An Adenovirus Early Region 1A Protein Is Required for Maximal Viral DNA Replication in Growth-Arrested Human Cells KATHERINE R

Total Page:16

File Type:pdf, Size:1020Kb

An Adenovirus Early Region 1A Protein Is Required for Maximal Viral DNA Replication in Growth-Arrested Human Cells KATHERINE R JOURNAL OF VIROLOGY, Mar. 1985, p. 742-750 Vol. 53, No. 3 0022-538X/85/030742-09$02.00/0 Copyright X 1985, American Society for Microbiology An Adenovirus Early Region 1A Protein is Required for Maximal Viral DNA Replication in Growth-Arrested Human Cells KATHERINE R. SPINDLER, CAROL Y. ENG, AND ARNOLD J. BERK* Department of Microbiology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90024 Received 30 August 1984/Accepted 26 November 1984 Two closely related adenovirus early region 1A proteins are expressed in transformed cells. The smaller of these, which is 243 amino acids in length, is required for the transformation of primary rat cells and for the transformation of immortalized rat cells to anchorage-independent growth. This protein is not required for productive infection of exponentially growing HeLa cells but is required for maximal replication in growth (G0)-arrested human lung fibroblasts (WI-38 cells). To determine the function of this protein in viral replication in these G0-arrested cells, we compared viral early mRNA, early protein, and late protein synthesis after infection with wild type or a mutant which does not express the protein. No differences were found. However, viral DNA synthesis by the mutant was delayed and decreased to 20 to 30% that of wild type in these cells. Viral DNA synthesis was much less defective in growing WI-38 cells, and in the transformed human HeLa cell line it occurred at wild-type levels. Furthermore, the mutant which can express only the 243-amino-acid early region 1A protein induced cellular DNA synthesis in GO-arrested rat cells to the same level as wild-type virus. A mutant which can express only the 289-amino-acid early region 1A protein induced less cellular DNA synthesis in GO-arrested rat cells. We propose that the early region 1A 243-amino-acid protein alters the physiology of arrested permissive cells to allow maximal viral DNA replication. In nonpermissive rodent cells, the 243-amino-acid protein drives G0-arrested cells into S phase. This activity is probably important for the immortalization of primary cells. The human adenoviruses have a complex gene structure in Transformation of rodent cells by an adenovirus mutant early region 1A (E1A): at early times, two mRNAs are which cannot express the ElA 243-aa protein, mutant pm975, transcribed which have identical 5' and 3' sequences but are occurs at greatly reduced frequency compared with that by different at internal sequences due to differential splicing wild type and is only partial: transformed foci are defective (49). The larger message, 13S, encodes a protein predicted to in their ability to form colonies in soft agar (anchorage-inde- be 289 amino acids (aa's) in length; the smaller 12S mRNA pendent growth) (32). However, although the importance of encodes a 243-aa protein translated in the same reading the ElA 243-aa protein in transformation is obvious, its role frame but lacking 46 internal aa's unique to the 289-aa in the productive infection of human cells is more subtle. In protein (3, 39). This structure of overlapping mRNAs and HeLa cells, pm975 replication is comparable with wild-type proteins is found in adenoviruses of human subgroup A replication (33), indicating that the 243-aa protein is dispen- (adenovirus type 12 [Adl2]), subgroup B (Ad7), and sub- sable for viral replication in those cells. However, the group C (Ad2 and Ad5) (49) and is therefore likely to be mutant does not replicate to the level of wild type in growth functionally important for the growth of adenoviruses; both (G0)-arrested human WI-38 cells which are nontransformed ElA proteins are probably important, since they are evolu- diploid secondary lung fibroblasts (22, 23). The rate of virus tionarily maintained. production and total yield is reduced compared with that of Various functions of the adenovirus ElA gene products wild-type infected cells (32). Thus the 243-aa protein is have been identified either in the productive infection of required for maximum viral replication in G0-arrested per- permissive human cells or in the transformation of nonper- missive cells. missive rodent cells. The ElA region alone is able to In the present work we have further characterized this immortalize rodent primary embryo cells (25) and in con- function of the 243-aa protein in G0-arrested cells. We found junction with other oncogenes is able to transform these that lack of the 243-aa protein leads to decreased viral DNA cells (42). Both of the ElA proteins are required for com- synthesis in G0-arrested human cells but has little effect on plete transformation of nonpermissive rodent cells after the expression of early or late viral genes. Expression of the infection by adenovirus (2, 8, 20, 24, 25, 28, 32, 46). In 243-aa protein appears to alter the physiology of resting productive infections of permissive cells, the 289-aa ElA human cells, allowing more viral DNA replication to occur. protein induces transcription from the other early regions, Such a function for the 243-aa protein would explain the E1B, E2, E3, E4, and Li (4, 8, 12, 29, 33, 35, 41). Moreover, selective pressure for the conservation of the smaller ElA the ElA 289-aa protein is able to induce transcription of protein. In natural infections human adenoviruses normally integrated adenovirus DNA in stably transformed cells (11), encounter noncycling, terminally differentiated epithelial and it is able to induce viral or nonviral genes introduced cells (49). Since expression of the 243-aa protein results in into cells by infection or transfection (16, 19, 26, 48). In several-fold greater yield of infectious virus in such arrested contrast, the 243-aa ElA protein has little, if any, transcrip- tion-inducing activity (32, 48). cells, there should be a strong selective pressure for its expression. Earlier work (6) has shown that ElA functions are re- * Corresponding author. quired for the induction of cellular DNA synthesis which is 742 VOL. 53, 1985 Ad2 DNA REPLICATION STIMULATED BY ElA PROTEIN 743 observed when G0-arrested rodent cells are infected by cold 5% trichloroacetic acid-95% ethanol, and counted by adenovirus (7, 44, 50). Here we found that d11500, which scintillation counting. expresses only the 243-aa ElA protein, stimulated cellular The proportion of [3H]thymidine label in cellular and viral DNA synthesis in G0-arrested cells to the same extent as did DNA was determined by buoyant density centrifugation as wild-type virus, whereas pm975, which expresses only the follows: 0.5 ml of the cell extract was brought to 8.0 ml in 10 289-aa ElA protein, induced lower levels of cellular DNA mM Tris-hydrochloride [pH 8.5]-1 mM EDTA-0.1% synthesis. The relation between this activity of the 243-aa Sarkosyl (CIBA-GEIGY Corp.)-1.7035 g of CsCl per ml and protein and its function in the immortalization of rodent centrifuged in a Beckman 50 Ti rotor at 35,000 rpm at 18°C pritnary embryo cells is discussed. for 40 h. Fractions (0.2 ml) were collected from the gradient, a samnple of each fraction was spotted on GF/A filters, and MATERIALS AND METHODS scintillation was counted as above. Late viral proteins. At the indicated times, 60-mm plates of Cells and viruses. Human diploid lung WI-38 cells (ATCC infected cells were washed three times with phosphate-buff- CCL 75) were obtained from the American Type Culture ered saline, and 23 ,uCi of [35S]methionine (1,100 Ci/mmol; Collection and maintained in Dulbecco nmodified Eagle me- Amersham Corp.) per ml was added in 3 ml of methionine- dium plus 10% fetal bovine serum. CREF cells were main- free Dulbecco modified Eagle medium. After 2 h of incuba- tained as described previously (13). For experiments with tion at 37°C, the plates were washed three times with G0-arrested cells, the medium on confluent cells was changed phosphate-buffered saline and scraped. Cells (5 x 105) were to Dulbecco modified Eagle medium plus 0.2% calf serum. mixed with 80,ul of 2x Laemmli gel sample buffer (30), and After 4 days of incubation in low serum, the medium was the extract from 5 x 104 cells was electrophoresed on a 15% removed and saved, and the cells were infected with the acrylamide-0.087% bisacrylamide gel (1). The gel was fixed, appropriate virus at a multiplicity of infection of 5 (except in dried, and exposed to X-ray film. the growth experiment; see the legend to Fig. 1); the saved, conditioned medium was replaced on the cells. RESULTS Ad2, AdS, and d1309 (wild type in ElA) (28) were used as Growth of pm975 in arrested human cells. The adenovirus wild-type controls. Ad2/5 pm975 does not make ElA 12S mutant pm975 does not express the ElA 12S mRNA because mRNA or the ElA 243-aa protein (33). Ad2 d11500 does not of a splice site mutation and therefore does not express the synthesize the ElA 13S mRNA or the ElA 289-aa protein ElA 243-aa protein. Mutant pm975 does not replicate as (32). d1312 has a large deletion removing most of ElA (28). efficiently as wild-type Ad2 in strictly G0-arrested cells (32). Where indicated, 1-f-arabinofuranosylcytosine (araC) was We found that WI-38 cells would be strictly Go arrested (as included in infections at 20 p.g/ml and replenished in the measured by [3H]thymidine incorporation; see below) if medium every 12 h (17). grown in reduced serum (0.2%) for 4 days after reaching Hybridization andS1 nuclease analysis. Cytoplasmic RNAs confluence.
Recommended publications
  • Role of CCCH-Type Zinc Finger Proteins in Human Adenovirus Infections
    viruses Review Role of CCCH-Type Zinc Finger Proteins in Human Adenovirus Infections Zamaneh Hajikhezri 1, Mahmoud Darweesh 1,2, Göran Akusjärvi 1 and Tanel Punga 1,* 1 Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden; [email protected] (Z.H.); [email protected] (M.D.); [email protected] (G.A.) 2 Department of Microbiology and Immunology, Al-Azhr University, Assiut 11651, Egypt * Correspondence: [email protected]; Tel.: +46-733-203-095 Received: 28 October 2020; Accepted: 16 November 2020; Published: 18 November 2020 Abstract: The zinc finger proteins make up a significant part of the proteome and perform a huge variety of functions in the cell. The CCCH-type zinc finger proteins have gained attention due to their unusual ability to interact with RNA and thereby control different steps of RNA metabolism. Since virus infections interfere with RNA metabolism, dynamic changes in the CCCH-type zinc finger proteins and virus replication are expected to happen. In the present review, we will discuss how three CCCH-type zinc finger proteins, ZC3H11A, MKRN1, and U2AF1, interfere with human adenovirus replication. We will summarize the functions of these three cellular proteins and focus on their potential pro- or anti-viral activities during a lytic human adenovirus infection. Keywords: human adenovirus; zinc finger protein; CCCH-type; ZC3H11A; MKRN1; U2AF1 1. Zinc Finger Proteins Zinc finger proteins are a big family of proteins with characteristic zinc finger (ZnF) domains present in the protein sequence. The ZnF domains consists of various ZnF motifs, which are short 30–100 amino acid sequences, coordinating zinc ions (Zn2+).
    [Show full text]
  • Global Mapping of Herpesvirus-‐Host Protein Complexes Reveals a Novel Transcription
    Global mapping of herpesvirus-host protein complexes reveals a novel transcription strategy for late genes By Zoe Hartman Davis A dissertation submitted in partial satisfaction of the Requirements for the degree of Doctor of Philosophy in Infectious Disease and Immunity in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Britt A. Glaunsinger, Chair Professor Laurent Coscoy Professor Qiang Zhou Spring 2015 Abstract Global mapping of herpesvirus-host protein complexes reveals a novel transcription strategy for late genes By Zoe Hartman Davis Doctor of Philosophy in Infectious Diseases and Immunity University of California, Berkeley Professor Britt A. Glaunsinger, Chair Mapping host-pathogen interactions has proven instrumental for understanding how viruses manipulate host machinery and how numerous cellular processes are regulated. DNA viruses such as herpesviruses have relatively large coding capacity and thus can target an extensive network of cellular proteins. To identify the host proteins hijacked by this pathogen, we systematically affinity tagged and purified all 89 proteins of Kaposi’s sarcoma-associated herpesvirus (KSHV) from human cells. Mass spectrometry of this material identified over 500 high-confidence virus-host interactions. KSHV causes AIDS-associated cancers and its interaction network is enriched for proteins linked to cancer and overlaps with proteins that are also targeted by HIV-1. This work revealed many new interactions between viral and host proteins. I have focused on one interaction in particular, that of a previously uncharacterized KSHV protein, ORF24, with cellular RNA polymerase II (RNAP II). All DNA viruses encode a class of genes that are expressed only late in the infectious cycle, following replication of the viral genome.
    [Show full text]
  • Broadly Neutralizing Anti- Hiv-1 Antibodies Do Not Inhibit Hiv-1 Env-Mediated Cell-Cell Fusion
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.08.447628; this version posted June 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. BROADLY NEUTRALIZING ANTI- HIV-1 ANTIBODIES DO NOT INHIBIT HIV-1 ENV-MEDIATED CELL-CELL FUSION Nejat Düzgüneş*, Michael Yee and Deborah Chau Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry University of the Pacific, 155 Fifth Street San Francisco, CA 94103, USA ABSTRACT PG9, PG16, PGT121, and PGT145 antibodies were identified from culture media of activated memory B-cells of an infected donor and shown to neutralize many HIV-1 strains. Since HIV-1 spreads via both free virions and cell-cell fusion, we examined the effect of the antibodies on HIV-1 Env-mediated cell-cell fusion. Clone69TRevEnv cells that express Env in the absence of tetracycline were labeled with Calcein-AM Green, and incubated with CD4+ SupT1 cells labeled with CellTrace™ Calcein Red-Orange, with or without antibodies. Monoclonal antibodies PG9, PG16, 2G12, PGT121, and PGT145 (at up to 50 µg/mL) had little or no inhibitory effect on fusion between HIV-Env and SupT1 cells. By contrast, Hippeastrum hybrid agglutinin completely inhibited fusion. Our results indicate that transmission of the virus or viral genetic material would not be inhibited by these broadly neutralizing antibodies. Thus, antibodies generated by HIV-1 vaccines should be screened for their inhibitory effect on Env-mediated cell-cell fusion.
    [Show full text]
  • Evaluating the Role of CRM1-Mediated Export for Adenovirus Gene Expression
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com R Virology 315 (2003) 224–233 www.elsevier.com/locate/yviro Evaluating the role of CRM1-mediated export for adenovirus gene expression Christoph C. Carter,1 Reza Izadpanah, and Eileen Bridge* Department of Microbiology, 32 Pearson Hall, Miami University, Oxford, OH 45056, USA Received 25 March 2003; accepted 30 June 2003 Abstract A complex of the Adenovirus (Ad) early region 1b 55-kDa (E1b-55kDa) and early region 4 ORF6 34-kDa (E4-34kDa) proteins promotes viral late gene expression. E1b-55kDa and E4-34kDa have leucine-rich nuclear export signals (NESs) similar to that of HIV Rev. It was proposed that E1b-55kDa and/or E4-34kDa might promote the export of Ad late mRNA via their Rev-like NESs, and the transport receptor CRM1. We treated infected cells with the cytotoxin leptomycin B to inhibit CRM1-mediated export; treatment initially delays the onset of late gene expression, but this activity completely recovers as the late phase progresses. We find that the E1b-55kDa NES is not required to promote late gene expression. Previous results showed that E4-34kDa-mediated late gene expression does not require an intact NES (J. Virol. 74 (2000), 6684–6688). Our results indicate that these Ad regulatory proteins promote late gene expression without intact NESs or active CRM1. © 2003 Elsevier Inc. All rights reserved. Keywords: Adenovirus; E1b 55kDa; CRM1; Leptomycin B; E4; RNA export; NES Introduction RNP through the nuclear pore complex (reviewed by Cullen, 2000).
    [Show full text]
  • Human Cytomegalovirus Primary Infection and Reactivation: Insights from Virion-Carried Molecules
    fmicb-11-01511 July 16, 2020 Time: 8:16 # 1 REVIEW published: 14 July 2020 doi: 10.3389/fmicb.2020.01511 Human Cytomegalovirus Primary Infection and Reactivation: Insights From Virion-Carried Molecules Yu-Qing Wang1,2 and Xiang-Yu Zhao1* 1 Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China, 2 PKU-THU Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China Human cytomegalovirus (HCMV), a ubiquitous beta-herpesvirus, is able to establish lifelong latency after initial infection. Periodical reactivation occurs after immunosuppression, remaining a major cause of death in immunocompromised patients. HCMV has to reach a structural and functional balance with the host at Edited by: its earliest entry. Virion-carried mediators are considered to play pivotal roles in viral Akio Adachi, adaptation into a new cellular environment upon entry. Additionally, one clear difference Kansai Medical University, Japan between primary infection and reactivation is the idea that virion-packaged factors are Reviewed by: Eain Anthony Murphy, already formed such that those molecules can be used swiftly by the virus. In contrast, SUNY Upstate Medical University, virion-carried mediators have to be transcribed and translated; thus, they are not readily United States Sarah Elizabeth Jackson, available during reactivation. Hence, understanding virion-carried
    [Show full text]
  • KSHV Reactivation and Novel Implications of Protein Isomerization on Lytic Switch Control
    Viruses 2015, 7, 72-109; doi:10.3390/v7010072 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review KSHV Reactivation and Novel Implications of Protein Isomerization on Lytic Switch Control Jonathan Guito and David M. Lukac * Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School and Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-973-972-4868; Fax: +1-973-972-8981. Academic Editor: Zhi-Ming Zheng Received: 18 September 2014 / Accepted: 30 December 2014 / Published: 12 January 2015 Abstract: In Kaposi’s sarcoma-associated herpesvirus (KSHV) oncogenesis, both latency and reactivation are hypothesized to potentiate tumor growth. The KSHV Rta protein is the lytic switch for reactivation. Rta transactivates essential genes via interactions with cofactors such as the cellular RBP-Jk and Oct-1 proteins, and the viral Mta protein. Given that robust viral reactivation would facilitate antiviral responses and culminate in host cell lysis, regulation of Rta’s expression and function is a major determinant of the latent-lytic balance and the fate of infected cells. Our lab recently showed that Rta transactivation requires the cellular peptidyl-prolyl cis/trans isomerase Pin1. Our data suggest that proline-directed phosphorylation regulates Rta by licensing binding to Pin1. Despite Pin1’s ability to stimulate Rta transactivation, unchecked Pin1 activity inhibited virus production. Dysregulation of Pin1 is implicated in human cancers, and KSHV is the latest virus known to co-opt Pin1 function.
    [Show full text]
  • A Cit-Dependent Promoteris Located Within the Q Gene of Bacteriophage X
    Proc. Natl. Acad. Sci. USA Vol. 82, pp. 3134-3138, May 1985 Biochemistry A cIT-dependent promoter is located within the Q gene of bacteriophage X (transcriptional activation/promoter mutation/antisense RNA) BARBARA C. HOOPES AND WILLIAM R. MCCLURE Department of Biological Sciences, Carnegie-Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213 Communicated by Allan Campbell, January 11, 1985 ABSTRACT We have found a eII-dependent promoter, nism of this inhibition is not completely understood. Under PaQ, within the Q gene of bacteriophage X. Transcription conditions where cIl is overproduced, such as in a cro- experiments and abortive initiation assays performed in vitro phage, cII-dependent inhibition has been shown to result in showed that the promoter strength and the clI affinity of PaQ severe growth defects for the phage (9, 10). Court et al. (11) were comparable to the other cU-dependent X promoters, PE extended the observations of McMacken et al. (8) to dem- and PI. The location and leftward direction of PaQ suggests a onstrate that a X cI-cy- phage showed a similar early possible role in the delay of X late-gene expression by clI appearance of late proteins as a X c-fcII- phage. They protein, a phenomenon that has been called cM-dependent concluded that cII-dependent inhibition of late protein syn- inhibition. We have constructed a promoter down mutation, thesis resulted from a decrease in Q gene expression through paq-l, by changing a single base pair in the putative clI binding inhibition ofPR transcription by the convergent PE promoter. site of the promoter by oligonucleotide site-directed Indeed, Schmeissner et al.
    [Show full text]
  • A Role for Baculovirus GP41 in Budded Virus Production
    VIROLOGY 233, 292–301 (1997) ARTICLE NO. VY978612 A Role for Baculovirus GP41 in Budded Virus Production Julie Olszewski* and Lois K. Miller*,†,1 *Department of Genetics and †Department of Entomology, University of Georgia, Athens, Georgia 30602 Received February 12, 1997; returned to author for revision March 25, 1997; accepted April 22, 1997 Insect cells infected with tsB1074, a temperature-sensitive mutant of Autographa californica nuclear polyhedrosis virus, exhibit a ‘‘single-cell-infection’’ phenotype whereby the infection progresses through the very late phase culminating in occlusion body formation, but neighboring cells do not become infected. Marker rescue mapping and DNA sequencing correlated a single nucleotide substitution within the baculovirus gp41 gene with the temperature-sensitive phenotype of tsB1074. The product of the gp41 gene, GP41, is an O-glycosylated protein found in occluded but not budded virions [M. Whitford and P. Faulkner (1992) J. Virol. 66, 3324–3329]. However, budded virus was not produced in tsB1074-infected cells at the nonpermissive temperature of 337, indicating an additional role for GP41 in budded virus formation. Electron microscopy revealed that nucleocapsids were produced but retained in the nucleus of tsB1074-infected cells at 337. Thus, GP41 was required for the egress of nucleocapsids from the nucleus in the pathway of budded virus synthesis. q 1997 Academic Press INTRODUCTION cleus (Braunagel and Summers, 1994; Harrap, 1972; Stoltz et al., 1973). The nuclear enveloped virions are Viruses belonging to the family Baculoviridae are then embedded within a paracrystalline matrix, com- large, enveloped, double-stranded DNA viruses that pri- posed primarily of the protein polyhedrin, to form OV.
    [Show full text]
  • NLRP3 Inflammasome Activation by Viroporins of Animal Viruses
    Viruses 2015, 7, 3380-3391; doi:10.3390/v7062777 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review NLRP3 Inflammasome Activation by Viroporins of Animal Viruses Hui-Chen Guo †, Ye Jin †, Xiao-Yin Zhi, Dan Yan and Shi-Qi Sun * State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; E-Mails: [email protected] (H.-C.G.);[email protected] (Y.J.); [email protected] (X.-Y.Z.); [email protected] (D.Y.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-0931-831-2213. Academic Editors: José Luis Nieva and Luis Carrasco Received: 23 April 2015 / Accepted: 17 June 2015 / Published: 24 June 2015 Abstract: Viroporins are a group of low-molecular-weight proteins containing about 50–120 amino acid residues, which are encoded by animal viruses. Viroporins are involved in several stages of the viral life cycle, including viral gene replication and assembly, as well as viral particle entry and release. Viroporins also play an important role in the regulation of antiviral innate immune responses, especially in inflammasome formation and activation, to ensure the completion of the viral life cycle. By reviewing the research progress made in recent years on the regulation of the NLRP3 inflammasome by viroporins of animal viruses, we aim to understand the importance of viroporins in viral infection and to provide a reference for further research and development of novel antiviral drugs.
    [Show full text]
  • Influenza Virus-Specific RNA and Protein Syntheses in Cells
    JOURNAL OF VIROLOGY, July 1980, p. 1-7 Vol. 35, No. 1 0022-538X/80/07-0001/07$02.00/0 Influenza Virus-Specific RNA and Protein Syntheses in Cells Infected with Temperature-Sensitive Mutants Defective in the Genome Segment Encoding Nonstructural Proteins A. J. WOLSTENHOLME,t T. BARRETT, S. T. NICHOL,4 AND B. W. J. MAHY* Division of Virology, Department ofPathology, University of Cambridge, Laboratories Block, Addenbrooke's Hospital, Cambridge, England Virus-specific protein and RNA syntheses have been analyzed in chicken embryo fibroblast cells infected with two group IV temperature-sensitive (ts) mutants of influenza A (fowl plague) virus in which the ts lesion maps in RNA segment 8 (J. W. Almond, D. McGeoch, and R. D. Barry, Virology 92:416-427, 1979), known to code for two nonstructural proteins, NS1 and NS2. Both mutants induced the synthesis of similar amounts of all the early virus-specific proteins (P1, P2, P3, NP, and NS,) at temperatures that were either permissive (3400) or nonpermissive (40.5°C) for replication. However, the synthesis of M protein, which normally accumulates late in infection, was greatly reduced in ts mutant- infected cells at 40.50C compared to 340C. The NS2 protein was not detected at either temperature in cells infected with one mutant (mN3), and was detected only at the permissive temperature in cells infected with mutant ts47. There was no overall reduction in polyadenylated (A') complementary RNA, which func- tions as mRNA, in cells infected with these mutants at 40.50C compared to 340C, nor was there any evidence of selective accumulation of this type of RNA within the nucleus at the nonpermissive temperature.
    [Show full text]
  • Viewed in Pettersson and Robert, 1986)
    MIAMI UNIVERSITY The Graduate School CERTIFICATE FOR APPROVING THE DISSERTATION We hereby approve the Dissertation of Sumithra Jayaram Candidate for the Degree: Doctor of Philosophy ______________________________________________________________ Dr. Eileen Bridge, Director ______________________________________________________________ Dr. Gary Janssen, Reader ______________________________________________________________ Dr. Anne Morris Hooke _______________________________________________________________ Dr. Mary E. Woodworth _______________________________________________________________ Dr. Qingshun Quinn Li, Graduate School Representative ABSTRACT INVESTIGATING ADENOVIRUS INTERACTIONS WITH HOST DOUBLE- STRAND BREAK REPAIR DEFENSES By Sumithra Jayaram The goal of this study was to investigate the role of host double-strand break repair (DSBR) on the life cycle of Adenovirus (Ad). Ad mutants that lack the entire E4 region activate a cellular DNA damage response accompanied by phosphorylation of several host DSBR and DNA damage response proteins. We find that aspects of the E4 mutant induced DNA damage response occurs at the onset of viral DNA replication and may be activated by physical replication of viral genomes. Genetic analysis of the E4 mutants revealed that the E4-34kDa protein was required to prevent the activation of DNA damage response. Redistribution of MRN complex proteins away from viral replication centers by the E4-11kDa protein was not sufficient to prevent the DNA damage response. Activation of the DNA damage response does not interfere with viral DNA replication in the presence of E4-11kDa protein. E4 mutants are severely defective for late gene expression following concatenation of their genomes by host DSBR proteins. We find that E4 mutant late gene expression improves in MO59J cells that fail to form genome concatemers. DSBR kinase inhibitors interfere with genome concatenation and also stimulate late gene expression.
    [Show full text]
  • A Cellular 65-Kda Protein Recognizes the Negative Regulatory Element of Human Papillomavirus Late Mrna
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 163–168, January 1997 Cell Biology A cellular 65-kDa protein recognizes the negative regulatory element of human papillomavirus late mRNA WALTER DIETRICH-GOETZ*, IAIN M. KENNEDY*, BETH LEVINS*, MARGARET A. STANLEY†, AND J. BARKLIE CLEMENTS*‡ *Institute of Virology, University of Glasgow, Church Street, Glasgow, G11 5JR, Scotland; and †Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom Communicated by Sheldon Penman, Massachusetts Institute of Technology, Cambridge, MA, October 28, 1996 (received for review September 30, 1996) ABSTRACT Papillomavirus late gene expression is tightly mediated by sequences within the 39 untranslated region of linked to the differentiation state of the host cell. Levels of late papillomavirus late mRNA, and this is the aspect examined here. mRNAs are only in part controlled by regulation of the late Our analysis of human papillomavirus type 16 (HPV-16) late promoter, other posttranscriptional mechanisms exist that re- poly(A) sites led to the discovery of a negative regulatory element duce the amount of late mRNA in undifferentiated cells. Previ- (NRE) in the late RNA 39 untranslated region that exerted a ously we described a negative regulatory element (NRE) located strong negative effect on expression of a reporter gene (6), and upstream of the human papillomavirus type 16 late poly(A) site. which could act at the level of RNA stability (7). A similar NRE We have delineated the NRE to a 79-nt region in which a element was identified in bovine papillomavirus type 1 [BPV-1 G1U-rich region was the major determinant of NRE activity.
    [Show full text]