics, the Taylor series is a representation of a function as an infinite sum of terms calculated from the values of its derivatives at a single point. It is named after the English mathematician Brook Taylor. If the series is centered at zero, the series is also called a Maclaurin series, named after the Scottish mathematician Colin Maclaurin. It is common practice to use a finite number of terms of the series to approximate a function. The Taylor series may be regarded as the limit of the Taylor polynomials. A.2 Definition A Taylor series is a series expansion of a function about a point. A one-dimensional Taylor series is an expansion of a real function f(x) about a point x ¼ a is given by; f 00ðÞa f 3ðÞa fxðÞ¼faðÞþf 0ðÞa ðÞþx À a ðÞx À a 2 þ ðÞx À a 3 þÁÁÁ 2! 3! f ðÞn ðÞa þ ðÞx À a n þÁÁÁ ðA:1Þ n! © Springer International Publishing Switzerland 2016 415 B. Zohuri, Directed Energy Weapons, DOI 10.1007/978-3-319-31289-7 416 Appendix A: Short Course in Taylor Series If a ¼ 0, the expansion is known as a Maclaurin Series. Equation A.1 can be written in the more compact sigma notation as follows: X1 f ðÞn ðÞa ðÞx À a n ðA:2Þ n! n¼0 where n ! is mathematical notation for factorial n and f(n)(a) denotes the n th derivation of function f evaluated at the point a.
    [Show full text]
  • Math Club: Recurrent Sequences Nov 15, 2020
    MATH CLUB: RECURRENT SEQUENCES NOV 15, 2020 In many problems, a sequence is defined using a recurrence relation, i.e. the next term is defined using the previous terms. By far the most famous of these is the Fibonacci sequence: (1) F0 = 0;F1 = F2 = 1;Fn+1 = Fn + Fn−1 The first several terms of this sequence are below: 0; 1; 1; 2; 3; 5; 8; 13; 21; 34;::: For such sequences there is a method of finding a general formula for nth term, outlined in problem 6 below. 1. Into how many regions do n lines divide the plane? It is assumed that no two lines are parallel, and no three lines intersect at a point. Hint: denote this number by Rn and try to get a recurrent formula for Rn: what is the relation betwen Rn and Rn−1? 2. The following problem is due to Leonardo of Pisa, later known as Fibonacci; it was introduced in his 1202 book Liber Abaci. Suppose a newly-born pair of rabbits, one male, one female, are put in a field. Rabbits are able to mate at the age of one month so that at the end of its second month a female can produce another pair of rabbits. Suppose that our rabbits never die and that the female always produces one new pair (one male, one female) every month from the second month on. How many pairs will there be in one year? 3. Daniel is coming up the staircase of 20 steps. He can either go one step at a time, or skip a step, moving two steps at a time.
    [Show full text]
  • How to Write Mathematical Papers
    HOW TO WRITE MATHEMATICAL PAPERS BRUCE C. BERNDT 1. THE TITLE The title of your paper should be informative. A title such as “On a conjecture of Daisy Dud” conveys no information, unless the reader knows Daisy Dud and she has made only one conjecture in her lifetime. Generally, titles should have no more than ten words, although, admittedly, I have not followed this advice on several occasions. 2. THE INTRODUCTION The Introduction is the most important part of your paper. Although some mathematicians advise that the Introduction be written last, I advocate that the Introduction be written first. I find that writing the Introduction first helps me to organize my thoughts. However, I return to the Introduction many times while writing the paper, and after I finish the paper, I will read and revise the Introduction several times. Get to the purpose of your paper as soon as possible. Don’t begin with a pile of notation. Even at the risk of being less technical, inform readers of the purpose of your paper as soon as you can. Readers want to know as soon as possible if they are interested in reading your paper or not. If you don’t immediately bring readers to the objective of your paper, you will lose readers who might be interested in your work but, being pressed for time, will move on to other papers or matters because they do not want to read further in your paper. To state your main results precisely, considerable notation and terminology may need to be introduced.
    [Show full text]
  • 0.999… = 1 an Infinitesimal Explanation Bryan Dawson
    0 1 2 0.9999999999999999 0.999… = 1 An Infinitesimal Explanation Bryan Dawson know the proofs, but I still don’t What exactly does that mean? Just as real num- believe it.” Those words were uttered bers have decimal expansions, with one digit for each to me by a very good undergraduate integer power of 10, so do hyperreal numbers. But the mathematics major regarding hyperreals contain “infinite integers,” so there are digits This fact is possibly the most-argued- representing not just (the 237th digit past “Iabout result of arithmetic, one that can evoke great the decimal point) and (the 12,598th digit), passion. But why? but also (the Yth digit past the decimal point), According to Robert Ely [2] (see also Tall and where is a negative infinite hyperreal integer. Vinner [4]), the answer for some students lies in their We have four 0s followed by a 1 in intuition about the infinitely small: While they may the fifth decimal place, and also where understand that the difference between and 1 is represents zeros, followed by a 1 in the Yth less than any positive real number, they still perceive a decimal place. (Since we’ll see later that not all infinite nonzero but infinitely small difference—an infinitesimal hyperreal integers are equal, a more precise, but also difference—between the two. And it’s not just uglier, notation would be students; most professional mathematicians have not or formally studied infinitesimals and their larger setting, the hyperreal numbers, and as a result sometimes Confused? Perhaps a little background information wonder .
    [Show full text]
  • On Generalized Hypergeometric Equations and Mirror Maps
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 142, Number 9, September 2014, Pages 3153–3167 S 0002-9939(2014)12161-7 Article electronically published on May 28, 2014 ON GENERALIZED HYPERGEOMETRIC EQUATIONS AND MIRROR MAPS JULIEN ROQUES (Communicated by Matthew A. Papanikolas) Abstract. This paper deals with generalized hypergeometric differential equations of order n ≥ 3 having maximal unipotent monodromy at 0. We show that among these equations those leading to mirror maps with inte- gral Taylor coefficients at 0 (up to simple rescaling) have special parameters, namely R-partitioned parameters. This result yields the classification of all generalized hypergeometric differential equations of order n ≥ 3havingmax- imal unipotent monodromy at 0 such that the associated mirror map has the above integrality property. 1. Introduction n Let α =(α1,...,αn) be an element of (Q∩]0, 1[) for some integer n ≥ 3. We consider the generalized hypergeometric differential operator given by n n Lα = δ − z (δ + αk), k=1 d where δ = z dz . It has maximal unipotent monodromy at 0. Frobenius’ method yields a basis of solutions yα;1(z),...,yα;n(z)ofLαy(z) = 0 such that × (1) yα;1(z) ∈ C({z}) , × (2) yα;2(z) ∈ C({z})+C({z}) log(z), . n−2 k × n−1 (3) yα;n(z) ∈ C({z})log(z) + C({z}) log(z) , k=0 where C({z}) denotes the field of germs of meromorphic functions at 0 ∈ C.One can assume that yα;1 is the generalized hypergeometric series ∞ + (α) y (z):=F (z):= k zk ∈ C({z}), α;1 α k!n k=0 where the Pochhammer symbols (α)k := (α1)k ···(αn)k are defined by (αi)0 =1 ∗ and, for k ∈ N ,(αi)k = αi(αi +1)···(αi + k − 1).
    [Show full text]
  • 9.4 Arithmetic Series Notes
    9.4 Arithmetic Series Notes Pre­AP Algebra 2 9.4 Arithmetic Series *Objective: Define arithmetic series and find their sums When you know two terms and the number of terms in a finite arithmetic sequence, you can find the sum of the terms. A series is the indicated sum of the terms of a sequence. A finite series has a first terms and a last term. An infinite series continues without end. Finite Sequence Finite Series 6, 9, 12, 15, 18 6 + 9 + 12 + 15 + 18 = 60 Infinite Sequence Infinite Series 3, 7, 11, 15, ... 3 + 7 + 11 + 15 + ... An arithmetic series is a series whose terms form an arithmetic sequence. When a series has a finite number of terms, you can use a formula involving the first and last term to evaluate the sum. The sum Sn of a finite arithmetic series a1 + a2 + a3 + ... + an is n Sn = /2 (a1 + an) a1 : is the first term an : is the last term (nth term) n : is the number of terms in the series Finding the Sum of a finite arithmetic series Ex1) a. What is the sum of the even integers from 2 to 100 b. what is the sum of the finite arithmetic series: 4 + 9 + 14 + 19 + 24 + ... + 99 c. What is the sum of the finite arithmetic series: 14 + 17 + 20 + 23 + ... + 116? Using the sum of a finite arithmetic series Ex2) A company pays $10,000 bonus to salespeople at the end of their first 50 weeks if they make 10 sales in their first week, and then improve their sales numbers by two each week thereafter.
    [Show full text]
  • Integral Points in Arithmetic Progression on Y2=X(X2&N2)
    Journal of Number Theory 80, 187208 (2000) Article ID jnth.1999.2430, available online at http:ÂÂwww.idealibrary.com on Integral Points in Arithmetic Progression on y2=x(x2&n2) A. Bremner Department of Mathematics, Arizona State University, Tempe, Arizona 85287 E-mail: bremnerÄasu.edu J. H. Silverman Department of Mathematics, Brown University, Providence, Rhode Island 02912 E-mail: jhsÄmath.brown.edu and N. Tzanakis Department of Mathematics, University of Crete, Iraklion, Greece E-mail: tzanakisÄitia.cc.uch.gr Communicated by A. Granville Received July 27, 1998 1. INTRODUCTION Let n1 be an integer, and let E be the elliptic curve E: y2=x(x2&n2). (1) In this paper we consider the problem of finding three integral points P1 , P2 , P3 whose x-coordinates xi=x(Pi) form an arithmetic progression with x1<x2<x3 . Let T1=(&n,0), T2=(0, 0), and T3=(n, 0) denote the two-torsion points of E. As is well known [Si1, Proposition X.6.1(a)], the full torsion subgroup of E(Q)isE(Q)tors=[O, T1 , T2 , T3]. One obvious solution to our problem is (P1 , P2 , P3)=(T1 , T2 , T3). It is natural to ask whether there are further obvious solutions, say of the form (T1 , Q, T2)or(T2 , T3 , Q$) or (T1 , T3 , Q"). (2) 187 0022-314XÂ00 35.00 Copyright 2000 by Academic Press All rights of reproduction in any form reserved. 188 BREMNER, SILVERMAN, AND TZANAKIS This is equivalent to asking whether there exist integral points having x-coordinates equal to &nÂ2or2n or 3n, respectively.
    [Show full text]