BMC Emergency Medicine Clinical Practice Guidelines Algorithm

Total Page:16

File Type:pdf, Size:1020Kb

BMC Emergency Medicine Clinical Practice Guidelines Algorithm IN THE EVENT OF AN EXPOSURE YOU MUST TAKE THIS PACKET WITH YOU TO THE EMERGENCY DEPARTMENT ATTENTION PHYSICIANS! You must read the following information! SERIOUS RISK OF HERPES B-VIRUS EXPOSURE NOT HEPATITIS B VIRUS You must read the following information! Cheryl S. Barbanel, MD, MBA, MPH, FACOEM Director, Occupational Health Programs at Boston University Revised 4/17/07 2 This document (web page or PDF file) is the current guidelines for managing B virus exposure. These recommendations are reflected in the documents in this packet. Web Page: Recommendations for Prevention of and Therapy for Exposure to B Virus PDF File: CID Reference.pdf Table of Contents Page Macaque Monkeys: Description & Photos ............................................................ 3 BMC Emergency Medicine Clinical Practice Guidelines Algorithm .................... 5 Initial Management by Healthcare Provider (Overview) ....................................... 6 Instructions for Clinic and Emergency Department Staff .................................... 8 Evaluation of Post Exposure Prophylaxis for B Virus Exposure ........................ 9 Treatment of B Virus Infection ...............................................................................11 Occupational Health Follow-up Clinic Visits.........................................................12 Report of Injury Involving a Nonhuman Primate Body Fluids .............................14 Macaque Monkey Program: Possible Infectious Agents & Their Control ..........18 Rules To Prevent B Virus Infection in Primate Handlers .....................................19 Infectious Hazards from Nonhuman Primates Table............................................21 B Virus Exposure Mini Protocol .............................................................................22 B Virus Sample Collection & Handling ..................................................................24 B Virus Submission Form.......................................................................................26 Employee Bite and Scratch Log.............................................................................27 Boston Public Health Reporting Requirements....................................................30 3 Macaque Monkeys Macaques live in many different habitats across the globe, making them the most widely distributed genus of nonhuman primates. Macaques (especially Macaca mulatta and M. fascicularis) are commonly used in research—most recently in AIDS research. Their coloration includes gray, brown or black fur. They tend to be heavily built and medium to large in stature. Males and females may differ in weight, body size and canine size. (from Nonhuman Primates in Biomedical Research: Biology and Management pp 41) Macaques are native to Asia and Northern Africa, but thousands are housed in research facilities, zoos, wildlife or amusement parks, and are kept as pets in private homes throughout the world. Pictures of Macaque Monkeys (alphabetical order) Barbary Macaque Assamese macaque Assamese macaque Barbary Macaque ( Barbary "ape" or (Macaca assamensis) (Macaca assamensis) (Macaca sylvanus) Barbary Macaque ) Celebes "ape", Sulawesi Booted or Sulawesi- Bonnet Macaque Bonnet Macaque Black "ape", or Sulawesi- Booted Macaque (Macaca radiata) (Macaca radiata) Crested Macaque (Macaca ochreata) (Macaca Nigra) 4 Formosan Rock Macaque Japanese Snow Macaque Japanese Macaque Japanese Macaque or Taiwan Macaque (Macaca Fuscata) (Macaca Fuscata) (Macaca Fuscata) (Macaca cyclopis) Cynomolgus monkey, Crab- Eating Macaque, Long- Lion-tailed Macaque Pigtailed Macaque Rhesus Macaque Tailed Macaque, or Java (Macaca silenus) (Macaca nemestrina) (Macaca mulatta) Macaque (Macaca fascicularis) Tibetan Macaque Tonkean Macaque Tonkean Macaque Toque Macaque (Macaca thibetana) (Macaca tonkeana) (Macaca tonkeana) (Macaca sinica) 5 SIMIAN HERPES B VIRUS (Cercopithecine herpes virus 1) BMC Emergency Medicine • Endemic in Macaque Monkeys (rhesus. Pig-tailed, bonnet, cynomolgus) Clinical Practice Guideline ALL MACAQUES MUST BE ASSUMED TO BE VIRUS + • 70% case fatality rate when transmitted to humans • Transmitted through open skin and mucocutaneous exposures (bites, SIMIAN HERPES B scratches, needlesticks, splashes over mucus membranes, open skin) • Biomedical lab workers, animal handlers at risk (live monkeys, monkey VIRUS EXPOSURE tissue cultures, body fluid exposures – blood, secretions, excretions) This guideline is to be used to assist in clinical efficiency, but is • 2days – 5weeks incubation period, but latent presentations occur not a substitute for clinical • Disease In Humans: Early-Skin vesicular eruptions, ulcerations; regional judgment nodes; Late – Fever, malaise, diffuse pain, HA, abd pain, n/v, parasthesias, encephalitis, paralysis, death • Exposures include macaque bites, macaque scratches, or contact with ocular, oral, or PRIMATE EXPOSURE genital secretions, nervous system tissue, or material contaminated by macaques. - POSSIBLE SIMIAN HERPES B VIRUS EXPOSURE REFER TO OCCUPATIONAL & ENVIRONMENTAL YES MEDICINE Monday – Friday Non-Holiday TO BE INTERVIEWED 7:30 am – 4:00 pm BPHC Lab reporting regulations applies to B IMMEDIATELY Virus. Report exposures, illnesses, or BMC OEM absenteeism to Occupational Health Officer 732 HARRISON AVE at (617) 353-6630 or (617) 780-5519 (cell) or BOSTON, MA 02118 (617) 638-8400 Herpes B Virus Prophylaxis OEM. Complete the BPHC Research Recommended Laboratory Reporting Form found at: 1. Skin exposure or mucosal exposure (with http://www.bphc.org/bphc/pdfs/LabReportCa or without injury, i.e. eye) to a high-risk rd.pdf source NO 2. Inadequately cleaned skin exposure or mucosal exposure 1. Wound care – cleanse & 3. Laceration of head, neck, or torso. irrigate with detergent for 15 Refer to Boston Medical 4. Deep puncture bite Center 5. Needlestick associated with tissue or minutes; debride only if necessary. fluid from the nervous system, lesions 2. Eye flush/irrigation for 15 min. EMERGENCY suspicious for B virus, eyelids, or mucosa 3. Valacyclovir, 1 g po q8h for 14 DEPARTMENT 6. Puncture or laceration after exposure to days* MENINO PAVILION objects (a) contaminated either fluid from 4. Culture – debrided tissue monkey oral or genital lesions or with should be placed in viral transport (617) 414-7759 nervous system tissues, or (b) known to media and sent for B-virus cx; contain B virus. Patients Must Be Evaluated swab wound for viral cx as well. 7. A post cleaning culture is positive for B at 5. Start Abx – Augmentin or virus OCCUPATIONAL & Keflex for bites. ENVIRONMENTAL 6. Td as indicated (booster if bite MEDICINE and Td > 5 yrs ago) Next Business Day 7. Acute serum collection (aliquot and preserve at –20ºC or lower and Herpes B Virus Prophylaxis Considered 732 Harrison Avenue 1. Mucosal splash that has been adequately send to micro lab, complete forms Boston, MA 02118 cleaned for B virus lab. (617) 638-8400 2. Laceration (with loss of skin integrity) 8. Provide patient information in that has been adequately cleaned first aid packet and schedule OEM ANY PATIENT 3. Needlestick involving blood from an ill or follow-up appointment. PRESENTING WITH immunocomprimised macaque Puncture or laceration occurring after SYMPTOMS OF B VIRUS exposure to (a) objects contaminated with SHOULD BE ADMITTED body fluid (other than that from a lesion), or FOR IV GANCICLOVIR (b) potentially infected cell culture CONSULT ID SERVICE Herpes B Prophylaxis Not Recommended EMERGENCY CONSULTATION 1. Skin exposure in which the skin remains If an exposed person exhibits any of these intact symptoms please contact Julia Hilliard, Ph.D. at 2. Exposure associated with non-macaque the National B Virus Resource Center at species of nonhuman primates 404.651.0808 http://www.gsu.edu/bvirus *Valacyclovir substitute: Acyclovir, 800 mg po 5 times per day for 14 days if pregnant 6 INITIAL MANAGEMENT OF B VIRUS EXPOSURE BY HEALTHCARE PROVIDER: Obtain current contact information for patient including cell phone or other phone contact. First Aid Employee performs first aid as within 5 minutes of injury as defined below which is repeated by clinician. Mucous membrane exposure Flush eye or mucous membranes with sterile saline solution or water for 15 min. Skin exposure Wash skin thoroughly with a solution containing detergent soap (e.g., chlorhexidine or povidone-iodine) for 15 min Initial Evaluation Human Assess the adequacy of cleansing (length of time of cleaning and agent used); the health care provider should repeat cleansing as above regardless of history of cleaning Determine the date, time, location, and description of the injury, and the type of fluid or tissue contacted, safety procedures and PPE used Evaluate general health (including medications) and determine when the last tetanus booster was received Determine the need for post-exposure prophylaxis with antibiotics or rabies vaccine and immunoglobulin (Rabies are not usually an issue with NHP that are not in quarantine) Nonhuman primate Identify the monkey associated with the exposure, the species of that monkey, and the responsible veterinarian should be contacted regarding the health status of the monkey involved Assess general health (including medications and involvement in past and present research studies) 7 Evaluate prior serologic history (including infection with B virus or simian immunodeficiency virus) Examination and Laboratory Testing Human Physical examination, especially evaluation of the site of the exposure and neurologic examination Examine the area that has been
Recommended publications
  • Rhesus Macaque Sequencing
    White Paper for Complete Sequencing of the Rhesus Macaque (Macaca mulatta) Genome Jeffrey Rogers1, Michael Katze 2, Roger Bumgarner2, Richard A. Gibbs 3 and George M. Weinstock3 I. Introduction Humans are members of the Order Primates and our closest evolutionary relatives are other primate species. This makes primate models of human disease particularly important, as the underlying physiology and metabolism, as well as genomic structure, are more similar to humans than are other mammals. Chimpanzees (Pan troglodytes) are the animals most similar to humans in overall DNA sequence, with interspecies sequence differences of approximately 1- 1.5% (Stewart and Disotell 1998, Page and Goodman 2001). The other apes, including gorillas and orangutans are nearly as similar to humans. The animals next most closely related to humans are Old World monkeys, superfamily Cercopithecoidea. This group includes the common laboratory species of rhesus macaque (Macaca mulatta), baboon (Papio hamadryas), pig-tailed macaque (Macaca nemestrina) and African green monkey (Chlorocebus aethiops). The human evolutionary lineage separated from the ancestors of chimpanzees about 6-7 million years ago (MYA), while the human/ape lineage diverged from Old World monkeys about 25 MYA (Stewart and Disotell 1998), and from another important primate group, the New World monkeys, more than 35-40 MYA. In comparison, humans diverged from mice and other non- primate mammals about 65-85 MYA (Kumar and Hedges 1998, Eizirik et al 2001). In the evaluation of primate candidates for genome sequencing there should be more to selection of an organism than evolutionary considerations. The chimpanzee’s status as Closest Relative To Human has earned it an exemption from this consideration.
    [Show full text]
  • Urban Ecology of the Vervet Monkey Chlorocebus Pygerythrus in Kwazulu-Natal, South Africa ______
    Urban Ecology of the Vervet Monkey Chlorocebus pygerythrus in KwaZulu-Natal, South Africa __________________________________ Lindsay L Patterson A thesis presented in fulfilment of the academic requirements for the degree of Doctorate of Philosophy in Ecological Sciences At the University of KwaZulu-Natal, Pietermaritzburg, South Africa August 2017 ABSTRACT The spread of development globally is extensively modifying habitats and often results in competition for space and resources between humans and wildlife. For the last few decades a central goal of urban ecology research has been to deepen our understanding of how wildlife communities respond to urbanisation. In the KwaZulu-Natal Province of South Africa, urban and rural transformation has reduced and fragmented natural foraging grounds for vervet monkeys Chlorocebus pygerythrus. However, no data on vervet urban landscape use exist. They are regarded as successful urban exploiters, yet little data have been obtained prior to support this. This research investigated aspects of the urban ecology of vervet monkeys in three municipalities of KwaZulu-Natal (KZN), as well as factors that may predict human-monkey conflict. Firstly, through conducting an urban wildlife survey, we were able to assess residents’ attitudes towards, observations of and conflict with vervet monkeys, investigating the potential drivers of intragroup variation in spatial ecology, and identifying predators of birds’ nests. We analysed 602 surveys submitted online and, using ordinal regression models, we ascertained that respondents’ attitudes towards vervets were most influenced by whether or not they had had aggressive interactions with them, by the belief that vervet monkeys pose a health risk and by the presence of bird nests, refuse bins and house raiding on their properties.
    [Show full text]
  • The Taxonomy of Primates in the Laboratory Context
    P0800261_01 7/14/05 8:00 AM Page 3 C HAPTER 1 The Taxonomy of Primates T HE T in the Laboratory Context AXONOMY OF P Colin Groves RIMATES School of Archaeology and Anthropology, Australian National University, Canberra, ACT 0200, Australia 3 What are species? D Taxonomy: EFINITION OF THE The biological Organizing nature species concept Taxonomy means classifying organisms. It is nowadays commonly used as a synonym for systematics, though Disagreement as to what precisely constitutes a species P strictly speaking systematics is a much broader sphere is to be expected, given that the concept serves so many RIMATE of interest – interrelationships, and biodiversity. At the functions (Vane-Wright, 1992). We may be interested basis of taxonomy lies that much-debated concept, the in classification as such, or in the evolutionary implica- species. tions of species; in the theory of species, or in simply M ODEL Because there is so much misunderstanding about how to recognize them; or in their reproductive, phys- what a species is, it is necessary to give some space to iological, or husbandry status. discussion of the concept. The importance of what we Most non-specialists probably have some vague mean by the word “species” goes way beyond taxonomy idea that species are defined by not interbreeding with as such: it affects such diverse fields as genetics, biogeog- each other; usually, that hybrids between different species raphy, population biology, ecology, ethology, and bio- are sterile, or that they are incapable of hybridizing at diversity; in an era in which threats to the natural all. Such an impression ultimately derives from the def- world and its biodiversity are accelerating, it affects inition by Mayr (1940), whereby species are “groups of conservation strategies (Rojas, 1992).
    [Show full text]
  • The Behavioral Ecology of the Tibetan Macaque
    Fascinating Life Sciences Jin-Hua Li · Lixing Sun Peter M. Kappeler Editors The Behavioral Ecology of the Tibetan Macaque Fascinating Life Sciences This interdisciplinary series brings together the most essential and captivating topics in the life sciences. They range from the plant sciences to zoology, from the microbiome to macrobiome, and from basic biology to biotechnology. The series not only highlights fascinating research; it also discusses major challenges associ- ated with the life sciences and related disciplines and outlines future research directions. Individual volumes provide in-depth information, are richly illustrated with photographs, illustrations, and maps, and feature suggestions for further reading or glossaries where appropriate. Interested researchers in all areas of the life sciences, as well as biology enthu- siasts, will find the series’ interdisciplinary focus and highly readable volumes especially appealing. More information about this series at http://www.springer.com/series/15408 Jin-Hua Li • Lixing Sun • Peter M. Kappeler Editors The Behavioral Ecology of the Tibetan Macaque Editors Jin-Hua Li Lixing Sun School of Resources Department of Biological Sciences, Primate and Environmental Engineering Behavior and Ecology Program Anhui University Central Washington University Hefei, Anhui, China Ellensburg, WA, USA International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology Anhui, China School of Life Sciences Hefei Normal University Hefei, Anhui, China Peter M. Kappeler Behavioral Ecology and Sociobiology Unit, German Primate Center Leibniz Institute for Primate Research Göttingen, Germany Department of Anthropology/Sociobiology University of Göttingen Göttingen, Germany ISSN 2509-6745 ISSN 2509-6753 (electronic) Fascinating Life Sciences ISBN 978-3-030-27919-6 ISBN 978-3-030-27920-2 (eBook) https://doi.org/10.1007/978-3-030-27920-2 This book is an open access publication.
    [Show full text]
  • Enrichment for Nonhuman Primates, 2005
    A six-booklet series on providing appropriate enrichment for baboons, capuchins, chimpanzees, macaques, marmosets and tamarins, and squirrel monkeys. Contents ...... Introduction Page 4 Baboons Page 6 Background Social World Physical World Special Cases Problem Behaviors Safety Issues References Common Names of the Baboon Capuchins Page 17 Background Social World Physical World Special Cases Problem Behaviors Safety Issues Resources Common Names of Capuchins Chimpanzees Page 28 Background Social World Physical World Special Cases Problem Behaviors Safety Issues Resources Common Names of Chimpanzees contents continued on next page ... Contents Contents continued… ...... Macaques Page 43 Background Social World Physical World Special Cases Problem Behaviors Safety Issues Resources Common Names of the Macaques Sample Pair Housing SOP -- Macaques Marmosets and Tamarins Page 58 Background Social World Physical World Special Cases Safety Issues References Common Names of the Callitrichids Squirrel Monkeys Page 73 Background Social World Physical World Special Cases Problem Behaviors Safety Issues References Common Names of Squirrel Monkeys ..................................................................................................................... For more information, contact OLAW at NIH, tel (301) 496-7163, e-mail [email protected]. NIH Publication Numbers: 05-5745 Baboons 05-5746 Capuchins 05-5748 Chimpanzees 05-5744 Macaques 05-5747 Marmosets and Tamarins 05-5749 Squirrel Monkeys Contents Introduction ...... Nonhuman primates maintained in captivity have a valuable role in education and research. They are also occasionally used in entertainment. The scope of these activities can range from large, accredited zoos to small “roadside” exhib- its; from national primate research centers to small academic institutions with only a few monkeys; and from movie sets to street performers. Attached to these uses of primates comes an ethical responsibility to provide the animals with an environment that promotes their physical and behavioral health and well-be- ing.
    [Show full text]
  • Sex-Specific Variation of Social Play in Wild Immature Tibetan Macaques
    animals Article Sex-Specific Variation of Social Play in Wild Immature Tibetan Macaques, Macaca thibetana Tong Wang 1,2, Xi Wang 2,3, Paul A. Garber 4,5, Bing-Hua Sun 2,3, Lixing Sun 6, Dong-Po Xia 1,2,* and Jin-Hua Li 2,3,* 1 School of Life Sciences, Anhui University, Hefei 230601, China; [email protected] 2 International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Hefei 230601, China; [email protected] (X.W.); [email protected] (B.-H.S.) 3 School of Resource and Environmental Engineering, Anhui University, Hefei 230601, China 4 Department of Anthropology and Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL 61801, USA; [email protected] 5 International Centre of Biodiversity and Primate Conservation, Dali University, Dali 671000, China 6 Department of Biology, Central Washington University, Ellensburg, WA 98926, USA; [email protected] * Correspondence: [email protected] (D.-P.X.); [email protected] (J.-H.L.); Tel.: +86-551-63861723 (D.-P.X. & J.-H.L.) Simple Summary: Social play among immature individuals has been well-documented across a wide range of mammalian species. It represents a substantial part of the daily behavioral repertoire during immature periods, and it is essential for acquiring an appropriate set of motor, cognitive, and social skills. In this study, we found that infant Tibetan macaques (Macaca thibetana) exhibited similar patterns of social play between males and females, juvenile males engaged more aggressive play than juvenile females, and juvenile females engaged more affiliative play than juvenile males.
    [Show full text]
  • The Japan Monkey Centre Primates Brain Imaging Repository for Comparative Neuroscience: an Archive of Digital Records Including Records for Endangered Species
    Primates (2018) 59:553–570 https://doi.org/10.1007/s10329-018-0694-3 ORIGINAL ARTICLE The Japan Monkey Centre Primates Brain Imaging Repository for comparative neuroscience: an archive of digital records including records for endangered species Tomoko Sakai1,2,3,4 · Junichi Hata2,3,5 · Hiroki Ohta3 · Yuta Shintaku6,7 · Naoto Kimura7 · Yuki Ogawa3 · Kazumi Sogabe8 · Susumu Mori1,9 · Hirotaka James Okano3 · Yuzuru Hamada10 · Shinsuke Shibata2 · Hideyuki Okano2,5 · Kenichi Oishi1 Received: 26 February 2018 / Accepted: 9 October 2018 / Published online: 24 October 2018 © The Author(s) 2018 Abstract Advances in magnetic resonance imaging (MRI) and computational analysis technology have enabled comparisons among various primate brains in a three-dimensional electronic format. Results from comparative studies provide information about common features across primates and species-specifc features of neuroanatomy. Investigation of various species of non- human primates is important for understanding such features, but the majority of comparative MRI studies have been based on experimental primates, such as common marmoset, macaques, and chimpanzee. A major obstacle has been the lack of a database that includes non-experimental primates’ brain MRIs. To facilitate scientifc discoveries in the feld of comparative neuroanatomy and brain evolution, we launched a collaborative project to develop an open-resource repository of non-human primate brain images obtained using ex vivo MRI. As an initial open resource, here we release a collection of structural MRI and difusion tensor images obtained from 12 species: pygmy marmoset, owl monkey, white-fronted capuchin, crab-eating macaque, Japanese macaque, bonnet macaque, toque macaque, Sykes’ monkey, red-tailed monkey, Schmidt’s guenon, de Brazza’s guenon, and lar gibbon.
    [Show full text]
  • Ranging Bonnet Macaques, Macaca Radiata
    Flexibility in Food Extraction Techniques in Urban Free- Ranging Bonnet Macaques, Macaca radiata Madhur Mangalam1, Mewa Singh1,2* 1 Biopsychology Laboratory, University of Mysore, Mysore, India, 2 Evolutionary & Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India Abstract Non-human primate populations, other than responding appropriately to naturally occurring challenges, also need to cope with anthropogenic factors such as environmental pollution, resource depletion, and habitat destruction. Populations and individuals are likely to show considerable variations in food extraction abilities, with some populations and individuals more efficient than others at exploiting a set of resources. In this study, we examined among urban free-ranging bonnet macaques, Macaca radiata (a) local differences in food extraction abilities, (b) between-individual variation and within-individual consistency in problem-solving success and the underlying problem-solving characteristics, and (c) behavioral patterns associated with higher efficiency in food extraction. When presented with novel food extraction tasks, the urban macaques having more frequent exposure to novel physical objects in their surroundings, extracted food material from PET bottles and also solved another food extraction task (i.e., extracting an orange from a wire mesh box), more often than those living under more natural conditions. Adults solved the tasks more frequently than juveniles, and females more frequently than males. Both solution-technique and problem-solving characteristics varied across individuals but remained consistent within each individual across the successive presentations of PET bottles. The macaques that solved the tasks showed lesser within-individual variation in their food extraction behavior as compared to those that failed to solve the tasks.
    [Show full text]
  • Assessing the Reliability of an Automated Method for Measuring Dominance Hierarchy in Nonhuman Primates
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.23.389908; this version posted November 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title: Assessing the reliability of an automated method for measuring dominance hierarchy in 2 nonhuman primates 3 Sébastien Ballestaa,b*, Baptiste Sadoughib,c,d, Fabia Missb,e, Jamie Whitehousea,b , Géraud 4 Aguenounona,b and Hélène Meuniera,b 5 a. Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, Strasbourg, France 6 b. Centre de Primatologie de l’Université de Strasbourg, Niederhausbergen, France, 7 c. Department of Life Sciences, University of Roehampton, London, United Kingdom 8 d. Oniris – Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, 9 Nantes, France 10 e. Department of Anthropology, University of Zurich, Switzerland 11 12 Abstract 13 Among animals’ societies, dominance is an important social factor that influences inter-individual 14 relationships. However, assessing dominance hierarchy can be a time-consuming activity which 15 is potentially impeded by environmental factors, difficulties in the recognition of animals, or 16 through the disturbance of animals during data collection. Here we took advantage of novel 17 devices, Machines for Automated Learning and Testing (MALT), designed primarily to study 18 nonhuman primates’ cognition - to additionally measure the social structure of a primate group. 19 When working on a MALT, an animal can be replaced by another; which could reflect an 20 asymmetric dominance relationship (or could happen by chance). To assess the reliability of our 21 automated method, we analysed a sample of the automated conflicts with video scoring and found 22 that 75% of these replacements include genuine forms of social displacements.
    [Show full text]
  • Laboratory Primate Newsletter
    LABORATORY PRIMATE NEWSLETTER Vol. 45, No. 3 July 2006 JUDITH E. SCHRIER, EDITOR JAMES S. HARPER, GORDON J. HANKINSON AND LARRY HULSEBOS, ASSOCIATE EDITORS MORRIS L. POVAR, CONSULTING EDITOR ELVA MATHIESEN, ASSISTANT EDITOR ALLAN M. SCHRIER, FOUNDING EDITOR, 1962-1987 Published Quarterly by the Schrier Research Laboratory Psychology Department, Brown University Providence, Rhode Island ISSN 0023-6861 POLICY STATEMENT The Laboratory Primate Newsletter provides a central source of information about nonhuman primates and re- lated matters to scientists who use these animals in their research and those whose work supports such research. The Newsletter (1) provides information on care and breeding of nonhuman primates for laboratory research, (2) dis- seminates general information and news about the world of primate research (such as announcements of meetings, research projects, sources of information, nomenclature changes), (3) helps meet the special research needs of indi- vidual investigators by publishing requests for research material or for information related to specific research prob- lems, and (4) serves the cause of conservation of nonhuman primates by publishing information on that topic. As a rule, research articles or summaries accepted for the Newsletter have some practical implications or provide general information likely to be of interest to investigators in a variety of areas of primate research. However, special con- sideration will be given to articles containing data on primates not conveniently publishable elsewhere. General descriptions of current research projects on primates will also be welcome. The Newsletter appears quarterly and is intended primarily for persons doing research with nonhuman primates. Back issues may be purchased for $5.00 each.
    [Show full text]
  • Macaques ( Macaca Leonina ): Impact on Their Seed Dispersal Effectiveness and Ecological Contribution in a Tropical Rainforest at Khao Yai National Park, Thailand
    Faculté des Sciences Département de Biologie, Ecologie et Environnement Unité de Biologie du Comportement, Ethologie et Psychologie Animale Feeding and ranging behavior of northern pigtailed macaques ( Macaca leonina ): impact on their seed dispersal effectiveness and ecological contribution in a tropical rainforest at Khao Yai National Park, Thailand ~ ~ ~ Régime alimentaire et déplacements des macaques à queue de cochon ( Macaca leonina ) : impact sur leur efficacité dans la dispersion des graines et sur leur contribution écologique dans une forêt tropicale du parc national de Khao Yai, Thaïlande Année académique 2011-2012 Dissertation présentée par Aurélie Albert en vue de l’obtention du grade de Docteur en Sciences Faculté des Sciences Département de Biologie, Ecologie et Environnement Unité de Biologie du Comportement, Ethologie et Psychologie Animale Feeding and ranging behavior of northern pigtailed macaques ( Macaca leonina ): impact on their seed dispersal effectiveness and ecological contribution in a tropical rainforest at Khao Yai National Park, Thailand ~ ~ ~ Régime alimentaire et déplacements des macaques à queue de cochon ( Macaca leonina ) : impact sur leur efficacité dans la dispersion des graines et sur leur contribution écologique dans une forêt tropicale du parc national de Khao Yai, Thaïlande Année académique 2011-2012 Dissertation présentée par Aurélie Albert en vue de l’obtention du grade de Docteur en Sciences Promotrice : Marie-Claude Huynen (ULg, Belgique) Comité de thèse : Tommaso Savini (KMUTT, Thaïlande) Alain Hambuckers (ULg, Belgique) Pascal Poncin (ULg, Belgique) Président du jury : Jean-Marie Bouquegneau (ULg, Belgique) Membres du jury : Pierre-Michel Forget (MNHN, France) Régine Vercauteren Drubbel (ULB, Belgique) Roseline C. Beudels-Jamar (IRSN, Belgique) Copyright © 2012, Aurélie Albert Toute reproduction du présent document, par quelque procédé que ce soit, ne peut être réalisée qu’avec l’autorisation de l’auteur et du/des promoteur(s).
    [Show full text]
  • High-Ranking Geladas Protect and Comfort Others After Conflicts
    www.nature.com/scientificreports OPEN High-Ranking Geladas Protect and Comfort Others After Conficts Elisabetta Palagi1, Alessia Leone1, Elisa Demuru1 & Pier Francesco Ferrari2 Post-confict afliation is a mechanism favored by natural selection to manage conficts in animal Received: 2 January 2018 groups thus avoiding group disruption. Triadic afliation towards the victim can reduce the likelihood Accepted: 30 August 2018 of redirection (benefts to third-parties) and protect and provide comfort to the victim by reducing its Published: xx xx xxxx post-confict anxiety (benefts to victims). Here, we test specifc hypotheses on the potential functions of triadic afliation in Theropithecus gelada, a primate species living in complex multi-level societies. Our results show that higher-ranking geladas provided more spontaneous triadic afliation than lower- ranking subjects and that these contacts signifcantly reduced the likelihood of further aggression on the victim. Spontaneous triadic afliation signifcantly reduced the victim’s anxiety (measured by scratching), although it was not biased towards kin or friends. In conclusion, triadic afliation in geladas seems to be a strategy available to high-ranking subjects to reduce the social tension generated by a confict. Although this interpretation is the most parsimonious one, it cannot be totally excluded that third parties could also be afected by the negative emotional state of the victim thus increasing a third party’s motivation to provide comfort. Therefore, the debate on the linkage between third-party afliation and emotional contagion in monkeys remains to be resolved. Conficts in social animals can have various immediate and long-term outcomes. Immediately following a con- fict, opponents may show a wide range of responses, from tolerance and avoidance of open confict, to aggres- sion1.
    [Show full text]