The Stellar Content of the Sagittarius Dwarf Galaxy ⋆

Total Page:16

File Type:pdf, Size:1020Kb

The Stellar Content of the Sagittarius Dwarf Galaxy ⋆ AND Your thesaurus codes are: View metadata, citation and similar papers at core.ac.uk ASTROPHYSICSbrought to you by CORE (03.20.4; 08.08.1; 08.12.3; 11.09.5; 11.19.5) 15.3.1997 provided by CERN Document Server The stellar content of the Sagittarius Dwarf Galaxy ? G. Marconi1, R. Buonanno1, M. Castellani1,2, G. Iannicola1, P. Molaro3,L.Pasquini4,L.Pulone1 1 Osservatorio Astronomico di Roma Via dell’Osservatorio 2, Monte Porzio Catone, 00040 (Roma). Italy [marconi,buonanno,mkast,iannicola,pulone]@coma.mporzio.astro.it 2 Universita’ ”La Sapienza”, Istituto Astronomico Via Lancisi 29, 00161 Roma 3 Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, 34131 Trieste 4 ESO, La Silla Received September; accepted Abstract. We present V,I deep CCD photometry for Sgr is similar in mass to the Fornax dwarf, which contains three fields of the dwarf galaxy in Sagittarius (Sgr), lo- a planetary nebula as well. The other, less massive, dwarfs cated at l=5.6o, b=-14.1o. One of the fields is centered on of the Local Group seem not to contain any star in such the globular cluster NGC 6715 (M54), which lies in one of a short evolutionary phase. the dense clumps of the Sgr galaxy. Comparing the CMD Although the CM diagram of IGI is heavily contam- of Sgr with those of globular clusters which are believed inated by the rich population of foreground disk and to be kinematically associated with the dwarf galaxy (Da bulge stars, nonetheless it clearly shows the presence of Costa & Armandroff, 1995), we conclude that the stel- an intermediate-old dominant population. lar population of Sgr presents a spread in metallicity of -0.71≤[Fe/H]≤-1.58, and that the dominant population Mateo et al. 1995a (hereafter MUSKKK), presented ('10 Gyr old) is extremely similar to the star content of the CCD photometry of a field in Sagittarius, which the associated globular cluster Terzan 7. The estimated reaches I'22.3. After having statistically removed the field distance to Sgr is d'24.55 Kpc. stars from the CM diagram, they concluded that Sgr is dominated by a intermediate-old population which is Key words: techniques: photometry - stars: HR- younger than that of the bulk of galactic globular clusters. diagrams - stars: luminosity function - galaxies: irregular They also found evidence of a feature in the CMD which - galaxies: stellar content could be interpreted as a weak component of intermediate age or, alternatively, as a population of blue stragglers. Finally, from the color of the red giant branch they esti- mated that the metallicity of the dominant population is about [Fe/H]'-1.1. Mateo et al. (1995b) extensively dis- 1. Introduction cussed the properties of a handful of RR Lyrae variables Ibata, Gilmore and Irwin (1994, 1995; hereafter both in- in the field of Sgr. dicated with IGI) identified a new dwarf galaxy of the Lo- Sarajedini & Layden (1995, hereafter SL) presented cal Group, located in the constellation of Sagittarius. The the V,I CCD color magnitude diagram for two fields. The dwarf, detected as a moving group of stars with mean ra- first field is centered near the globular cluster M54 and dial velocity significatively different from that of the stars covers both the cluster and the central region of Sgr, while in the bulge, is located at a distance of about 25 Kpc from the second field is centered 12 arcmin north of the cluster. the Sun, and subtends an angle of '10 degrees on the sky. From the analysis of the CMD they found that the bulk The new galaxy is comparable in size and luminosity to of Sgr is formed by a relatively metal-rich population of the dwarf spheroidal Fornax, which is the largest galaxy [Fe/H]'-0.52, and that a component of lower metallicity known in the Local Group. The recent discovery of two ([Fe/H]'-1.3) could also be present. planetary nebulae (Zijlstra & Walsh, 1996) confirms that Sgr is the nearest galaxy to the Milky Way which has Send offprint requests to:G.Marconi been discovered until now, and numerical simulations con- ? Based on observations collected at the European Southern firm that Sgr is presently in phase of being disrupted by Observatory, La Silla, Chile. the Galaxy (Kathryn, Spergel & Hernquist 1995). This idea is supported by Mateo et al. (1996) and by δ2000 30 28 23 (field 1) and the other centered at h o Alcock et al. (1997), who found that Sgr is considerably α2000=18 59’44”, δ=-30 59’45” (field 2). more extended than previously believed, suggesting that The three observed fields are sketched in figure 1 this dwarf has probably suffered at least one - and perhaps (a,b,c). Several Landolt (1992) stars (from 7 to 15), were many - strong tidal encounters with the Milky Way during observed for calibration throughout each night. past perigalacticon passages. The details of the observations, with the exposure time Another piece of evidence of the strong interaction be- and seeing conditions, are listed in Table 1. tween Sgr and the Milky Way is that two of the clusters (Ter 7 and Arp2) which have radial velocities similar to that of Sgr, and then suspected to be cinematically as- Table 1. Journal of observations sociated with Sgr (Da Costa and Armandroff, 1995), are anomalously young compared to the bulk of galactic glob- ulars (Buonanno et al. 1994, 1995a,b). Recently Fahlman et al. (1996; hereinafter FMRTS) Date F ilter Exp.time Seeing F ield T el. detected the upper end of the main sequence in the back- 6 aug. 95 V 240 s 0.7000 Sgr 1 NTT ground field around the globular cluster M55, which is 6 aug. 95 I 300 s 0.7400 Sgr 1 NTT projected in the sky about 40 arcmin east of Sgr. Having 7aug.95 V 20s 1.1200 Sgr 1 NTT interpreted this feature as the turn-off of Sgr, they used 7aug.95 I 30s 0.9500 Sgr 1 NTT the Vandenberg & Bell (1985) isochrones to give an esti- 6 aug. 95 V 240 s 0.8900 Sgr 2 NTT mate of the age of the galaxy, and concluded that Sgr is 6 aug. 95 I 300 s 0.6700 Sgr 2 NTT between 10 and 13 Gyr old, although this conclusion is 7 aug. 95 I 300 s 0.6500 Sgr 2 NTT admittedly based on an handful of stars. 7aug.95 V 20s 0.8000 Sgr 2 NTT 00 Finally, the complex history of Sgr has been confirmed 7aug.95 I 30s 0.86 Sgr 2 NTT 7sep.94 B 60s 0.8500 M54 2.2 by Ng & Schulthesis (1996) who detected a carbon-star 00 which, if its membership to Sgr will be confirmed, hints at 7 sep. 94 B 1200 s 0.93 M54 2.2 7 sep. 94 B 600 s 0.9800 M54 2.2 the existence of a stellar population about 4 Gyr younger 7 sep. 94 B 300 s 0.9500 M54 2.2 than the dominant population. 7 sep. 94 V 300 s 0.8900 M54 2.2 In this paper we present deep V,I CCD photometry 7 sep. 94 V 300 s 0.9200 M54 2.2 of Sgr, in two separate fields, far from those of SL and 7 sep. 94 V 240 s 0.9500 M54 2.2 MUSKKK. Our aim is twofold: first, to explore whether 7 sep. 94 V 240 s 0.9500 M54 2.2 the results above summarized depend on the specific re- 7 sep. 94 V 120 s 0.9200 M54 2.2 gion of Sgr examined (considering the extension of Sgr this 7 sep. 94 I 300 s 0.8800 M54 2.2 aspect is particularly important) and, second, to investi- 8 sep. 94 I 180 s 0.8200 M54 2.2 00 gate the nature of the Sgr population. 8 sep. 94 B 300 s 0.90 M54 2.2 00 Deep V,I photometry of the field near M54, already 8 sep. 94 B 300 s 0.99 M54 2.2 8 sep. 94 B 480 s 0.9500 M54 2.2 studied by SL, is also presented. 8 sep. 94 I 300 s 0.8900 M54 2.2 In section 2, we describe the observations and the re- 8 sep. 94 I 180 s 0.9100 M54 2.2 duction procedures, while the resulting C-M diagrams are 8 sep. 94 I 180 s 0.9300 M54 2.2 presented and discussed in section 3. The stellar content 8 sep. 94 I 180 s 0.8200 M54 2.2 of Sgr is studied and compared to that of associated glob- 8 sep. 94 I 180 s 0.8500 M54 2.2 ular clusters in section 4. The conclusions are drawn in 8 sep. 94 I 180 s 0.8500 M54 2.2 section 5. 8sep.94 I 60s 0.8600 M54 2.2 8sep.94 I 60s 0.8800 M54 2.2 8sep.94 I 60s 0.9300 M54 2.2 2. Observations and reductions 2.1. Observations Observations of a field which includes a portion of Sgr and of M54 (α =18h55’03”, δ =-30o28’42”) were first ob- 2000 2000 2.2. Reduction Procedures tained using EFOSC2 at the ESO/MPI 2.2 m at La Silla during September 1994. After having applied the basic procedures of pre-reduction In August 1995 additional observations of Sgr were (bias and dark current subtraction, trimming, flatfield obtained with the 3.5 m ESO-NTT.
Recommended publications
  • Tidal Disruption of Globular Clusters in Dwarf Galaxies with Triaxial Dark Matter Haloes.” by J
    “Tidal disruption of globular clusters in dwarf galaxies with triaxial dark matter haloes.” by J. Peñarrubia, M.J. Walker, and G. Gilmore University of Cambridge and University of Victoria MNRAS accepted Journal Club 5/15/09 Daniel Grin 1/19 Wednesday, September 2, 2009 1 Punchline 2/19 • Globular clusters (GCs) around dwarf spheroidal (dSph) galaxies may survive tidal encounters • Stellar substructure (morphology and kinematics) in dSph galaxies may be explained by past disruptions of GCs • Simulation techniques grossly over-simplify the problem, but useful first step Wednesday, September 2, 2009 2 Outline 3/19 • Motivation: subtructure in dSphs and existence of GCs near them. • Properties of systems modeled • Simulation techniques/caveats • Results Wednesday, September 2, 2009 3 Motivation: Substructure in dSph galaxies 4/19 • Milky Way (MW) dSph galaxies are DM dominated-- : • Ideal testbed for CDM scenario • Standing dispute about presence of cores (triaxiality? projection effect? see work by J. Simon) • dSph galaxies have substructure, contrary to expectation that it should be erased in a few crossing times (~100 Myr): • Morphology: Kinematically cold core in Sextans, kinematically distinct shell in Fornax, asymmetries across major/minor axes in Fornax (claims of butterfly shapes are sketchy) • Ages: 2 Gyr-old stellar populations in Fornax shell • Can prolong life of stellar substructure with cored density profile, challenge to CDM? • Can save CDM with formation of substructure that is not in situ • Blue stragglers in Sextans are mass segregated, not enough time for this in Sextans, do it elsewhere (like a merging G.C.) and disrupt? Wednesday, September 2, 2009 4 Motivation: Globular clusters in dSph 5/19 • Fornax (5) and Sagitarrius (4) contain GCs near : Name Angular sep.
    [Show full text]
  • Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects
    Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Porto Alegre 2017 Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Dissertação elaborada sob orientação do Prof. Dr. Eduardo Luis Damiani Bica, co- orientação do Prof. Dr. Charles José Bon- ato e apresentada ao Instituto de Física da Universidade Federal do Rio Grande do Sul em preenchimento do requisito par- cial para obtenção do título de Mestre em Física. Porto Alegre 2017 Acknowledgements To my parents, who supported me and made this possible, in a time and place where being in a university was just a distant dream. To my dearest friends Elisabeth, Robert, Augusto, and Natália - who so many times helped me go from "I give up" to "I’ll try once more". To my cats Kira, Fen, and Demi - who lazily join me in bed at the end of the day, and make everything worthwhile. "But, first of all, it will be necessary to explain what is our idea of a cluster of stars, and by what means we have obtained it. For an instance, I shall take the phenomenon which presents itself in many clusters: It is that of a number of lucid spots, of equal lustre, scattered over a circular space, in such a manner as to appear gradually more compressed towards the middle; and which compression, in the clusters to which I allude, is generally carried so far, as, by imperceptible degrees, to end in a luminous center, of a resolvable blaze of light." William Herschel, 1789 Abstract We provide a sample of 170 Galactic Globular Clusters (GCs) and analyse its spatial distribution properties.
    [Show full text]
  • Young Globular Clusters and Dwarf Spheroidals
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Young Globular Clusters and Dwarf Spheroidals Sidney van den Bergh Dominion Astrophysical Observatory Herzberg Institute of Astrophysics National Research Council of Canada 5071 West Saanich Road Victoria, British Columbia, V8X 4M6 Canada ABSTRACT Most of the globular clusters in the main body of the Galactic halo were formed almost simultaneously. However, globular cluster formation in dwarf spheroidal galaxies appears to have extended over a significant fraction of a Hubble time. This suggests that the factors which suppressed late-time formation of globulars in the main body of the Galactic halo were not operative in dwarf spheroidal galaxies. Possibly the presence of significant numbers of “young” globulars at RGC > 15 kpc can be accounted for by the assumption that many of these objects were formed in Sagittarius-like (but not Fornax-like) dwarf spheroidal galaxies, that were subsequently destroyed by Galactic tidal forces. It would be of interest to search for low-luminosity remnants of parental dwarf spheroidals around the “young” globulars Eridanus, Palomar 1, 3, 14, and Terzan 7. Furthermore multi-color photometry could be used to search for the remnants of the super-associations, within which outer halo globular clusters originally formed. Such envelopes are expected to have been tidally stripped from globulars in the inner halo. Subject headings: Globular clusters - galaxies: dwarf The galaxy is, in fact, nothing but a congeries of innumerable stars grouped together in clusters. Galileo (1610) –2– 1. Introduction The vast majority of Galactic globular clusters appear to have formed at about the same time (e.g.
    [Show full text]
  • Galactic Metal-Poor Halo E NCYCLOPEDIA of a STRONOMY and a STROPHYSICS
    Galactic Metal-Poor Halo E NCYCLOPEDIA OF A STRONOMY AND A STROPHYSICS Galactic Metal-Poor Halo Most of the gas, stars and clusters in our Milky Way Galaxy are distributed in its rotating, metal-rich, gas-rich and flattened disk and in the more slowly rotating, metal- rich and gas-poor bulge. The Galaxy’s halo is roughly spheroidal in shape, and extends, with decreasing density, out to distances comparable with those of the Magellanic Clouds and the dwarf spheroidal galaxies that have been collected around the Galaxy. Aside from its roughly spheroidal distribution, the most salient general properties of the halo are its low metallicity relative to the bulk of the Galaxy’s stars, its lack of a gaseous counterpart, unlike the Galactic disk, and its great age. The kinematics of the stellar halo is closely coupled to the spheroidal distribution. Solar neighborhood disk stars move at a speed of about 220 km s−1 toward a point in the plane ◦ and 90 from the Galactic center. Stars belonging to the spheroidal halo do not share such ordered motion, and thus appear to have ‘high velocities’ relative to the Sun. Their orbital energies are often comparable with those of the disk stars but they are directed differently, often on orbits that have a smaller component of rotation or angular Figure 1. The distribution of [Fe/H] values for globular clusters. momentum. Following the original description by Baade in 1944, the disk stars are often called POPULATION I while still used to measure R . The recognizability of globular the metal-poor halo stars belong to POPULATION II.
    [Show full text]
  • Assessing the Milky Way Satellites Associated with the Sagittarius Dwarf Spheroidal Galaxy
    DRAFT: November 8, 2018 Preprint typeset using LATEX style emulateapj v. 11/10/09 ASSESSING THE MILKY WAY SATELLITES ASSOCIATED WITH THE SAGITTARIUS DWARF SPHEROIDAL GALAXY David R. Law1,2, Steven R. Majewski3 DRAFT: November 8, 2018 ABSTRACT Numerical models of the tidal disruption of the Sagittarius (Sgr) dwarf galaxy have recently been developed that for the first time simultaneously satisfy most observational constraints on the angular position, distance, and radial velocity trends of both leading and trailing tidal streams emanating from the dwarf. We use these dynamical models in combination with extant 3-D position and velocity data for Galactic globular clusters and dSph galaxies to identify those Milky Way satellites that are likely to have originally formed in the gravitational potential well of the Sgr dwarf, and have been stripped from Sgr during its extended interaction with the Milky Way. We conclude that the globular clusters Arp 2, M 54, NGC 5634, Terzan 8, and Whiting 1 are almost certainly associated with the Sgr dwarf, and that Berkeley 29, NGC 5053, Pal 12, and Terzan 7 are likely to be as well (albeit at lower confidence). The initial Sgr system therefore may have contained 5-9 globular clusters, corresponding to a specific frequency SN =5−9 for an initial Sgr luminosity MV = −15.0. Our result is consistent with the 8±2 genuine Sgr globular clusters expected on the basis of statistical modeling of the Galactic globular cluster distribution and the corresponding false-association rate due to chance alignments with the Sgr streams. The globular clusters identified as most likely to be associated with Sgr are consistent with previous reconstructions of the Sgr age-metallicity relation, and show no evidence for a second- parameter effect shaping their horizontal branch morphologies.
    [Show full text]
  • Neutron-Capture Elements in Dwarf Galaxies III
    Neutron-capture elements in dwarf galaxies III. A homogenized analysis of 13 dwarf spheroidal and ultra-faint galaxies Reichert, M.; Hansen, C. J.; Hanke, M.; Skuladottir, A.; Arcones, A.; Grebel, E. K. Published in: Astronomy & Astrophysics DOI: 10.1051/0004-6361/201936930 Publication date: 2020 Document version Publisher's PDF, also known as Version of record Document license: CC BY-NC Citation for published version (APA): Reichert, M., Hansen, C. J., Hanke, M., Skuladottir, A., Arcones, A., & Grebel, E. K. (2020). Neutron-capture elements in dwarf galaxies III. A homogenized analysis of 13 dwarf spheroidal and ultra-faint galaxies. Astronomy & Astrophysics, 641, [A127]. https://doi.org/10.1051/0004-6361/201936930 Download date: 09. Oct. 2021 A&A 641, A127 (2020) Astronomy https://doi.org/10.1051/0004-6361/201936930 & c ESO 2020 Astrophysics Neutron-capture elements in dwarf galaxies III. A homogenized analysis of 13 dwarf spheroidal and ultra-faint galaxies?,?? M. Reichert1, C. J. Hansen2,3, M. Hanke4, Á. Skúladóttir2,5,6 , A. Arcones1,7, and E. K. Grebel4 1 Technische Universität Darmstadt, Institut für Kernphysik, Schlossgartenstr. 2, 64289 Darmstadt, Germany e-mail: [email protected] 2 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany e-mail: [email protected] 3 Copenhagen University, Dark Cosmology Centre, The Niels Bohr Institute, Vibenshuset, Lyngbyvej 2, 2100 Copenhagen, Denmark 4 Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, 69120 Heidelberg, Germany 5 Dipartimento di Fisica e Astronomia, Universitá degli Studi di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy 6 INAF/Osservatorio Astrofisico di Arcetri, Largo E.
    [Show full text]
  • 108 Afocal Procedure, 105 Age of Globular Clusters, 25, 28–29 O
    Index Index Achromats, 70, 73, 79 Apochromats (APO), 70, Averted vision Adhafera, 44 73, 79 technique, 96, 98, Adobe Photoshop Aquarius, 43, 99 112 (software), 108 Aquila, 10, 36, 45, 65 Afocal procedure, 105 Arches cluster, 23 B1620-26, 37 Age Archinal, Brent, 63, 64, Barkhatova (Bar) of globular clusters, 89, 195 catalogue, 196 25, 28–29 Arcturus, 43 Barlow lens, 78–79, 110 of open clusters, Aricebo radio telescope, Barnard’s Galaxy, 49 15–16 33 Basel (Bas) catalogue, 196 of star complexes, 41 Aries, 45 Bayer classification of stellar associations, Arp 2, 51 system, 93 39, 41–42 Arp catalogue, 197 Be16, 63 of the universe, 28 Arp-Madore (AM)-1, 33 Beehive Cluster, 13, 60, Aldebaran, 43 Arp-Madore (AM)-2, 148 Alessi, 22, 61 48, 65 Bergeron 1, 22 Alessi catalogue, 196 Arp-Madore (AM) Bergeron, J., 22 Algenubi, 44 catalogue, 197 Berkeley 11, 124f, 125 Algieba, 44 Asterisms, 43–45, Berkeley 17, 15 Algol (Demon Star), 65, 94 Berkeley 19, 130 21 Astronomy (magazine), Berkeley 29, 18 Alnilam, 5–6 89 Berkeley 42, 171–173 Alnitak, 5–6 Astronomy Now Berkeley (Be) catalogue, Alpha Centauri, 25 (magazine), 89 196 Alpha Orionis, 93 Astrophotography, 94, Beta Pictoris, 42 Alpha Persei, 40 101, 102–103 Beta Piscium, 44 Altair, 44 Astroplanner (software), Betelgeuse, 93 Alterf, 44 90 Big Bang, 5, 29 Altitude-Azimuth Astro-Snap (software), Big Dipper, 19, 43 (Alt-Az) mount, 107 Binary millisecond 75–76 AstroStack (software), pulsars, 30 Andromeda Galaxy, 36, 108 Binary stars, 8, 52 39, 41, 48, 52, 61 AstroVideo (software), in globular clusters, ANR 1947
    [Show full text]
  • The ACS Survey of Galactic Globular Clusters. Xi. the Three- Dimensional Orientation of the Sagittarius Dwarf Spheroidal Galaxy and Its Globular Clusters
    Dartmouth College Dartmouth Digital Commons Dartmouth Scholarship Faculty Work 12-10-2011 The ACS Survey of Galactic Globular Clusters. Xi. The Three- Dimensional Orientation of the Sagittarius Dwarf Spheroidal Galaxy and its Globular Clusters Michael H. H. Siegel The Pennsylvania State University Steven R. Majewski University of Virginia David R. Law University of California, Los Angeles Ata Sarajedini University of Florida Aaron Dotter University of Victoria FSeeollow next this page and for additional additional works authors at: https:/ /digitalcommons.dartmouth.edu/facoa Part of the External Galaxies Commons, and the Stars, Interstellar Medium and the Galaxy Commons Dartmouth Digital Commons Citation Siegel, Michael H. H.; Majewski, Steven R.; Law, David R.; Sarajedini, Ata; Dotter, Aaron; Marín-Franch, A; and Chaboyer, Brian, "The ACS Survey of Galactic Globular Clusters. Xi. The Three-Dimensional Orientation of the Sagittarius Dwarf Spheroidal Galaxy and its Globular Clusters" (2011). Dartmouth Scholarship. 2205. https://digitalcommons.dartmouth.edu/facoa/2205 This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth Scholarship by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. Authors Michael H. H. Siegel, Steven R. Majewski, David R. Law, Ata Sarajedini, Aaron Dotter, A Marín-Franch, and Brian Chaboyer This article is available at Dartmouth Digital Commons: https://digitalcommons.dartmouth.edu/facoa/2205 The Astrophysical Journal, 743:20 (16pp), 2011 December 10 doi:10.1088/0004-637X/743/1/20 C 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A.
    [Show full text]
  • Chemical Abundances in Terzan 7 ?
    Mem. S.A.It. Vol. 75, 396 c SAIt 2004 Memorie della Chemical abundances in Terzan 7 ? L. Sbordone1;2, P. Bonifacio3, G. Marconi1;4, and R. Buonanno2;4 1 European Southern Observatory – Chile e-mail: [email protected] 2 Dipartimento di Fisica, Universita´ di Roma 2 “Tor Vergata” 3 Istituto Nazionale di Astrofisica - Osservatorio Astronomico di Trieste 4 Istituto Nazionale di Astrofisica - Osservatorio Astronomico di Roma Abstract. We present abundances for Mg, Si, Ca, Fe, and Ni for 3 giants in the sparse globular cluster Terzan 7, physically associated with the Sagittarius dwarf Spheroidal galaxy (Sgr dSph), which is presently being tidally disrupted by the Milky Way. The data, obtained with VLT-UVES, show a mean [Fe/H]= −0:57, a solar-scaled α content ([α/Fe]∼0) and a significant Ni underabundance ([Ni/Fe]= −0:2). This enforces Ter 7’s membership to the Sgr dSph system, which shows a similar chemical “signature”. Key words. Globular clusters: individual: Terzan 7 – galaxies: individual: Sgr dSph – stars: abundances – galaxies: abundances 1. Introduction S/N ∼ 30 at 580 nm. Equivalent widths (EWs) have been measured for lines of Fe I, Fe II, Mg The globular cluster Terzan 7 (Buonanno et al. I, Si I, Ca I and Ni I. The effective temperatures 1995) is a small, young and metal rich glob- have been derived from (V − I)0 colors by us- ular, physically associated with the Sgr dSph ing the calibration of Alonso et al. (1999). The (Marconi et al. 1998). The closest neighbour analysis was performed with codes ATLAS9, of the Milky Way, the Sgr dSph is presently WIDTH and SYNTHE (Kurucz 1993).
    [Show full text]
  • Globular Clusters 1
    Globular Clusters 1 www.FaintFuzzies.com Globular Clusters 2 www.FaintFuzzies.com Globular Clusters (Includes all known globulars in the Milky Way above declination of -50º plus some extras) by Alvin Huey www.faintfuzzies.com Last updated: March 27, 2014 Globular Clusters 3 www.FaintFuzzies.com Other books by Alvin H. Huey Hickson Group Observer’s Guide The Abell Planetary Observer’s Guide Observing the Arp Peculiar Galaxies Downloadable Guides by FaintFuzzies.com The Local Group Selected Small Galaxy Groups Galaxy Trios and Triple Systems Selected Shakhbazian Groups Globular Clusters Observing Planetary Nebulae and Supernovae Remnants Observing the Abell Galaxy Clusters The Rose Catalogue of Compact Galaxies Flat Galaxies Ring Galaxies Variable Galaxies The Voronstov-Velyaminov Catalogue – Part I and II Object of the Week 2012 and 2013 – Deep Sky Forum Copyright © 2008 – 2014 by Alvin Huey www.faintfuzzies.com All rights reserved Copyright granted to individuals to make single copies of works for private, personal and non-commercial purposes All Maps by MegaStarTM v5 All DSS images (Digital Sky Survey) http://archive.stsci.edu/dss/acknowledging.html This and other publications by the author are available through www.faintfuzzies.com Globular Clusters 4 www.FaintFuzzies.com Table of Contents Globular Cluster Index ........................................................................ 6 How to Use the Atlas ........................................................................ 10 The Milky Way Globular Clusters ....................................................
    [Show full text]
  • Sulphur Abundances in Terzan 7
    1 Astronomy DOI: 10.1051/0004-6361:0 & c ESO 2005 Astrophysics Sulphur abundances in Terzan 7 ⋆ E. Caffau1, P. Bonifacio2, R. Faraggiana3, and L. Sbordone4,5 1 Liceo L. e S.P.P. S. Pietro al Natisone, annesso al Convitto Nazionale “Paolo Diacono”, Piazzale Chiarottini 8, Cividale del Friuli (Udine), Italy e-mail: [email protected] 2 Istituto Nazionale di Astrofisica - Osservatorio Astronomico di Trieste, Via Tiepolo 11, I-34131 Trieste, Italy e-mail: [email protected] 3 Dipartimento di Astronomia, Universit`adegli Studi di Trieste e-mail: [email protected] 4 ESO European Southern Observatory - Alonso de Cordova 3107 Vitacura, Santiago, Chile 5 Universit´adi Roma 2 ”Tor Vergata” - via della Ricerca Scientifica, Rome, Italy e-mail: [email protected] Received ...; Accepted ... Abstract. We present here the first measurements of sulphur abundances in extragalactic stars. We make use of high resolution spectra, obtained with UVES at the ESO 8.2 m Kueyen telescope, of three giants of the Globular Cluster Terzan 7, which belongs to the Sagittarius dwarf galaxy. We measure the sulphur abundances using the lines of S multiplet 1. The S/Fe ratios for all three stars are nearly solar, thus considerably lower than what is found in Galactic stars of comparable iron content ([Fe/H]∼−0.50). This finding is in keeping with the abundances of other α-chain elements in this cluster and in Sagittarius and other dSphs in general. These low α-chain elements to iron ratios suggest that Sagittarius and its Globular Clusters have experienced a low or bursting star-formation rate.
    [Show full text]
  • The Chemistry of the Neighbors: Detailed Abundances in the Sgr And
    Mem. S.A.It. Vol. 75, 282 c SAIt 2004 Memorie della Ì Ó Ø Ò ÓÖ× ØÐ Ò Ø ËÖ Ò Å ÛÖ ÐÜ× L. Sbordone1,3 P. Bonifacio1 G. Marconi2 S. Zaggia1 and R. Buonanno4 1 INAF – Osservatorio Astronomico di Trieste, Italy 2 ESO – European Southern Observatory, Santiago, Chile 3 INAF – Osservatorio Astronomico di Roma, Italy 4 Universit`adi Roma 2 “Tor Vergata”, Rome, Italy e-mail: [email protected] Abstract. We summarize the results of our ongoing investigation of the chemical abun- dances in the Sagittarius Dwarf Spheroidal Galaxy (Sgr dSph) and in the Canis Major Overdensity (CMa). 12 RGB stars were analyzed in the Sgr dSph, plus 5 in the associ- ated globular Terzan 7, together with three CMa candidate members. Detailed abundances have been derived for up to 23 elements from Oxygen to Europium. Key words. Stars: abundances – Stars: atmospheres – Galaxies: individual: Sgr dSph – Galaxies: individual: CMa – Galaxies: abundances – Galaxy: globular clusters: individual: Terzan 7 – Galaxy: globular clusters: individual: Palomar 12 – Galaxy: abundances 1. Introduction CMa (see Martin et al. 2004; Bellazzini et al. 2004; Momany et al. 2004). In recent years, Local Group dwarf galaxies have acquired an increasing importance since they are believed to constitute the relic “build- 2. Sgr dSph and Terzan 7 ing blocks” out of which major galaxies should have formed. In particular, the discovery of We are conducting a study on the chemical Sgr dSph (Ibataet al. 1995), and the subse- abundances in Sgr dSph and in the associated quent detection of its tidal debris in the Halo globular cluster Terzan 7, by analyzing high (see e.g.
    [Show full text]