Inclusion Control in Steel Castings

Total Page:16

File Type:pdf, Size:1020Kb

Inclusion Control in Steel Castings Scholars' Mine Masters Theses Student Theses and Dissertations Fall 2020 Inclusion control in steel castings Koushik Karthikeyan Balasubramanian Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Materials Science and Engineering Commons Department: Recommended Citation Balasubramanian, Koushik Karthikeyan, "Inclusion control in steel castings" (2020). Masters Theses. 7961. https://scholarsmine.mst.edu/masters_theses/7961 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. INCLUSION CONTROL IN STEEL CASTINGS by KOUSHIK KARTHIKEYAN BALASUBRAMANIAN A THESIS Presented to the Graduate Faculty of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE in MATERIALS SCIENCE AND ENGINEERING 2020 Approved by: Dr.Laura Bartlett, Advisor Dr.Ronald O’Malley Dr.Simon Lekakh © 2020 KOUSHIK KARTHIKEYAN BALASUBRAMANIAN All Rights Reserved iii PUBLICATION THESIS OPTION This thesis consists of the following three articles, prepared for journal publication in the style used by the Missouri University of Science and Technology: Paper I, found on pages 39-68, has been published in the International Journal of Metalcasting (IJMC). Paper II, found on pages 69-107, are intended for submission to International Journal of Metalcasting (IJMC). Paper III, found on pages 108-135, are intended for submission to International Journal of Metalcasting (IJMC). iv ABSTRACT Non-metallic inclusions are mainly comprised of oxides, sulfides, and nitrides, and are formed in liquid steel during the melting and refining process, as a result of reoxidation, worn-out refractories, or entrained slag. The notch toughness of high strength steels is particularly susceptible to the type, number, size, and distribution of non-metallic inclusions. High manganese and aluminum austenitic steels, or Fe-Mn-Al steels, have gained much interest in the military and automotive sector because of their excellent combinations of high strength and toughness. However, these steels are subject to both oxide bifilms and aluminum nitride, AlN, inclusions which form during melting and casting. During the casting process, the gating system plays an important role in determining the casting quality and the overall level of inclusions and bifilm defects. Two solutions to control inclusions during mold filling include molten metal filtration and design of novel “naturally pressurized” gating systems that control metal flow into the casting cavity and reduce air entrainment. However, the use of filters and these naturally pressurized gating systems add an additional cost and generally reduce casting yield. In the current study, the effects of filtration and gating design on reduction of bifilms and inclusions in Fe-Mn-Al steel were determined using two novel mold designs. A parallel gating study involving an aluminum deoxidized, cast composition of SAE 8630 was also performed. The results of this study showed that ceramic foam filters were more effective at removing solid oxide bifilms and aluminum nitride inclusions from Fe-Mn-Al steel castings than the naturally pressurized gating systems. Future studies should be directed at developing naturally pressurized gating systems with filters. v ACKNOWLEDGMENTS First, I would like to thank God and my parents, Mr. M.S. Balasubramanian and Mrs. Uma Balu, for all their love, support, and sacrifices without which I would not have been able to make it this far in life. I would like to extend my heartfelt thanks and gratitude to my advisor, Dr. Laura Bartlett, for believing in me and providing me with an opportunity to work under her wing. Apart from being an advisor, she was also a great mentor, guide, and motivation. I would like to thank her for all her time and knowledge, and for helping me better myself at every stage of my journey, in graduate school. I would like to acknowledge the support provided by Dr. Ronald O’Malley, Dr. Simon Lekakh, and Dr. Mingzhi Xu for helping me understand and solve the challenges, faced in my research. I am grateful to Mr. Doug Imrie and Mr. Zach Henderson from SouthernCast Products for all their inputs and being the industrial sponsors. I am thankful to Mr. Miguel Gastelum and Mr. Dan Coyle from MagmaSoft for all the technical guidance. I would like to extend my gratitude to Mr. Nathan Inskip, Mr. Brian Bullock, Ms. Denise Eddings and Ms. Teneke Hill for their patience and time, experimental support and for ensuring that all the processes happened in a smooth and organized manner. I would like to thank the American Foundry Society for sponsoring this project. I would like to thank all my fellow graduate and undergraduate students for their support during experiments. I extend my special thanks to Michael Piston, Rairu Vaz Penna, and Soumava Chakraborty. Finally, I would like to thank my roommates, friends, and family without whom I would not be standing here. I would take this opportunity to specially mention Sivaramakrishnan Jayaram and Poorna Hariramakrishnan for being a constant source of emotional and moral support. vi TABLE OF CONTENTS Page PUBLICATION THESIS OPTION.......................................................................................... iii ABSTRACT..................................................................................................................................iv ACKNOWLEDGMENTS...........................................................................................................v LIST OF ILLUSTRATIONS...................................................................................................... x LIST OF TABLES....................................................................................................................xvii SECTION 1. INTRODUCTION..............................................................................................................1 1.1. PROJECT PURPOSE AND OVERVIEW...............................................................1 1.2. NON-METALLIC INCLUSIONS............................................................................ 6 1.2.1. Classification of Inclusions............................................................................ 6 1.2.2. Effect of Inclusions on Casting Quality........................................................ 13 1.3. BIFILMS.................................................................................................................... 17 1.3.1. Formation......................................................................................................... 17 1.3.2. Effect on Mechanical Properties....................................................................20 1.4. HIGH MANGANESE HIGH ALUMINUM STEELS.........................................23 1.4.1. Composition and Heat Treatment..................................................................24 1.4.2. Inclusions.........................................................................................................25 1.5. FILTRATION........................................................................................................... 26 1.5.1. Filtration Mechanism................................................................................... 26 1.5.2. Parameters Affecting Filtration 29 vii 1.6. GATING SYSTEM IN CASTINGS....................................................................30 1.6.1. Components of a Gating System....................................................................31 1.6.2. Pouring Cup......................................................................................................31 1.6.3. Downsprue.......................................................................................................31 1.6.4. Runners............................................................................................................ 34 1.6.5. Gating................................................................................................................35 1.6.6. Riser/Feeder.....................................................................................................38 PAPER I. FILTRATION EFFICIENCY OF INCLUSIONS IN LIGHTWEIGHT FeMnAl STEELS........................................................................................................... 39 ABSTRACT........................................................................................................................ 39 1. INTRODUCTION.........................................................................................................40 1.1. NON-METALLIC INCLUSIONS IN Fe-Mn-Al-C STEEL.............................40 1.2. FILTRATION.........................................................................................................41 2. METHODOLOGY........................................................................................................42 3. RESULTS....................................................................................................................... 47 3.1. CHEMISTRY ANALYSIS................................................................................... 48 3.2. BIFILM AND INCLUSION ANALYSIS........................................................... 50 4. DISCUSSION.................................................................................................................59
Recommended publications
  • Casting High Quality C12A
    Casting High Quality C12A Valve Manufacturers Association of America March 2012 BRADKEN ENERGY PRODUCTS March 2012 Elaine Thomas, Director of Metallurgy Bradken Tacoma ASTM A217 C12A and ASME Code case 2197-7 Chemistry Element wt% C 0.08 – 0.12 Mn 0.30 – 0.60 Si 0.20 – 0.50 P 0.020 S 0.010 Mo 0.85 – 1.05 Cr 8.0 – 9.5 Nb 0.060 – 0.10 V 0.18 – 0.25 N 0.030 – 0.070 Al .02 Ti .01 Zr .01 2 © 2011 BRADKEN® QUALITY SYSTEM MANUAL 3 © 2011 BRADKEN® CERTIFICATES • ASME • ISO 9002:2002 • Det Norske Veritas • Nuclear Industry Assessment Committee (Audit) • American Bureau of Shipbuilding • LLOYDS Registrar • Boeing D6-56202 4 © 2011 BRADKEN® EMPLOYEE TRAINING • • TrainingTraining Manuals Manuals for Skilled for Skilled Positions Positions • • ContinuingContinuing Education Education From ProfessionalFrom Professional Society Participation Society Participation ––AmericanAmerican SocietySociety for forTesting Testing and Materials and Materials ––SteelSteel FoundersFounders Society Society of America of America ––AmericanAmerican FoundryFoundry Society Society ––AmericanAmerican WeldingWelding Society Society ––AmericanAmerican SocietySociety for forNon Non-destructive-destructive Testing Testing • • ContinuingContinuing Education Education From NationalFrom NationalConferences Conferences – Offshore Technical Conference – Offshore Technical Conference – Submarine Industrial Base ––SubmarineMarine Machinery Industrial Association Base Conference ––MarineHydro Vision Machinery Association ––HydroPower -VisionGen – Power-Gen 5 © 2011 BRADKEN® THE CASTING
    [Show full text]
  • Permanent Mold
    PERMANENT MOLD CASTING PROCESSES Many variations of the permanent mold process are well-suited for mass production of high-integrity light metal castings for automotive components. This article is based on “High Integrity Permanent Mold Casting Processes: Current and Future,” a presentation at the American Foundry Society’s 6th International Conference on Permanent Mold Casting of Aluminum and Magnesium. J. L. Jorstad* JLJ Technologies Inc. This Chrysler NS cross member was cast on a tilt permanent mold machine. Richmond, Virginia However, with the incorporation of ceramic-foam filters and their ability Permanent mold casting consists of several basic to smooth melt flow (Fig. 1), opportu- processes. In this article, key characteristics of nities become available to top-pour each will be considered in terms of their impact with significantly fewer entrapped ox- on high-integrity products. ides and other quality detractors. Turbulent flow Combining filters with down-sprue GRAVITY FILLING PROCESSES and runner designs proposed by Prof. Gravity pouring, whether manual, via auto- Campbell has made it possible to pour ladles, or robotic pouring, can be susceptible to reasonably high-integrity aluminum turbulence, which has a negative effect on high- castings, perhaps most suitable for a Pintegrity castings. It is nearly impossible to have variety of less-critical automotive molten aluminum free fall more than a few cen- applications. timeters without initially exceeding a safe flow Static top-pouring has another velocity of about 0.5 to 1 m/s. Note that a free fall downside too, an ever-diminishing of less than 0.1 m will accelerate to more than 1 effective metal head as fill progresses.
    [Show full text]
  • Ats 34 and 154 Cm Stainless Heat Treat Procedure
    ATS 34 AND 154 CM STAINLESS HEAT TREAT PROCEDURE This is an oil hardening grade of steel which will require oil quenching. The oil should be a warm, thin quenching oil that contains a safe flash point. Olive oil has been used as a sub­ stitute. As a rule of thumb, there should be a gallon of oil for each pound of steel. For , warming the oil before quenching, you may heat a piece of steel and drop it in the oil. 1.) Wrap blades in stainless tool wrap and leave an extra two inches on each end of the package. (This will be for handling purposes going into the quench as described below.) We suggest a double wrap for this grade. The edges of the foil should be double crimped, being careful to avoid hav­ ing even a pin hole in the wrap. 2 . ) Place in the furnace and heat to 1900"F. After reaching this temperature, immediately start timing the soak time of 25-30 minutes. 3.) After the soak time has elapsed, very quickly and carefully pull the package out with tongs~ place over the quench tank and snip the end of the package allowing the blades to drop into the oil. You should have a wire basket in the quench tank for raising and lowering the blades rather than have them lie s till. Gases are released in the quench and would form a "trap" around the steel unless you keep them movi~g for a minute or so. *IMPORTANT--It is very important that the blades enter the oil quench as quickly as possible after leaving the furnace ! Full hardness would not be reached if this step is not followed.
    [Show full text]
  • File Identification Chart
    FILE IDENTIFICATION CHART American Pattern Swiss Pattern American Flat File — Rectangular cross section. Tapered point. Double cut top and bottom. Swiss Pattern Files have more exacting measurements and finer cuts ranging from № 00 to Single-cut edges. Special tooth construction eliminates clogging. All sizes have the same number 6. Used by tool and die makers, jewellers, modellers, craftspeople and hobbyists. Available in the of teeth. 6" – 12" long. following types and length: American Flat File Aluminum Half-Round File — Rounded on one side, flat on the other. Tapered point. • Half Round File — № 00, 0, 1, 2, 3 and 4. 4" – 10" long. Double-cut. Special tooth construction eliminates clogging. All sizes have the same number of teeth. • Hand File — № 00, 0, 1, 2 and 4. 4" – 10" long. Aluminum Half-Round File Smooth finish. 6" – 12" long. • Knife File — № 00, 0, 1, 2 and 4. 4" – 8" long. Flat File — Rectangular cross section. Tapered point. Double-cut top and bottom. Single-cut • Round File — № 00, 0 and 2. 4" – 10" long. Flat File edges. Bastard, second and smooth cuts. For rapid stock removal. 4" – 16" long. • Round Straight File — № 0. 4", 6" and 8" long. Half-Round File — Rounded one side, flat on the other. Double-cut top and bottom. Bastard, second and smooth cuts. For filing concave, convex and flat surfaces. 4" – 15" long. • Square File — № 00, 0 and 2. 4", 6" and 8" long. Half-Round File Hand File — Rectangular cross section. Double-cut top and bottom. One safe edge and one • Three Square File — № 00, 0, 1 and 2.
    [Show full text]
  • Radel® PPSU, Udel® PSU, Veradel® PESU & Acudel® Modified PPSU
    Radel ® | Udel ® | Veradel ® | Acudel ® Radel® PPSU, Udel® PSU, Veradel® PESU & Acudel® modified PPSU Processing Guide SPECIALT Y POLYMERS 2 \ Sulfone Polymers Processing Guide Table of Contents Introduction ............................. 5 Part Ejection . 14 Draft . 14 Ejector pins and/or stripper plates . 14 Sulfone Polymers........................ 5 Udel® Polysulfone (PPSU) . 5 Injection Molding Equipment ............. 15 ® Veradel Polyethersulfone (PESU) . 5 Controls . 15 ® Radel Polyphenylsulfone (PPSU) . 5 Clamp . 15 ® Acudel modified PPSU . 5 Barrel Capacity . 15 Press Maintenance . 15 Resin Drying . .6 Screw Design . 15 Rheology................................ 8 Screw Tips and Check Valves . 15 Viscosity-Shear Rate ..................... 8 Nozzles . 16 Molding Process . 16 Resin Flow Characteristics . 9 Melt flow index . 9 Polymer Injection or Mold Filling . 16 Spiral flow . 9 Packing and Holding . 17 Injection Molding . .10 Cooling . 17 Molds and Mold Design .................. 10 Machine Settings ....................... 17 Tool Steels . 10 Barrel Temperatures . 17 Mold Dimensions . 10 Mold Temperature . 18 Mold Polishing . 10 Residence Time in the Barrel . 18 Mold Plating and Surface Treatments . 10 Injection Rate . 18 Tool Wear . 10 Back Pressure . 18 Mold Temperature Control . 10 Screw Speed . 18 Mold Types . 11 Shrinkage . 18 Two-plate molds . 11 Three-plate molds . 11 Regrind ............................... 19 Hot runner molds . 11 Cavity Layout . 12 Measuring Residual Stress ............... 19 Runner Systems . 12 Extrusion............................... 22 Gating . 12 Sprue gating . 12 Edge gates . 13 Predrying ............................. 22 Diaphragm gates . 13 Tunnel or submarine gates . 13 Extrusion Temperatures ................. 22 Pin gates . 13 Screw Design Recommendations . 22 Gate location . 13 Venting . 14 Sulfone Polymers Processing Guide / 3 Die Design ............................. 22 Extruded Product Types . 23 Wire . 23 Film . 23 Sheet . 23 Piping and tubing . 23 Start-Up, Shut-Down, and Purging .......
    [Show full text]
  • The White Book of STEEL
    The white book of STEEL The white book of steel worldsteel represents approximately 170 steel producers (including 17 of the world’s 20 largest steel companies), national and regional steel industry associations and steel research institutes. worldsteel members represent around 85% of world steel production. worldsteel acts as the focal point for the steel industry, providing global leadership on all major strategic issues affecting the industry, particularly focusing on economic, environmental and social sustainability. worldsteel has taken all possible steps to check and confirm the facts contained in this book – however, some elements will inevitably be open to interpretation. worldsteel does not accept any liability for the accuracy of data, information, opinions or for any printing errors. The white book of steel © World Steel Association 2012 ISBN 978-2-930069-67-8 Design by double-id.com Copywriting by Pyramidion.be This publication is printed on MultiDesign paper. MultiDesign is certified by the Forestry Stewardship Council as environmentally-responsible paper. contEntS Steel before the 18th century 6 Amazing steel 18th to 19th centuries 12 Revolution! 20th century global expansion, 1900-1970s 20 Steel age End of 20th century, start of 21st 32 Going for growth: Innovation of scale Steel industry today & future developments 44 Sustainable steel Glossary 48 Website 50 Please refer to the glossary section on page 48 to find the definition of the words highlighted in blue throughout the book. Detail of India from Ptolemy’s world map. Iron was first found in meteorites (‘gift of the gods’) then thousands of years later was developed into steel, the discovery of which helped shape the ancient (and modern) world 6 Steel bEforE thE 18th cEntury Amazing steel Ever since our ancestors started to mine and smelt iron, they began producing steel.
    [Show full text]
  • Fire Protection of Steel Structures: Examples of Applications
    Fire protection of steel structures: examples of applications Autor(en): Brozzetti, Jacques / Pettersson, Ove / Law, Margaret Objekttyp: Article Zeitschrift: IABSE proceedings = Mémoires AIPC = IVBH Abhandlungen Band (Jahr): 7 (1983) Heft P-61: Fire protection of steel structures: examples of applications PDF erstellt am: 06.10.2021 Persistenter Link: http://doi.org/10.5169/seals-37489 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch J% IABSE periodica 2/1983 IABSE PROCEEDINGS P-61/83 69 Fire Protection of Steel Structures — Examples of Applications Protection contre le feu des structures acier — Quelques exemples d'applications Brandschutz der Stahlkonstruktionen — Einige Anwendungsbeispiele Jacques BROZZETTI Margaret LAW Dir., Dep.
    [Show full text]
  • WELD 1030 Pattern Development
    PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS PATTERN DEVELOPMENT WELD 1030 Class Hours: 2.0 Credit Hours: 2 Laboratory Hours: 2.0 Revised: Spring 2017 Catalog Course Description With an emphasis on the practical applications of pattern development, students construct basic forms using parallel line pattern development techniques. The course also introduces students to tools of the trade, geometric construction and bend allowance computations. Prerequisites NONE Corequisites MATH 1010 or MATH 1530 or MATH 1630 or MATH 1710 or MATH 1720 or MATH 1730 or MATH 1830 or MATH 1910 Textbook(s) and Other Course Materials Sheet Metal, Latest Edition, Leo A. Meyer, American Technical Publishers, Week/Unit/Topic Basis Week Topic 1. Introduction, Sheet Metal Working Tools and Machinery 2. Fasteners for Sheet Metal, Using Patterns and Cutting Metal 3. Punching, Drilling, and Riveting Folding Edges and Making Seams 4. Turning, Barring and Raising, Forming, Crimping, Beading and Grooving 5. Soldering 6. Drawing for Pattern Drafting 7. Making and Notching Simple Patterns 8. Parallel Line Development 9. Lab Projects 10. Review / Final Exam Welding Technology General Outcomes (Educational objectives) 1. Reach their full potential in the welding field. 2. Use the correct procedure in setting up equipment, and the skills used in welding. 3. Use Shielded Metal Arc Welding, Gas Metal Arc Welding, and Gas Tungsten Arc Welding machines in both pipe and plate welding. 4. Explain the physical characteristics of different metals 5. Develop the cognitive and physical skills necessary to pass certification tests. 6. Apply welding knowledge to effectively utilize problem solving skills as it relates to the operation of equipment in the industry.
    [Show full text]
  • A Comparison of Thixocasting and Rheocasting
    A Comparison of Thixocasting and Rheocasting Stephen P. Midson The Midson Group, Inc. Denver, Colorado USA Andrew Jackson Arthur Jackson & Co., Ltd. Brighouse UK Abstract The first semi-solid casting process to be commercialized was thixocasting, where a pre-cast billet is re-heated to the semi-solid solid casting temperature. Advantages of thixocasting include the production of high quality components, while the main disadvantage is the higher cost associated with the production of the pre-cast billets. Commercial pressures have driven casters to examine a different approach to semi-solid casting, where the semi-solid slurry is generated directly from the liquid adjacent to a die casting machine. These processes are collectively referred to as rheocasting, and there are currently at least 15 rheocasting processes either in commercial production or under development around the world. This paper will describe technical aspects of both thixocasting and rheocasting, comparing the procedures used to generate the globular, semi-solid slurry. Two rheocasting processes will be examined in detail, one involved in the production of high integrity properties, while the other is focusing on reducing the porosity content of conventional die castings. Key Words Semi-solid casting, thixocasting, rheocasting, aluminum alloys 22 / 1 Introduction Semi-solid casting is a modified die casting process that reduces or eliminates the porosity present in most die castings [1] . Rather than using liquid metal as the feed material, semi-solid processing uses a higher viscosity feed material that is partially solid and partially liquid. The high viscosity of the semi-solid metal, along with the use of controlled die filling conditions, ensures that the semi-solid metal fills the die in a non-turbulent manner so that harmful gas porosity can be essentially eliminated.
    [Show full text]
  • Signature Redacted
    A Novel Method for the Production of Microwires by Alexander Michael Couch B.S., United States Naval Academy (2017) Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2019 Massachusetts Institute of Technology 2019. All rights reserved. redacted A u th o r ...........................................................Signature .. Department of Mechanical Engineering 1, y.- january 14, 2019 Certified by...........Signature redacted ......... Kasey Russell Principal Member of the Technical Staff, The Charles Stark Draper Laboratory Certified by.....SignatureC ertified by ....... redacted Thesis.... .....Supervisor .. Irmgard Bischofberger Assistant Professor of Mechanical Engineering Signature redacted Thesis Supervisor A ccepted by ............. .................. MASSACHUSES INSTITUTE I Nicblas Hadjiconstantinou OF TECHNOWOGY Chairman, Department Committee on Graduate Theses FEB 252019 LIBRARIES ARCHIVES A Novel Method for the Production of Microwires by Alexander Michael Couch Submitted to the Department of Mechanical Engineering on January 14, 2019, in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Abstract Radio frequency (RF) systems such as cell phones and GPS can perform better and last longer if we can reduce electrical heat loss in the wires. This is typically done in power systems by twisting or weaving the wires, following one of several patterns. Though, at radio frequencies, wire dimensions must scale down by as much as 1000 times in order to achieve the same effects. This project decomposes the problem into two main categories; the manufacturing of micron scale wires and the manipulation of these wires in order to form a twisted bundle.
    [Show full text]
  • Implementation of Metal Casting Best Practices
    Implementation of Metal Casting Best Practices January 2007 Prepared for ITP Metal Casting Authors: Robert Eppich, Eppich Technologies Robert D. Naranjo, BCS, Incorporated Acknowledgement This project was a collaborative effort by Robert Eppich (Eppich Technologies) and Robert Naranjo (BCS, Incorporated). Mr. Eppich coordinated this project and was the technical lead for this effort. He guided the data collection and analysis. Mr. Naranjo assisted in the data collection and analysis of the results and led the development of the final report. The final report was prepared by Robert Naranjo, Lee Schultz, Rajita Majumdar, Bill Choate, Ellen Glover, and Krista Jones of BCS, Incorporated. The cover was designed by Borys Mararytsya of BCS, Incorporated. We also gratefully acknowledge the support of the U.S. Department of Energy, the Advanced Technology Institute, and the Cast Metals Coalition in conducting this project. Disclaimer This report was prepared as an account of work sponsored by an Agency of the United States Government. Neither the United States Government nor any Agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any Agency thereof. The views and opinions expressed by the authors herein do not necessarily state or reflect those of the United States Government or any Agency thereof.
    [Show full text]
  • Cast Irons from Les Forges Du Saint- Maurice, Quebec a Metallurgical Study
    Cast Irons from Les Forges du Saint- Maurice, Quebec A Metallurgical Study Henry Unglik Environment Canada Environnement Canada Parks Service Service des pares Cast Irons from Les Forges du Saint- Maurice, Quebec A Metallurgical Study Henry Unglik Studies in Archaeology Architecture and History National Historic Parks and Sites Parks Service Environment Canada ©Minister of Supply and Services Canada 1990. Available in Canada through authorized bookstore agents and other bookstores, or by mail from the Canadian Government Publishing Centre, Supply and Services Canada, Hull, Que­ bec, Canada Kl A 0S9. Published under the authority of the Minister of the Environment, Ottawa, 1990 Editing and design: Jean Brathwaite Production: Lucie Forget and Rod Won Parks publishes the results of its research in archaeology, architecture, and history. A list of publications is available from Research Publications, Parks Service, Environment Can­ ada, 1600 Liverpool Court, Ottawa, Ontario K1A 0H3. Canadian Cataloguing in Publication Data Unglik, Henry Cast irons from les Forges du Saint-Maurice, Quebec: a met­ allurgical study (Studies in archaeology, architecture and history, ISSN 0821-1027) Issued also in French under title: Fontes provenant des Forges du Saint-Maurice. Includes bibliographical references. ISBN 0-660-13598-1 DSS cat. no. R61-2/9-48E 1. Forges du Saint-Maurice (Quebec) — Antiquities. 2. Iron­ works — Quebec (Province) — Saint Maurice River Valley — History. 3. Cast-iron — Analysis. I. Canadian Parks Service. National Historic Parks and
    [Show full text]