Regulation of Homologous Recombination: Chi Inactivates Recbcd Enzyme by Disassembly of the Three Subunits
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Restriction Endonucleases
Molecular Biology Problem Solver: A Laboratory Guide. Edited by Alan S. Gerstein Copyright © 2001 by Wiley-Liss, Inc. ISBNs: 0-471-37972-7 (Paper); 0-471-22390-5 (Electronic) 9 Restriction Endonucleases Derek Robinson, Paul R. Walsh, and Joseph A. Bonventre Background Information . 226 Which Restriction Enzymes Are Commercially Available? . 226 Why Are Some Enzymes More Expensive Than Others? . 227 What Can You Do to Reduce the Cost of Working with Restriction Enzymes? . 228 If You Could Select among Several Restriction Enzymes for Your Application, What Criteria Should You Consider to Make the Most Appropriate Choice? . 229 What Are the General Properties of Restriction Endonucleases? . 232 What Insight Is Provided by a Restriction Enzyme’s Quality Control Data? . 233 How Stable Are Restriction Enzymes? . 236 How Stable Are Diluted Restriction Enzymes? . 236 Simple Digests . 236 How Should You Set up a Simple Restriction Digest? . 236 Is It Wise to Modify the Suggested Reaction Conditions? . 237 Complex Restriction Digestions . 239 How Can a Substrate Affect the Restriction Digest? . 239 Should You Alter the Reaction Volume and DNA Concentration? . 241 Double Digests: Simultaneous or Sequential? . 242 225 Genomic Digests . 244 When Preparing Genomic DNA for Southern Blotting, How Can You Determine If Complete Digestion Has Been Obtained? . 244 What Are Your Options If You Must Create Additional Rare or Unique Restriction Sites? . 247 Troubleshooting . 255 What Can Cause a Simple Restriction Digest to Fail? . 255 The Volume of Enzyme in the Vial Appears Very Low. Did Leakage Occur during Shipment? . 259 The Enzyme Shipment Sat on the Shipping Dock for Two Days. -
Phosphate Steering by Flap Endonuclease 1 Promotes 50-flap Specificity and Incision to Prevent Genome Instability
ARTICLE Received 18 Jan 2017 | Accepted 5 May 2017 | Published 27 Jun 2017 DOI: 10.1038/ncomms15855 OPEN Phosphate steering by Flap Endonuclease 1 promotes 50-flap specificity and incision to prevent genome instability Susan E. Tsutakawa1,*, Mark J. Thompson2,*, Andrew S. Arvai3,*, Alexander J. Neil4,*, Steven J. Shaw2, Sana I. Algasaier2, Jane C. Kim4, L. David Finger2, Emma Jardine2, Victoria J.B. Gotham2, Altaf H. Sarker5, Mai Z. Her1, Fahad Rashid6, Samir M. Hamdan6, Sergei M. Mirkin4, Jane A. Grasby2 & John A. Tainer1,7 DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 50-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 50-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 50polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via ‘phosphate steering’, basic residues energetically steer an inverted ss 50-flap through a gateway over FEN1’s active site and shift dsDNA for catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA)n repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 50-flap specificity and catalysis, preventing genomic instability. 1 Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. -
Capture of a Recombination Activating Sequence from Mammalian Cells
Gene Therapy (1999) 6, 1819–1825 1999 Stockton Press All rights reserved 0969-7128/99 $15.00 http://www.stockton-press.co.uk/gt Capture of a recombination activating sequence from mammalian cells P Olson and R Dornburg The Dorrance H Hamilton Laboratories, Center for Human Virology, Division of Infectious Diseases, Jefferson Medical College, Thomas Jefferson University, Jefferson Alumni Hall, 1020 Locust Street, Rm 329, Philadelphia, PA 19107, USA We have developed a genetic trap for identifying revealed a putative recombination signal (CCCACCC). sequences that promote homologous DNA recombination. When this heptamer or an abbreviated form (CCCACC) The trap employs a retroviral vector that normally disables were reinserted into the vector, they stimulated vector itself after one round of replication. Insertion of defined repair and other DNA rearrangements. Mutant forms of DNA sequences into the vector induced the repair of a 300 these oligomers (eg CCCAACC or CCWACWS) did not. base pair deletion, which restored its ability to replicate. Our data suggest that the recombination events occurred Tests of random sequence libraries made in the vector within 48 h after transfection. Keywords: recombination; retroviral vector; vector stability; gene conversion; gene therapy Introduction scripts are still made from the intact left LTR, but reverse transcription copies the deletion to both LTRs, disabling Recognition of cis-acting DNA signals occupies a central the daughter provirus.15–17 We found that the SIN vectors role in both site-specific and general recombination path- that could escape this programmed disablement did so 1–6 ways. Signals in site-specific pathways define the by recombinationally repairing the U3-deleted LTR. -
S1 Nuclease Degrades Single-Stranded Nucleic Acids, Releasing 5'-Phosphoryl Mono- Or Oligonucleotides
Description S1 Nuclease degrades single-stranded nucleic acids, releasing 5'-phosphoryl mono- or oligonucleotides. It is five times more active on DNA than on RNA (1). S1 Nuclease also cleaves dsDNA at the single-stranded region caused by a nick, gap, mismatch or loop. PRODUCT INFORMATION S1 Nuclease exhibits 3’-phosphomonoesterase activity. S1 Nuclease The enzyme is a glycoprotein with a carbohydrate content of 18%. Pub. No. MAN0013722 Applications Rev. Date 29 November 2016 (Rev. A.00) Removal of single-stranded overhangs of DNA #_ fragments (2). S1 transcript mapping (3, 4). Lot: _ Expiry Date: _ Cleavage of hairpin loops. Creation of unidirectional deletions in DNA fragments in Store at -20 °C conjunction with Exo III (5). Source Aspergillus oryzae cells. Components #EN0321 100 U/µL S1 Nuclease 10000 U 5X Reaction Buffer 2 1 mL www.thermofisher.com For Research Use Only. Not for use in diagnostic procedures. Definition of Activity Unit CERTIFICATE OF ANALYSIS One unit of the enzyme produces 1 µg of acid soluble S1 Nuclease was tested for the absence of deoxyribonucleotides in 1 min at 37 °C. contaminating double-stranded DNA specific nuclease Enzyme activity is assayed in the following mixture: activity. 30 mM sodium-acetate (pH 4.5), 50 mM NaCl, 0.1 mM ZnCl2, 5% (v/v) glycerol, 800 µg/mL heat Quality authorized by: Jurgita Zilinskiene denatured calf thymus DNA. Storage Buffer The enzyme is supplied in: 20 mM Tris-HCl (pH 7.5), 50 mM NaCl, 0.1 mM ZnCl2 and 50% (v/v) glycerol. 5X Reaction Buffer 200 mM sodium acetate (pH 4.5 at 25 °C), 1.5 M NaCl and 10 mM ZnSO4. -
Recombination Hotspot ANDREW F
Proc. Natd. Acad. Sci. USA Vol. 89, pp. 5226-5230, June 1992 Biochemistry RecBCD enzyme is altered upon cutting DNA at a Chi recombination hotspot ANDREW F. TAYLOR AND GERALD R. SMITH Fred Hutchinson Cancer Research Center, 1124 Columbia Street, Seattle, WA 98104 Communicated by Hamilton 0. Smith, March 16, 1992 ABSTRACT During its unidirectional unwinding of DNA, to ensure even numbers of exchanges in conjugal and trans- RecBCD enzyme cuts one DNA strand near a properly oriented ductional crosses (13). At each end ofthe donor fragment one Chi site, a hotspot of homologous genetic recombination in RecBCD molecule is proposed to enter and promote just one Escherichia cohl. We report here that individual DNA molecules exchange. Such a mechanism would ensure exactly two containing two properly oriented Chi sites were cut with about exchanges and, hence, viability. 40% efficiency at one or the other Chi site but not detectably By what mechanism might RecBCD promote just one at both Chi sites. Furthermore, initial incubation of RecBCD exchange near each end ofthe donor fragment? This problem with Chi-containing DNA reduced its ability both to unwind is compounded by the high density of Chi sites in E. coli DNA and to cut at Chi sites on subsequently added DNA DNA: Chi occurs, on the average, once every 5 kilobases (kb) molecules much more than did initial incubation with Chi-free (18). A conjugational donor fragment one-quarter of the DNA; the nuclease activity was less severely affected. These chromosome long would contain about 250 Chi sites. Coor- results imply that RecBCD loses its Chi-cutting activity upon dination among the multitude of potential exchanges at these cutting at a single Chi site and provide a mechanism for sites seems difficult. -
FAN1 Nuclease Activity Affects CAG Expansion and Age at Onset of Huntington's Disease
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.13.439716; this version posted April 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. McAllister, Donaldson et al FAN1 nuclease activity affects CAG expansion and age at onset of Huntington's disease Branduff McAllister, PhD1+, Jasmine Donaldson, PhD1+, Caroline S. Binda, PhD1, Sophie Powell, BSc1, Uroosa Chughtai, BSc1, Gareth Edwards, PhD1, Joseph Stone, BA1, Sergey Lobanov, PhD1, Linda Elliston, MPhil1, Laura-Nadine Schuhmacher, PhD1, Elliott Rees, PhD1, Georgina Menzies, PhD2, Marc Ciosi, PhD3, Alastair Maxwell, PhD3, Michael J. Chao, PhD4, Eun Pyo Hong, PhD4, Diane Lucente, MS4, Vanessa Wheeler, PhD4, Jong-Min Lee, PhD4,5, Marcy E. MacDonald, PhD4,5, Jeffrey D. Long, PhD6, Elizabeth H. Aylward, PhD7, G. Bernhard Landwehrmeyer, MD PhD8, Anne E. Rosser, MB BChir, PhD9,10, REGISTRY Investigators of the European Huntington’s disease network11, Jane S. Paulsen, PhD12, PREDICT-HD Investigators of the Huntington Study Group13, Nigel M. Williams, PhD1, James F. Gusella, PhD4,5, Darren G. Monckton, PhD3, Nicholas D. Allen, PhD2, Peter Holmans, PhD1, Lesley Jones, PhD1,14* & Thomas H. Massey, BM BCh, DPhil1,15* 1 Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, United Kingdom 2 School of Biosciences, Cardiff University, Cardiff, CF10 3AX, -
Type of the Paper (Article
Supplementary Material A Proteomics Study on the Mechanism of Nutmeg-induced Hepatotoxicity Wei Xia 1, †, Zhipeng Cao 1, †, Xiaoyu Zhang 1 and Lina Gao 1,* 1 School of Forensic Medicine, China Medical University, Shenyang 110122, P. R. China; lessen- [email protected] (W.X.); [email protected] (Z.C.); [email protected] (X.Z.) † The authors contributed equally to this work. * Correspondence: [email protected] Figure S1. Table S1. Peptide fraction separation liquid chromatography elution gradient table. Time (min) Flow rate (mL/min) Mobile phase A (%) Mobile phase B (%) 0 1 97 3 10 1 95 5 30 1 80 20 48 1 60 40 50 1 50 50 53 1 30 70 54 1 0 100 1 Table 2. Liquid chromatography elution gradient table. Time (min) Flow rate (nL/min) Mobile phase A (%) Mobile phase B (%) 0 600 94 6 2 600 83 17 82 600 60 40 84 600 50 50 85 600 45 55 90 600 0 100 Table S3. The analysis parameter of Proteome Discoverer 2.2. Item Value Type of Quantification Reporter Quantification (TMT) Enzyme Trypsin Max.Missed Cleavage Sites 2 Precursor Mass Tolerance 10 ppm Fragment Mass Tolerance 0.02 Da Dynamic Modification Oxidation/+15.995 Da (M) and TMT /+229.163 Da (K,Y) N-Terminal Modification Acetyl/+42.011 Da (N-Terminal) and TMT /+229.163 Da (N-Terminal) Static Modification Carbamidomethyl/+57.021 Da (C) 2 Table S4. The DEPs between the low-dose group and the control group. Protein Gene Fold Change P value Trend mRNA H2-K1 0.380 0.010 down Glutamine synthetase 0.426 0.022 down Annexin Anxa6 0.447 0.032 down mRNA H2-D1 0.467 0.002 down Ribokinase Rbks 0.487 0.000 -
Structure and Function of Nucleases in DNA Repair: Shape, Grip and Blade of the DNA Scissors
Oncogene (2002) 21, 9022 – 9032 ª 2002 Nature Publishing Group All rights reserved 0950 – 9232/02 $25.00 www.nature.com/onc Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors Tatsuya Nishino1 and Kosuke Morikawa*,1 1Department of Structural Biology, Biomolecular Engineering Research Institute (BERI), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan DNA nucleases catalyze the cleavage of phosphodiester mismatched nucleotides. They also recognize the bonds. These enzymes play crucial roles in various DNA replication or recombination intermediates to facilitate repair processes, which involve DNA replication, base the following reaction steps through the cleavage of excision repair, nucleotide excision repair, mismatch DNA strands (Table 1). repair, and double strand break repair. In recent years, Nucleases can be regarded as molecular scissors, new nucleases involved in various DNA repair processes which cleave phosphodiester bonds between the sugars have been reported, including the Mus81 : Mms4 (Eme1) and the phosphate moieties of DNA. They contain complex, which functions during the meiotic phase and conserved minimal motifs, which usually consist of the Artemis : DNA-PK complex, which processes a V(D)J acidic and basic residues forming the active site. recombination intermediate. Defects of these nucleases These active site residues coordinate catalytically cause genetic instability or severe immunodeficiency. essential divalent cations, such as magnesium, Thus, structural biology on various nuclease actions is calcium, manganese or zinc, as a cofactor. However, essential for the elucidation of the molecular mechanism the requirements for actual cleavage, such as the types of complex DNA repair machinery. Three-dimensional and the numbers of metals, are very complicated, but structural information of nucleases is also rapidly are not common among the nucleases. -
Flap DNA Unwinding and Incision by the Human FAN1 Dimer
ARTICLE Received 16 Aug 2014 | Accepted 30 Oct 2014 | Published 11 Dec 2014 DOI: 10.1038/ncomms6726 Structural insights into 50 flap DNA unwinding and incision by the human FAN1 dimer Qi Zhao1,*, Xiaoyu Xue1,*, Simonne Longerich1,*, Patrick Sung1 & Yong Xiong1 Human FANCD2-associated nuclease 1 (FAN1) is a DNA structure-specific nuclease involved in the processing of DNA interstrand crosslinks (ICLs). FAN1 maintains genomic stability and prevents tissue decline in multiple organs, yet it confers ICL-induced anti-cancer drug resistance in several cancer subtypes. Here we report three crystal structures of human FAN1 in complex with a 50 flap DNA substrate, showing that two FAN1 molecules form a head-to- tail dimer to locate the lesion, orient the DNA and unwind a 50 flap for subsequent incision. Biochemical experiments further validate our model for FAN1 action, as structure-informed mutations that disrupt protein dimerization, substrate orientation or flap unwinding impair the structure-specific nuclease activity. Our work elucidates essential aspects of FAN1-DNA lesion recognition and a unique mechanism of incision. These structural insights shed light on the cellular mechanisms underlying organ degeneration protection and cancer drug resistance mediated by FAN1. 1 Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to P.S. (email: [email protected]) or to Y.X. (email: [email protected]). NATURE COMMUNICATIONS | 5:5726 | DOI: 10.1038/ncomms6726 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited. All rights reserved. -
Restriction Enzymes of Bac- Base Teria Combat Foreign Substances
Understanding Inheritance FESTRICT’K3N ENZYMES J ~ke the immune systems of vertebrate eukaryotes, the restriction enzymes of bac- Base teria combat foreign substances. In particu- Restriction Enzyme Source Organism Sequence of Restriction Site lar, restriction enzymes render the DNA of, BamH 1 Bacillus 5’- ATCC-3’ say, an invading bacteriophage harmless amyloliquefaciens 3’-CCTAG- -5’ by catalyzing its fragmentation, or, more precisely, by catalyzing the breaking of cer- ECORI Escherichia co/i 5’-G ATTC-3’ tain O-P–O– bridges in the backbones of 3’-CTTA5 -5’ each DNA strand. The evolution of restric- tion enzymes helped many species of bac- Hae[[I Haemophi/us aegyptius 5’-G c-3’ teria to survive; their discovery by humans 3’-CC% G-5’ helped precipitate the recombinant-DNA revolution, Hindl[ Haemophi/us influenza 5’-GT(C orT (A or G)AC-3’ 3’-CA(G orA ! (T or C) TG-5’ Three types of restriction enzymes are known, but the term “restriction enzyme” MboI Moraxeila bovis 5’ refers here and elsewhere in this issue to type II restriction endonucleases, the only type commonly used in the study of DNA. (A Notl Nocardia otitidis 5’-G GCCGC nuclease is an enzyme that catalyzes the 3’-CG”CCG% G brealking of -O–P–O- bridges in a string of deoxyribonucleotide or ribonucleotides; an Taql Thermus aquaticus 5’- GA endcmuclease catalyzes the breaking of 3’-AG% internal rather than terminal -O–P–O- bridges.) Many restriction enzymes have beer isolated; more than seventy are avail- man numeral denotes the order of its dis- a sample of human DNA and a sampie of able commercially. -
Datasheet for Exonuclease V (Recbcd)
Source: An E. coli strain containing plasmids Unit Assay Conditions: 1X NEBuffer 4, 1 mM ATP Physical Purity: Purified to > 95% homogene- Exonuclease V for expressing the three subunits of E. coli with 0.15 mM sonicated duplex [3H]-DNA. ity as determined by SDS-PAGE analysis using Exonuclease V: RecB, RecC and RecD. Coomassie Blue detection. (RecBCD) Heat Inactivation: 70°C for 30 minutes. Supplied in: 100 mM NaCl, 50 mM Tris-HCl A Typical Exonuclease V Reaction: 1-800-632-7799 (pH 7.5 @ 25°C), 0.1 mM EDTA, 1 mM DTT, Quality Control Assays x µl sample DNA (~ 1 µg) [email protected] 0.1% Triton X-100 and 50% glycerol. 3 µl NEBuffer4 (10X) www.neb.com Endonuclease Activity I: Incubation of a 50 µl 3 µl 10 mM ATP M0345S 001121014101 reaction containing 100 units of Exonuclease V Reagents Supplied with Enzyme: y µl H20 (up to final volume of 30 µl) 10X NEBuffer 4, 10 mM ATP with 1 µg of φX174 RF I DNA in NEBuffer 4 and 1 µl Exonuclease V (10 units) 1 mM ATP for 4 hours at 37°C resulted in < 10% M0345S Reaction Conditions: 1X NEBuffer 4 loss in φX174 RF I DNA as determined by agarose 1. Incubate at 37°C for 30 minutes. 2. To stop reaction add EDTA to 11 mM. 1,000 units 10,000 U/ml Lot: 0011210 supplemented with 1 mM ATP. Incubate at 37°C. gel electrophoresis. 3 Heat Inactivation 70°C for 30 minutes. RECOMBINANT Store at –20°C Exp: 10/14 1X NEBuffer 4: Endonuclease Activity II: Incubation of a 50 µl 4. -
Restriction Endonucleases
Restriction Endonucleases TECHNICAL GUIDE UPDATE 2017/18 be INSPIRED drive DISCOVERY stay GENUINE RESTRICTION ENZYMES FROM NEB Cut Smarter with Restriction Enzymes from NEB® Looking to bring CONVENIENCE to your workflow? Simplify Reaction Setup and Double Activity of DNA Modifying Enzymes in CutSmart Buffer: Digestion with CutSmart® Buffer Clone Smarter! Activity Enzyme Required Supplements Over 210 restriction enzymes are 100% active in a single buffer, in CutSmart Phosphatases: CutSmart Buffer, making it significantly easier to set up your Alkaline Phosphatase (CIP) + + + double digest reactions. Since CutSmart Buffer includes BSA, there Antarctic Phosphatase + + + Requires Zn2+ Quick CIP + + + are fewer tubes and pipetting steps to worry about. Additionally, Shrimp Alkaline Phosphatase (rSAP) + + + many DNA modifying enzymes are 100% active in CutSmart Ligases: T4 DNA Ligase + + + Requires ATP Buffer, eliminating the need for subsequent purification. E. coli DNA Ligase + + + Requires NAD T3 DNA Ligase + + + Requires ATP + PEG For more information, visit www.NEBCutSmart.com T7 DNA Ligase + + + Requires ATP + PEG Polymerases: T4 DNA Polymerase + + + DNA Polymerase I, Large (Klenow) Frag. + + + DNA Polymerase I + + + DNA Polymerase Klenow Exo– + + + Bst DNA Polymerase + + + ™ phi29 DNA Polymerase + + + Speed up Digestions with Time-Saver T7 DNA Polymerase (unmodified) + + + Qualified Restriction Enzymes Transferases/Kinases: T4 Polynucleotide Kinase + + + Requires ATP + DTT T4 PNK (3´ phosphatase minus) + + + Requires ATP + DTT > 190 of our restriction enzymes are able to digest DNA in CpG Methyltransferase (M. SssI) + + + 5–15 minutes, and can safely be used overnight with no loss of GpC Methyltransferase (M. CviPI) + Requires DTT T4 Phage β-glucosyltransferase + + + sample. For added convenience and flexibility, most of these are Nucleases, other: supplied with CutSmart Buffer.