Chapter 13 Contrasts and Custom Hypotheses

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 13 Contrasts and Custom Hypotheses Chapter 13 Contrasts and Custom Hypotheses Contrasts ask specific questions as opposed to the general ANOVA null vs. alter- native hypotheses. In a one-way ANOVA with a k level factor, the null hypothesis is µ1 = ··· = µk, and the alternative is that at least one group (treatment) population mean of the outcome differs from the others. If k = 2, and the null hypothesis is rejected we need only look at the sample means to see which treatment is \better". But if k > 2, rejection of the null hypothesis does not give the full information of interest. For some specific group population means we would like to know if we have sufficient evidence that they differ from certain other group population means. E.g., in a test of the effects of control and two active treatments to increase vocabulary, we might find that based on a the high value for the F-statistic we are justified in rejecting the null hypothesis µ1 = µ2 = µ3. If the sample means of the outcome are 50, 75 and 80 respectively, we need additional testing to answer specific questions like \Is the control population mean lower than the average of the two active treatment population means?" and \Are the two active treatment population means different?" To answer questions like these we frame \custom" hypotheses, which are formally expressed as contrast hypothesis. Comparison and analytic comparison are other synonyms for contrast. 319 320 CHAPTER 13. CONTRASTS AND CUSTOM HYPOTHESES 13.1 Contrasts, in general A contrast null hypothesis compares two population means or combinations of pop- ulation means. A simple contrast hypothesis compares two population means, e.g. H0 : µ1 = µ5. The corresponding inequality is the alternative hypothesis: H1 : µ1 6= µ5. A contrast null hypotheses that has multiple population means on either or both sides of the equal sign is called a complex contrast hypothesis. In the vast majority of practical cases, the multiple population means are combined as µ1+µ2 µ3+µ4+µ5 their mean, e.g., the custom null hypothesis H0 : 2 = 3 represents a test of the equality of the average of the first two treatment population means to the average of the next three. An example where this would be useful and interesting is when we are studying five ways to improve vocabulary, the first two of which are different written methods and the last three of which are different verbal methods. It is customary to rewrite the null hypothesis with all of the population means on one side of the equal sign and a zero on the other side. E.g., H0 : µ1 − µ5 = 0 µ1+µ2 µ3+µ4+µ5 or H0 : 2 − 3 = 0. This mathematical form, whose left side is checked for equality to zero is the standard form for a contrast. In addition to hypothesis testing, it is also often of interest to place a confidence interval around a contrast of population means, e.g., we might calculate that the 95% CI for µ3 − µ4 is [-5.0, +3.5]. As in the rest of classical statistics, we proceed by finding the null sampling distribution of the contrast statistic. A little bit of formalism is needed so that we can enter the correct custom information into a computer program, which will then calculate the contrast statistic (estimate of the population contrast), the standard error of the statistic, a corresponding t-statistic, and the appropriate p- value. As shown later, this process only works under the special circumstances called \planned comparisons"; otherwise it requires some modifications. Let γ (gamma) represent the population contrast. In this section, will use an example from a single six level one-way ANOVA, and use subscripts 1 and 2 to distinguish two specific contrasts. As an example of a simple (population) contrast, define γ1 to be µ3 − µ4, a contrast of the population means of the outcomes for the third vs. the fourth treatments. As an example of a complex contrast let γ2 µ1+µ2 µ3+µ4+µ5 be 2 − 3 , a contrast of the population mean of the outcome for the first two treatments to the population mean of the outcome for the third through fifth treatments. We can write the corresponding hypothesis as H01 : γ1 = 0;HA1 : 13.1. CONTRASTS, IN GENERAL 321 γ1 6= 0 and H02 : γ2 = 0;HA2 : γ2 6= 0. If we call the corresponding estimates, g1 and g2 then the appropriate estimates y¯1+¯y2 y¯3+¯y4+¯y5 are g1 =y ¯3 − y¯4 and g2 = 2 − 3 . In the hypothesis testing situation, we are testing whether or not these estimates are consistent with the corresponding null hypothesis. For a confidence interval on a particular population contrast (γ), these estimates will be at the center of the confidence interval. In the chapter on probability theory, we saw that the sampling distribution of any of the sample means from a (one treatment) sample of size n using the assump- 2 tions of Normality, equal variance, and independent errors isy ¯i ∼ N(µi; σ =n), i.e., across repeated experiments, a sample mean is Normally distributed with the \cor- rect" mean and the variance equal to the common group variance reduced by a factor of n. Now we need to find the sampling distribution for some particular combination of sample means. To do this, we need to write the contrast in \standard form". The standard form involves writing a sum with one term for each population mean (µ), whether or not it is in the particular contrast, and with a single number, called a contrast coefficient in front of each population mean. For our examples we get: γ1 = (0)µ1 + (0)µ2 + (0)µ3 + (1)µ4 + (−1)µ5 + (0)µ6 and γ2 = (1=2)µ1 + (1=2)µ2 + (−1=3)µ3 + (−1=3)µ4 + (−1=3)µ5 + (0)µ6: In a more general framing of the contrast we would write γ = C1µ1 + ··· + Ckµk: In other words, each contrast can be summarized by specifying its k coefficients (C values). And it turns out that the k coefficients are what most computer programs want as input when you specify the contrast of a custom null hypothesis. In our examples, the coefficients (and computer input) for null hypothesis H01 are [0, 0, 1, -1, 0, 0], and for H02 they are [1/2, 1/2, -1/3, -1/3, -1/3, 0]. Note that the zeros are necessary. For example, if you just entered [1, -1], the computer would not understand which pair of treatment population means you want it to compare. Also, note that any valid set of contrast coefficients must add to zero. 322 CHAPTER 13. CONTRASTS AND CUSTOM HYPOTHESES It is OK to multiply the set of coefficients by any (non-zero) number. E.g., we could also specify H02 as [3, 3, -2, -2, -2, 0] and [-3, -3, 2, 2, 2, 0]. These alternate contrast coefficients give the same p-value, but they do give different estimates of γ, and that must be taken in to account when you interpret confidence intervals. If you really want to get a confidence interval on the difference in average group population outcome means for the first two vs. the next three treatments, it will be directly interpretable only in the fraction form. A positive estimate for γ indicates higher means for the groups with positive coefficients compared to those with negative coefficients, while a negative estimate for γ indicates higher means for the groups with negative coefficients compared to those with positive coefficients To get a computer program to test a custom hypothesis, you must enter the k coefficients that specify that hypothesis. If you can handle a bit more math, read the theory behind contrast estimates provided here. The simplest case is for two independent random variables Y1 and Y2 for which the population means are µ1 and µ2 and the variances are 2 2 σ1 and σ2. (We allow unequal variance, because even under the equal variance assumption, the sampling distribution of two means, depends on their sample sizes, which might not be equal.) In this case it is true that 2 2 2 2 E(C1Y1 + C2Y2) = C1µ1 + C2µ2 and Var(C1Y1 + C2Y2) = C1 σ1 + C2 σ2. If in addition, the distributions of the random variables are Normal, we can conclude that the distribution of the linear combination of the random 2 2 variables is also Normal. Therefore Y1 ∼ N(µ1; σ1);Y2 ∼ N(µ2; σ2); ) 2 2 2 2 C1Y1 + C2Y2 ∼ N(C1µ1 + C2µ2;C1 σ1 + C2 σ2): 13.1. CONTRASTS, IN GENERAL 323 We will also use the fact that if each of several independent random variables has variance σ2, then the variance of a sample mean of n of these has variance σ2=n. From these ideas (and some algebra) we find that in a one-way ANOVA with k treatments, where the group sample means are independent, if 2 we let σ be the common population variance, and ni be the number of ¯ ¯ subjects sampled for treatment i, then Var(g) = Var(C1Y1 + ··· + CkYk) = 2 Pk 2 σ [ i=1(Ci =ni)]. In a real data analysis, we don't know σ2 so we substitute its estimate, the within-group mean square. Then the square root of the estimated variance is the standard error of the contrast estimate, SE(g). For any normally distributed quantity, g, which is an estimate of a parameter, γ, we can construct a t-statistic, (g − γ)=SE(g). Then the sampling distribution of that t-statistic will be that of the t-distribution with df equal to the number of degrees of freedom in the standard error (dfwithin).
Recommended publications
  • Chapter 5 Contrasts for One-Way ANOVA Page 1. What Is a Contrast?
    Chapter 5 Contrasts for one-way ANOVA Page 1. What is a contrast? 5-2 2. Types of contrasts 5-5 3. Significance tests of a single contrast 5-10 4. Brand name contrasts 5-22 5. Relationships between the omnibus F and contrasts 5-24 6. Robust tests for a single contrast 5-29 7. Effect sizes for a single contrast 5-32 8. An example 5-34 Advanced topics in contrast analysis 9. Trend analysis 5-39 10. Simultaneous significance tests on multiple contrasts 5-52 11. Contrasts with unequal cell size 5-62 12. A final example 5-70 5-1 © 2006 A. Karpinski Contrasts for one-way ANOVA 1. What is a contrast? • A focused test of means • A weighted sum of means • Contrasts allow you to test your research hypothesis (as opposed to the statistical hypothesis) • Example: You want to investigate if a college education improves SAT scores. You obtain five groups with n = 25 in each group: o High School Seniors o College Seniors • Mathematics Majors • Chemistry Majors • English Majors • History Majors o All participants take the SAT and scores are recorded o The omnibus F-test examines the following hypotheses: H 0 : µ1 = µ 2 = µ3 = µ 4 = µ5 H1 : Not all µi 's are equal o But you want to know: • Do college seniors score differently than high school seniors? • Do natural science majors score differently than humanities majors? • Do math majors score differently than chemistry majors? • Do English majors score differently than history majors? HS College Students Students Math Chemistry English History µ 1 µ2 µ3 µ4 µ5 5-2 © 2006 A.
    [Show full text]
  • Analysis of Covariance (ANCOVA) with Two Groups
    NCSS Statistical Software NCSS.com Chapter 226 Analysis of Covariance (ANCOVA) with Two Groups Introduction This procedure performs analysis of covariance (ANCOVA) for a grouping variable with 2 groups and one covariate variable. This procedure uses multiple regression techniques to estimate model parameters and compute least squares means. This procedure also provides standard error estimates for least squares means and their differences, and computes the T-test for the difference between group means adjusted for the covariate. The procedure also provides response vs covariate by group scatter plots and residuals for checking model assumptions. This procedure will output results for a simple two-sample equal-variance T-test if no covariate is entered and simple linear regression if no group variable is entered. This allows you to complete the ANCOVA analysis if either the group variable or covariate is determined to be non-significant. For additional options related to the T- test and simple linear regression analyses, we suggest you use the corresponding procedures in NCSS. The group variable in this procedure is restricted to two groups. If you want to perform ANCOVA with a group variable that has three or more groups, use the One-Way Analysis of Covariance (ANCOVA) procedure. This procedure cannot be used to analyze models that include more than one covariate variable or more than one group variable. If the model you want to analyze includes more than one covariate variable and/or more than one group variable, use the General Linear Models (GLM) for Fixed Factors procedure instead. Kinds of Research Questions A large amount of research consists of studying the influence of a set of independent variables on a response (dependent) variable.
    [Show full text]
  • Contrast Coding in Multiple Regression Analysis: Strengths, Weaknesses, and Utility of Popular Coding Structures
    Journal of Data Science 8(2010), 61-73 Contrast Coding in Multiple Regression Analysis: Strengths, Weaknesses, and Utility of Popular Coding Structures Matthew J. Davis Texas A&M University Abstract: The use of multiple regression analysis (MRA) has been on the rise over the last few decades in part due to the realization that analy- sis of variance (ANOVA) statistics can be advantageously completed using MRA. Given the limitations of ANOVA strategies it is argued that MRA is the better analysis; however, in order to use ANOVA in MRA coding structures must be employed by the researcher which can be confusing to understand. The present paper attempts to simplify this discussion by pro- viding a description of the most popular coding structures, with emphasis on their strengths, limitations, and uses. A visual analysis of each of these strategies is also included along with all necessary steps to create the con- trasts. Finally, a decision tree is presented that can be used by researchers to determine which coding structure to utilize in their current research project. Key words: Analysis of variance, contrast coding, multiple regression anal- ysis. According to Hinkle and Oliver (1986), multiple regression analysis (MRA) has begun to become one of the most widely used statistical analyses in educa- tional research, and it can be assumed that this popularity and frequent usage is still rising. One of the reasons for its large usage is that analysis of variance (ANOVA) techniques can be calculated by the use of MRA, a principle described
    [Show full text]
  • Natural Experiments and at the Same Time Distinguish Them from Randomized Controlled Experiments
    Natural Experiments∗ Roc´ıo Titiunik Professor of Politics Princeton University February 4, 2020 arXiv:2002.00202v1 [stat.ME] 1 Feb 2020 ∗Prepared for “Advances in Experimental Political Science”, edited by James Druckman and Donald Green, to be published by Cambridge University Press. I am grateful to Don Green and Jamie Druckman for their helpful feedback on multiple versions of this chapter, and to Marc Ratkovic and participants at the Advances in Experimental Political Science Conference held at Northwestern University in May 2019 for valuable comments and suggestions. I am also indebted to Alberto Abadie, Matias Cattaneo, Angus Deaton, and Guido Imbens for their insightful comments and criticisms, which not only improved the manuscript but also gave me much to think about for the future. Abstract The term natural experiment is used inconsistently. In one interpretation, it refers to an experiment where a treatment is randomly assigned by someone other than the researcher. In another interpretation, it refers to a study in which there is no controlled random assignment, but treatment is assigned by some external factor in a way that loosely resembles a randomized experiment—often described as an “as if random” as- signment. In yet another interpretation, it refers to any non-randomized study that compares a treatment to a control group, without any specific requirements on how the treatment is assigned. I introduce an alternative definition that seeks to clarify the integral features of natural experiments and at the same time distinguish them from randomized controlled experiments. I define a natural experiment as a research study where the treatment assignment mechanism (i) is neither designed nor implemented by the researcher, (ii) is unknown to the researcher, and (iii) is probabilistic by virtue of depending on an external factor.
    [Show full text]
  • Contrast Analysis: a Tutorial. Practical Assessment, Research & Evaluation
    Contrast analysis Citation for published version (APA): Haans, A. (2018). Contrast analysis: A tutorial. Practical Assessment, Research & Evaluation, 23(9), 1-21. [9]. https://doi.org/10.7275/zeyh-j468 DOI: 10.7275/zeyh-j468 Document status and date: Published: 01/01/2018 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • One-Way Analysis of Variance: Comparing Several Means
    One-Way Analysis of Variance: Comparing Several Means Diana Mindrila, Ph.D. Phoebe Balentyne, M.Ed. Based on Chapter 25 of The Basic Practice of Statistics (6th ed.) Concepts: . Comparing Several Means . The Analysis of Variance F Test . The Idea of Analysis of Variance . Conditions for ANOVA . F Distributions and Degrees of Freedom Objectives: Describe the problem of multiple comparisons. Describe the idea of analysis of variance. Check the conditions for ANOVA. Describe the F distributions. Conduct and interpret an ANOVA F test. References: Moore, D. S., Notz, W. I, & Flinger, M. A. (2013). The basic practice of statistics (6th ed.). New York, NY: W. H. Freeman and Company. Introduction . The two sample t procedures compare the means of two populations. However, many times more than two groups must be compared. It is possible to conduct t procedures and compare two groups at a time, then draw a conclusion about the differences between all of them. However, if this were done, the Type I error from every comparison would accumulate to a total called “familywise” error, which is much greater than for a single test. The overall p-value increases with each comparison. The solution to this problem is to use another method of comparison, called analysis of variance, most often abbreviated ANOVA. This method allows researchers to compare many groups simultaneously. ANOVA analyzes the variance or how spread apart the individuals are within each group as well as between the different groups. Although there are many types of analysis of variance, these notes will focus on the simplest type of ANOVA, which is called the one-way analysis of variance.
    [Show full text]
  • Contrast Procedures for Qualitative Treatment Variables
    Week 7 Lecture µ − µ Note that for a total of k effects, there are (1/2) k (k – 1) pairwise-contrast effects of the form i j. Each of these contrasts may be set up as a null hypothesis. However, not all these contrasts are independent of one another. There are thus only two independent contrasts among the three effects. In general, for k effects, only k – 1 independent contrasts may be set up. Since there are k – 1 degrees of freedom for treatments in the analysis of variance, we say that there is one in- dependent contrast for each degree of freedom. Within the context of a single experiment, there is no entirely satisfactory resolution to the problem raised above. Operationally, however, the experimenter can feel more confidence in his hypothesis decision if the contrasts tested are preplanned (or a priori) and directional alternatives are set up. For example, if the experimenter predicts a specific rank order among the treatment effects and if the analysis of the pair-wise contrasts conforms to this a priori ordering, the experi- menter will have few qualms concerning the total Type I risk. However, in many experimental contexts, such a priori decisions cannot be reasonably established. The major exception occurs in experiments that evolve from a background of theoretical reasoning. A well-defined theory (or theories) will yield specific predictions concerning the outcomes of a suitably designed experiment. Unfortunately, at present, a relatively small proportion of educational research is based on theory. Although the experimenter may have "hunches" (i.e., guesses) concerning the outcomes of an experiment, these can seldom provide a satisfactory foundation for the specification of a priori contrasts.
    [Show full text]
  • Chapter 12 Multiple Comparisons Among
    CHAPTER 12 MULTIPLE COMPARISONS AMONG TREATMENT MEANS OBJECTIVES To extend the analysis of variance by examining ways of making comparisons within a set of means. CONTENTS 12.1 ERROR RATES 12.2 MULTIPLE COMPARISONS IN A SIMPLE EXPERIMENT ON MORPHINE TOLERANCE 12.3 A PRIORI COMPARISONS 12.4 POST HOC COMPARISONS 12.5 TUKEY’S TEST 12.6 THE RYAN PROCEDURE (REGEQ) 12.7 THE SCHEFFÉ TEST 12.8 DUNNETT’S TEST FOR COMPARING ALL TREATMENTS WITH A CONTROL 12.9 COMPARIOSN OF DUNNETT’S TEST AND THE BONFERRONI t 12.10 COMPARISON OF THE ALTERNATIVE PROCEDURES 12.11 WHICH TEST? 12.12 COMPUTER SOLUTIONS 12.13 TREND ANALYSIS A significant F in an analysis of variance is simply an indication that not all the population means are equal. It does not tell us which means are different from which other means. As a result, the overall analysis of variance often raises more questions than it answers. We now face the problem of examining differences among individual means, or sets of means, for the purpose of isolating significant differences or testing specific hypotheses. We want to be able to make statements of the form 1 2 3 , and 45 , but the first three means are different from the last two, and all of them are different from 6 . Many different techniques for making comparisons among means are available; here we will consider the most common and useful ones. A thorough discussion of this topic can be found in Miller (1981), and in Hochberg and Tamhane (1987), and Toothaker (1991). The papers by Games (1978a, 1978b) are also helpful, as is the paper by Games and Howell (1976) on the treatment of unequal sample sizes.
    [Show full text]
  • 1 Orthogonal Polynomial Contrasts Individual Df
    ORTHOGONAL POLYNOMIAL CONTRASTS INDIVIDUAL DF COMPARISONS: EQUALLY SPACED TREATMENTS • Many treatments are equally spaced (incremented). • This provides us with the opportunity to look at the response curve of the data (form of multiple regression). • Regression analysis could be performed using the data; however, when there are equal increments between successive levels of a factor, a simple coding procedure may be used to accomplish the analysis with much less effort. • This technique is related to the one we will use for linear contrasts. • We will partition the factor in the ANOVA table into separate single degree of freedom comparisons. • The number of possible comparisons is equal to the number of levels of a factor minus one. • For example, if there are three levels of a factor, there are two possible comparisons. • The comparisons are called orthogonal polynomial contrasts or comparisons. • Orthogonal polynomials are equations such that each is associated with a power of the independent variable (e.g. X, linear; X2, quadratic; X3, cubic, etc.). 1st order comparisons measure linear relationships. 2nd order comparisons measures quadratic relationships. 3rd order comparisons measures cubic relationships. Example 1 • We wish to determine the effect of drying temperature on germination of barley, we can set up an experiment that uses three equally space temperatures (90oF, 100oF, 110oF) and four replicates. • The ANOVA would look like: Sources of variation df Rep r-1=3 Treatment t-1=2 Error (r-1)(t-1)=6 Total rt-1=11 1 • Since there are three treatments equally spaced by 10oF, treatment can be partitioned into two single df polynomial contrasts (i.e.
    [Show full text]
  • The General Linear Model: Theory
    © Gregory Carey, 1998 General Linear Model - 1 The General Linear Model: Theory 1.0 Introduction In the discussion of multiple regression, we used the following equation to express the linear model for a single dependent variable: y = Xq + u (1.0) where y is a column vector of the dependent variable, X is a matrix of the independent variables (with a column of 1’s in the first column), q is a vector of parameters and u is a vector of prediction errors. Strictly speaking, X is called a design matrix of independent variables, including the column of 1’s for the intercept. The mathematical equation for a univariate ANOVA is identical to that in Equation 1.0. The only difference is that what constitutes the “independent variables,” or to put it another way, the elements of the design matrix is less obvious in ANOVA than it is in regression. Let us return to the example of the one-way ANOVA using therapy as the ANOVA factor. Instead of thinking of one independent variable, let us think of this as four different independent variables, one for each level of therapy. Call these variables X1, X2, X3, and X4. Those observations in the first level, the Control therapy, will score 1 on the first variable, X1; all other observations score 0 on this variable. All those in the second therapy score 1 on X2; 0, otherwise. And so on. These transformed variables now become the elements of the design matrix, X. There are now five columns in X. The first is a column of 1’s for the intercept.
    [Show full text]
  • 6.6 Mean Comparisons F-Tests Provide Information on Significance
    Mean Comparisons F-tests provide information on significance of treatment effects, but no information on what the treatment effects are. Comparisons of treatment means provide information on what the treatment effects are. Appropriate mean comparisons are based on the treatment design. When there is some structure to the treatments, the best way to compare treatment means is to use orthogonal contrasts/planned F tests which subdivide the treatment SS to isolate the variation associated with a single degree of freedom. If there is no structure to the treatments, a multiple range test can be used. Use Orthogonal Contrasts or Factorial Comparisons when: treatments have a structure treatments are combinations of factors e.g. breed and sex, factorial arrangements Use Trend Comparisons or Dose Response when: treatments are different levels of a factor e.g. fertilizer rates, seeding times Use Multiple Range Tests when: no clear treatment structure treatments are a set of unrelated materials e.g. variety trials, types of insecticides PLANNED F TESTS Important questions can be answered regarding treatments if we plan for this in the experiment. The treatment SS can often be subdivided to isolate particular sources of variation associated with a single degree of freedom. The number of tests that can be done is equal to the degrees of freedom for treatment. Advantages: 1. One can answer specific, important questions about treatment effects. 2. The computations are simple. 3. A useful check is provided on the treatment SS. Appropriate Uses: 1. When treatments have an obvious structure and/or when planned single df contrasts were built into the experiment.
    [Show full text]
  • Analysis of Covariance (ANCOVA) Contrasts
    PASS Sample Size Software NCSS.com Chapter 592 Analysis of Covariance (ANCOVA) Contrasts Introduction This procedure provides power and sample size for studies using a one-way design in which the data are to be analyzed using analysis of covariance with tests formed using contrasts of the means. The calculations use the more accurate results of Shieh (2017). A common task in research is to compare the means of two or more populations (groups). We might want to compare the income level of two regions, the nitrogen content of three lakes, or the effectiveness of four drugs. Analysis of Covariance (ANCOVA) is an extension of the one-way analysis of variance model that adds quantitative variables (covariates). When used, it is assumed that their inclusion will reduce the size of the error variance and thus increase the power of the design. The usual F-test tests the hypothesis that all means are equal versus the alternative that at least one mean is different from the rest. Often, a more specific alternative is desired. For example, you might want to test whether the treatment means are different from the control mean, the low dose is different from the high dose, a linear trend exists across dose levels, and so on. These questions can be tested using specific contrasts. Assumptions Using the F test requires certain assumptions. One reason for the popularity of the F test is its robustness in the face of assumption violation. However, if an assumption is not even approximately met, the significance levels and the power of the F test are invalidated.
    [Show full text]