Whispering Gallery Microsensors: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Book of Abstracts
Book of Abstracts 3 Foreword The 23 rd International Conference on Atomic Physics takes place in Ecole Polytechnique, a high level graduate school close to Paris. Following the tradition of ICAP, the conference presents an outstanding programme of invited VSHDNHUVFRYHULQJWKHPRVWUHFHQWVXEMHFWVLQWKH¿HOGRIDWRPLFSK\VLFVVXFKDV Ultracold gases and Bose Einstein condensates, Ultracold Fermi gases, Fundamental atomic tests and measurements, Precision measurements, atomic clocks and interferometers, Quantum information and simulations with atoms and ions, Quantum optics and cavity QED with atoms, Atoms and molecules in optical lattices, From two-body to many-body systems, Ultrafast phenomena and free electron lasers, Beyond atomic physics (biophysics, optomechanics...). The program includes 31 invited talks and 13 ‘hot topic’ talks. This book of abstracts gathers the contributions of these talks and of all posters, organized in three sessions. The proceedings of the conference will be published online in open access by the “European 3K\VLFDO-RXUQDO:HERI&RQIHUHQFHV´KWWSZZZHSMFRQIHUHQFHVRUJ On behalf of the committees, we would like to welcome you in Palaiseau, and to wish you an excit- ing conference. 4 Committees Programme committee Alain Aspect France Michèle Leduc France Hans Bachor Australia Maciej Lewenstein Spain Vanderlei Bagnato Brazil Anne L’Huillier Sweden Victor Balykin Russia Luis Orozco USA Rainer Blatt Austria Jian-Wei Pan China Denise Caldwell USA Hélène Perrin France Gordon Drake Canada Monika Ritsch-Marte Austria Wolfgang Ertmer Germany Sandro Stringari Italy Peter Hannaford Australia Regina de Vivie-Riedle Germany Philippe Grangier France Vladan Vuletic USA Massimo Inguscio Italy Ian Walmsley UK Hidetoshi Katori Japan Jun Ye USA Local organizing committee Philippe Grangier (co-chair) Institut d’Optique - CNRS Michèle Leduc (co-chair) ENS - CNRS Hélène Perrin (co-chair) U. -
Nanolaser Arrays
Nanophotonics 2021; 10(1): 149–169 Review Suruj S. Deka*, Sizhu Jiang, Si Hui Pan and Yeshaiahu Fainman Nanolaser arrays: toward application-driven dense integration https://doi.org/10.1515/nanoph-2020-0372 1 Introduction Received July 4, 2020; accepted September 8, 2020; published online September 29, 2020 In the quest for attaining Moore’s law-type scaling for Abstract: The past two decades have seen widespread photonics, miniaturization of components for dense efforts being directed toward the development of nano- integration is imperative [1]. One of these essential scale lasers. A plethora of studies on single such emitters nanophotonic components for future photonic inte- have helped demonstrate their advantageous character- grated circuits (PICs) is a chip-scale light source. To istics such as ultrasmall footprints, low power consump- this end, the better part of the past two decades has tion, and room-temperature operation. Leveraging seen the development of nanoscale lasers that offer knowledge about single nanolasers, the next phase of salient advantages for dense integration such as ultra- nanolaser technology will be geared toward scaling up compact footprints, low thresholds, and room- design to form arrays for important applications. In this temperature operation [2–4]. These nanolasers have review, we discuss recent progress on the development of been demonstrated based on a myriad of cavity designs such array architectures of nanolasers. We focus on and physical mechanisms some of which include pho- valuable attributes and phenomena realized due to tonic crystal nanolasers [5–8], metallo-dielectric nano- unique array designs that may help enable real-world, lasers [9–15], coaxial-metal nanolasers [16, 17], and practical applications. -
Integrated Photonics on Thin-Film Lithium Niobate
Integrated photonics on thin-film lithium niobate DI ZHU,1,* LINBO SHAO,1 MENGJIE YU,1 REBECCA CHENG,1 BORIS DESIATOV,1 C. J. XIN,1 YAOWEN HU,1 JEFFREY HOLZGRAFE,1 SOUMYA GHOSH,1 AMIRHASSAN SHAMS-ANSARI,1 ERIC PUMA,1 NEIL SINCLAIR,1,2 CHRISTIAN REIMER,3 MIAN ZHANG,3 AND MARKO LONČAR1,* 1John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, USA 2Division of Physics, Mathematics and Astronomy, and Alliance for Quantum Technologies (AQT), California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA 3HyperLight Corporation, 501 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA [email protected], [email protected] Lithium niobate (LN), an outstanding and versatile material, has influenced our daily life for decades: from enabling high-speed optical communications that form the backbone of the Internet to realizing radio-frequency filtering used in our cell phones. This half-century-old material is currently embracing a revolution in thin-film LN integrated photonics. The success of manufacturing wafer-scale, high-quality, thin films of LN on insulator (LNOI), accompanied with breakthroughs in nanofabrication techniques, have made high-performance integrated nanophotonic components possible. With rapid development in the past few years, some of these thin-film LN devices, such as optical modulators and nonlinear wavelength converters, have already outperformed their legacy counterparts realized in bulk LN crystals. Furthermore, the nanophotonic integration enabled ultra-low-loss resonators in LN, which unlocked many novel applications such as optical frequency combs and quantum transducers. In this Review, we cover—from basic principles to the state of the art—the diverse aspects of integrated thin- film LN photonics, including the materials, basic passive components, and various active devices based on electro-optics, all-optical nonlinearities, and acousto-optics. -
Crystalline Whispering Gallery Mode Resonators in Optics and Photonics
3 Crystalline Whispering Gallery Mode Resonators in Optics and Photonics Lute Maleki, Vladimir S. Ilchenko, Anatoliy A. Savchenkov, and Andrey B. Matsko OEwaves Inc. Contents 3.1 Introduction ........................................................................................................................134 3.2 Fabrication Technique ....................................................................................................... 135 3.3 Coupling Techniques ......................................................................................................... 137 3.3.1 Critical Coupling .................................................................................................... 137 3.3.2 Prism ........................................................................................................................ 139 3.3.3 Angle-Cut Fiber ...................................................................................................... 142 3.3.4 Fiber Taper .............................................................................................................. 142 3.3.5 Planar Coupling ..................................................................................................... 143 3.4 Modal Structure and Spectrum Engineering ................................................................ 144 3.4.1 The Spectrum and the Shape of the Resonator ................................................. 145 3.4.2 White Light Resonators ........................................................................................ -
Physics and Applications of Photonic Crystal Nanocavities
PHYSICS AND APPLICATIONS OF PHOTONIC CRYSTAL NANOCAVITIES A DISSERTATION SUBMITTED TO THE DEPARTMENT OF APPLIED PHYSICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Hatice Altug December 2006 © Copyright by Hatice Altug 2007 All Rights Reserved 2 I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and quality, as dissertation for the degree of Doctor of Philosophy. __________________________________ (Jelena Vuckovic) Principal Advisor I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and quality, as dissertation for the degree of Doctor of Philosophy. __________________________________ (Martin M. Fejer) Academic Advisor I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and quality, as dissertation for the degree of Doctor of Philosophy. __________________________________ (Shanhui Fan) Academic Advisor Approved for the University Committee on Graduate Studies __________________________________ 3 ABSTRACT The capability to confine and manipulate photons at nanometer scales opens up unprecedented opportunities in classical and quantum information processing technologies, and also in life sciences. There have been various demonstrations of sub-micron light confinement, but yet the most critical issue ahead is the development of new device concepts and technologies that will reliably operate at such length scales. In this thesis, we present our efforts along this direction. The large aggregated bandwidths of the optical interconnects require memory and delay components to launch, buffer, and collect optical signals at the nodes. -
Uncorrected Proof
Polymer 44 (2003) 4389–4403 www.elsevier.com/locate/polymer Feature Article Recent developments in the formation, characterization, and simulation of micron and nano-scale droplets of amorphous polymer blends and semi-crystalline polymers Bobby G. Sumptera,*, Donald W. Noida, Michael D. Barnesb aComputer Science and Mathematics Division, Oak Ridge National Laboratory, P.O. Box 2008, One Bethel Valley Road, Oak Ridge, TN 37831, USA bChemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Received 25 April 2003; received in revised form 13 May 2003; accepted 13 May 2003 Abstract Polymer micro- and nano-particles are fundamental to a number of modern technological applications, including polymer blends or alloys, biomaterials for drug delivery systems, electro-optic and luminescent devices, coatings, polymer powder impregnation of inorganic fibers in composites, and are also critical in polymer-supported heterogeneous catalysis. In this article, we review some of our recent progress in experimental and simulation methods for generating, characterizing, and modeling polymer micro- and nano-particles in a number of polymer and polymer blend systems. By using instrumentation developed for probing single fluorescent molecules in micron-sized liquid droplets, we have shown that polymer particles of nearly arbitrary size and composition can be made with a size dispersion that is ultimately limited by the chain length and number distribution within the droplets. Depending on the time scale for solvent evaporation—a tunable parameter in our experiments—phase separation of otherwise immiscible polymers can be avoided by confinement effects, producing homogeneous polymer blend micro- or nano-particles. These particles have tunable properties that can be controlled simply by adjusting the size of the particle, or the relative mass fractions of the polymer components in solution. -
Generalized Bose-Einstein Condensation in Driven-Dissipative Quantum Gases
Generalized Bose-Einstein Condensation in Driven-dissipative Quantum Gases Dissertation zur Erlangung des wissenschaftlichen Grades Doctor rerum naturalium vorgelegt von Daniel Christian Vorberg geboren am 21. Dezember 1987 in Dresden Institut für Theoretische Physik Fakultät Physik Technische Universität Dresden Max-Planck-Institut für Physik komplexer Systeme Dresden Eingereicht am 20. Oktober 2017 Verteidigt am 7. Februar 2018 Erster Gutachter: Prof. Dr. Roland Ketzmerick Zweiter Gutachter: Prof. Dr. Sebastian Diehl Dritter Gutachter: Dr. André Eckardt Für Kerstin, die mir Jakob schenkte. Abstract Bose-Einstein condensation is a collective quantum phenomenon where a macroscopic number of bosons occupies the lowest quantum state. For fixed temperature, bosons condense above a critical particle density. This phenomenon is a consequence of the Bose-Einstein distribution which dictates that excited states can host only a finite number of particles so that all remaining particles must form a condensate in the ground state. This reasoning applies to thermal equilibrium. We investigate the fate of Bose condensation in nonisolated systems of noninteracting Bose gases driven far away from equilibrium. An example of such a driven-dissipative scenario is a Floquet sys- tem coupled to a heat bath. In these time-periodically driven systems, the particles are distributed among the Floquet states, which are the solutions of the Schrödinger equation that are time pe- riodic up to a phase factor. The absence of the definition of a ground state in Floquet systems raises the question, whether Bose condensation survives far from equilibrium. We show that Bose condensation generalizes to an unambiguous selection of multiple states each acquiring a large occu- pation proportional to the total particle number. -
A Short Review of Plasmonic Graphene-Based Resonators: Recent Advances and Prospects
A Short Review of Plasmonic Graphene-Based Resonators: Recent Advances and Prospects Mohammad Bagher Heydari 1,*, Mohammad Hashem Vadjed Samiei 1 1 School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran *Corresponding author: [email protected] Abstract: This article aims to study graphene-based resonators published in the literature. Graphene resonators are designed based on graphene conductivity, a variable parameter that can be changed by either electrostatic or magnetostatic gating. A historical review of plasmonic graphene resonators is presented in this paper, which can give physical insight to the researchers to be familiarized with four types of graphene-based resonators: 1-Ring resonators, 2- planar, 3- Fabry-Perot, and 4-other resonators which are not categorized in any of the other three groups. Key-words: Graphene, Plasmonic, Ring resonator, Planar resonator, Fabry-Perot resonator 1. Introduction In recent years, plasmonics is a new emerging science, which exhibits novel features in the THz region [1, 2]. Both metals and two-dimensional (2D) materials can support surface plasmon polaritons (SPPs). In metals, SPPs often are excited in the visible and near-infrared regions [3, 4]. Graphene is a 2D sheet that offers fascinating properties. One of these properties is optical conductivity, which can be tuned by either electrostatic or magnetostatic gating or via chemical doping. This fascinating feature makes graphene a good candidate for designing innovative THz components such as waveguides [5-11], filters [12], couplers [13], Radar Cross-Section (RCS) reduction-based devices [14-16], and graphene-based medical components [17-23]. Moreover, the hybridization of graphene with anisotropic materials such as ferrites, which have many features [24, 25], can enhance the performance of the graphene-based devices [6]. -
Topological Phases in Ring Resonators: Recent Progress and Future Prospects Techniques to Their Limits
Nanophotonics 2020; 9(15): 4473–4487 Review Daniel Leykam* and Luqi Yuan* Topological phases in ring resonators: recent progress and future prospects https://doi.org/10.1515/nanoph-2020-0415 techniques to their limits. Continued progress will require Received July 23, 2020; accepted September 12, 2020; new approaches to minimize the detrimental influence of published online September 25, 2020 fabrication imperfections and disorder. Topological pho- tonics is a young subfield of photonics that seeks to Abstract: Topological photonics has emerged as a novel address this challenge using novel design approaches paradigm for the design of electromagnetic systems from inspired by exotic electronic condensed matter materials microwaves to nanophotonics. Studies to date have largely such as topological insulators [1, 2]. Loosely speaking, to- focused on the demonstration of fundamental concepts, pological systems provide a systematic way to create such as nonreciprocity and waveguiding protected against disorder-robust modes or observables using a collection of fabrication disorder. Moving forward, there is a pressing imperfect components or modes. For example, certain need to identify applications where topological designs classes of “topologically nontrivial” systems exhibit spe- can lead to useful improvements in device performance. cial edge modes that can propagate reliably without Here, we review applications of topological photonics to backscattering even in the presence of strongly scattering ring resonator–based systems, including one- and two- defects, forming the basis for superior optical waveguides. dimensional resonator arrays, and dynamically modulated One natural setting where this robustness can poten- resonators. We evaluate potential applications such as tially be useful is in the design of integrated photonic cir- quantum light generation, disorder-robust delay lines, and cuits [3], where strong light confinement brings sensitivity to optical isolation, as well as future research directions and nanometre-scale fabrication imperfections. -
Whispering Gallery Mode Microresonators: Fundamentals and Applications
RIVISTA DEL NUOVO CIMENTO Vol. 34, N. 7 2011 DOI 10.1393/ncr/i2011-10067-2 Whispering gallery mode microresonators: Fundamentals and applications G. C. Righini(1),Y.Dumeige(2),P.Feron´ (2), M. Ferrari(3), G. Nunzi Conti(1), D. Ristic(3)andS. Soria(1) (1) CNR, Istituto di Fisica Applicata “Nello Carrara”, MDF Lab 50019, Sesto Fiorentino, Italy (2) UMR Foton, ENSSAT - 22305 Lannion, France (3) CNR, Istituto di Fotonica e Nanotecnologie - 38123 Trento, Italy (ricevuto il 30 Marzo 2011) Summary. — Confinement of light into small volumes has become an essential requirement for photonic devices; examples of this trend are provided by optical fibers, integrated optical circuits, semiconductor lasers, and photonic crystals. Op- tical dielectric resonators supporting Whispering Gallery Modes (WGMs) represent another class of cavity devices with exceptional properties, like extremely small mode volume, very high power density, and very narrow spectral linewidth. WGMs are now known since more than 100 years, after the papers published by John William Strutt (Lord Rayleigh), but their importance as unique tools to study nonlinear optical phenomena or quantum electrodynamics, and for application to very low- threshold microlasers as well as very sensitive microsensors, has been recognized only in recent years. This paper presents a review of the field of WGM resonators, which exist in several geometrical structures like cylindrical optical fibers, microspheres, microfiber coils, microdisks, microtoroids, photonic crystal cavities, etc. up to the most exotic structures, such as bottle and bubble microresonators. For the sake of simplicity, the fundaments of WGM propagation and most of the applications will be described only with reference to the most common structure, i.e. -
Invited Talks
Invited Talks Ultracold gases… Invited Talk 33 Quantum simulations with ultracold bosons and fermions Wolfgang Ketterle 1 Research Laboratory for Electronics, MIT-Harvard Center for Ultracold Atoms, and Department of Physics, Massachusetts Institute of Technology, Cambridge, USA [email protected] I will summarize recent work at MIT on quantum simulations. A two-component systems of bosons in optical lattices can realize spin Hamiltonians. We present Bragg scattering of light as a detection method for magnetic phases, analogous to neutron scattering in condensed matter systems. A two-component Fermi gas with repulsive interactions, described by the so-called Stoner model, was predicted to undergo a phase transition to a ferromag- netic phase. We show that the phase transition is preempted by pair formation. Therefore, the Stoner model is an idealization not realized in Nature, since the paired state cannot be neglected. Ultracold gases… Invited Talk Anderson localization of ultra-cold atoms Alain Aspect Laboratoire Charles Fabry, Institut d’Optique/CNRS/Université Paris-Sud, Palaiseau, France [email protected] $QGHUVRQORFDOL]DWLRQLVDSKHQRPHQRQ¿UVWSURSRVHGLQWKHFRQWH[WRIFRQGHQVHGPDWWHUSK\VLFVEXWDOVRH[ - pected to exist in wave physics. It has been realized in recent years that ultra-cold atoms offer remarkable possibili- ties to observe experimentally Anderson localization [1], After presenting my naïve understanding of that fascinat- ing problem, I will present some experimental results [2], and argue that ultra-cold atoms in a disordered potential can be considered a quantum simulator that should allow experimentalists to answer open theoretical questions. References [1] A. Aspect and M. Inguscio, Anderson localization of ultracold atoms , Physics Today 62 (2009) 30, and references in. -
On the Origin of Strong Photon Antibunching in Weakly Nonlinear Photonic Molecules Motoaki Bamba, Atac Imamoglu, Iacopo Carusotto, Cristiano Ciuti
On the origin of strong photon antibunching in weakly nonlinear photonic molecules Motoaki Bamba, Atac Imamoglu, Iacopo Carusotto, Cristiano Ciuti To cite this version: Motoaki Bamba, Atac Imamoglu, Iacopo Carusotto, Cristiano Ciuti. On the origin of strong photon antibunching in weakly nonlinear photonic molecules. Physical Review A, American Physical Society, 2011, 83, pp.021802. 10.1103/PhysRevA.83.021802. hal-00499490 HAL Id: hal-00499490 https://hal.archives-ouvertes.fr/hal-00499490 Submitted on 9 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On the origin of strong photon antibunching in weakly nonlinear photonic molecules 1, 2 3 1, Motoaki Bamba, ∗ Atac Imamo˘glu, Iacopo Carusotto, and Cristiano Ciuti † 1Laboratoire Mat´eriaux et Ph´enom`enes Quantiques, Universit´eParis Diderot-Paris 7 et CNRS, Bˆatiment Condorcet, 10 rue Alice Domon et L´eonie Duquet, 75205 Paris Cedex 13, France 2Institute of Quantum Electronics, ETH Z¨urich, 8093 Z¨urich, Switzerland 3INO-CNR BEC Center and Dipartimento di Fisica, Universit`a di Trento, I-38123 Povo, Italy (Dated: July 9, 2010) In a recent work [T. C. H. Liew and V. Savona, Phys. Rev.