Does Kisspeptin Belong to the Proposed RF-Amide Peptide Family?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effects of Kisspeptin-13 on the Hypothalamic-Pituitary-Adrenal Axis, Thermoregulation, Anxiety and Locomotor Activity in Rats
Effects of kisspeptin-13 on the hypothalamic-pituitary-adrenal axis, thermoregulation, anxiety and locomotor activity in rats Krisztina Csabafiª, Miklós Jászberényiª, Zsolt Bagosiª, Nándor Liptáka, Gyula Telegdyª,b a Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701Szeged, Hungary b Neuroscience Research Group of the Hungarian Academy of Sciences, P.O. Box 521, H- 6701Szeged, Hungary Corresponding author: Krisztina Csabafi MD Department of Pathophysiology, University of Szeged H-6701 Szeged, Semmelweis u. 1, PO Box: 427 Hungary Tel.:+ 36 62 545994 Fax: + 36 62 545710 E-mail: [email protected] 1 Abstract Kisspeptin is a mammalian amidated neurohormone, which belongs to the RF-amide peptide family and is known for its key role in reproduction. However, in contrast with the related members of the RF-amide family, little information is available regarding its role in the stress-response. With regard to the recent data suggesting kisspeptin neuronal projections to the paraventricular nucleus, in the present experiments we investigated the effect of kisspeptin-13 (KP-13), an endogenous derivative of kisspeptin, on the hypothalamus- pituitary-adrenal (HPA) axis, motor behavior and thermoregulatory function. The peptide was administered intracerebroventricularly (icv.) in different doses (0.5-2 µg) to adult male Sprague-Dawley rats, the behavior of which was then observed by means of telemetry, open field and elevated plus maze tests. Additionally, plasma concentrations of corticosterone were measured in order to assess the influence of KP-13 on the HPA system. The effects on core temperature were monitored continuously via telemetry. The results demonstrated that KP-13 stimulated the horizontal locomotion (square crossing) in the open field test and decreased the number of entries into and the time spent in the open arms during the elevated plus maze tests. -
The Role of Kisspeptin Neurons in Reproduction and Metabolism
238 3 Journal of C J L Harter, G S Kavanagh Kisspeptin, reproduction and 238:3 R173–R183 Endocrinology et al. metabolism REVIEW The role of kisspeptin neurons in reproduction and metabolism Campbell J L Harter*, Georgia S Kavanagh* and Jeremy T Smith School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia Correspondence should be addressed to J T Smith: [email protected] *(C J L Harter and G S Kavanagh contributed equally to this work) Abstract Kisspeptin is a neuropeptide with a critical role in the function of the hypothalamic– Key Words pituitary–gonadal (HPG) axis. Kisspeptin is produced by two major populations of f Kiss1 neurons located in the hypothalamus, the rostral periventricular region of the third f hypothalamus ventricle (RP3V) and arcuate nucleus (ARC). These neurons project to and activate f fertility gonadotrophin-releasing hormone (GnRH) neurons (acting via the kisspeptin receptor, f energy homeostasis Kiss1r) in the hypothalamus and stimulate the secretion of GnRH. Gonadal sex steroids f glucose metabolism stimulate kisspeptin neurons in the RP3V, but inhibit kisspeptin neurons in the ARC, which is the underlying mechanism for positive- and negative feedback respectively, and it is now commonly accepted that the ARC kisspeptin neurons act as the GnRH pulse generator. Due to kisspeptin’s profound effect on the HPG axis, a focus of recent research has been on afferent inputs to kisspeptin neurons and one specific area of interest has been energy balance, which is thought to facilitate effects such as suppressing fertility in those with under- or severe over-nutrition. -
Adipokines in Breast Milk: an Update Gönül Çatlı1, Nihal Olgaç Dündar2, Bumin Nuri Dündar3
J Clin Res Pediatr Endocrinol 2014;6(4):192-201 DO I: 10.4274/jcrpe.1531 Review Adipokines in Breast Milk: An Update Gönül Çatlı1, Nihal Olgaç Dündar2, Bumin Nuri Dündar3 1Tepecik Training and Research Hospital, Clinic of Pediatric Endocrinology, İzmir, Turkey 2Katip Çelebi University Faculty of Medicine, Department of Pediatric Neurology, İzmir, Turkey 3Katip Çelebi University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey Introduction Human breast milk comprises a variety of nutrients, cytokines, peptides, enzymes, cells, immunoglobulins, proteins and steroids specially suited to meet the needs of newborn infants (1,2). Breast milk has benefits on preventing metabolic disorders and chronic diseases and is referred to as “functional food” due to its roles other than nutrition (1,2). It contains 87-90% water and is the main source of water for newborns (3,4,5). In addition, several peptide/protein hormones have recently been identified in human breast milk, including leptin, adiponectin, resistin, obestatin, nesfatin, irisin, adropin, copeptin, ghrelin, pituitary adenylate cyclase-activating polypeptide, apelins, motilin and cholecystokinin (6,7). These breast milk hormones may transiently regulate the activities of various tissues, including endocrine organs until the endocrine system of the neonate begins to function (6). Some of these peptides are secreted in biologically active forms (3). Leptin, ghrelin, insulin, adiponectin, obestatin, resistin, epidermal growth factor, platelet-derived growth factor and insulin-like growth factor 1 are bioactive substances that play roles in energy intake and regulation of body composition (3). However, functions of some ABS TRACT of these peptides in neonatal development are still unknown Epidemiological surveys indicate that nutrition in infancy is implicated in the (4). -
Kisspeptin and Testicular Function—Is It Necessary?
International Journal of Molecular Sciences Review Kisspeptin and Testicular Function—Is It Necessary? Aditi Sharma 1 , Thilipan Thaventhiran 1, Suks Minhas 2, Waljit S. Dhillo 1 and Channa N. Jayasena 1,* 1 Section of Investigative Medicine, Imperial College, 6th Floor, Commonwealth Building, Hammersmith Hospital, 150 Du Cane Road, London W12 0NN, UK; [email protected] (A.S.); [email protected] (T.T.); [email protected] (W.S.D.) 2 Department of Urology, Imperial College Healthcare NHS Trust, Charing Cross Hospital, Fulham Palace Road, Hammersmith, London W6 8RF, UK; [email protected] * Correspondence: [email protected] Received: 12 March 2020; Accepted: 21 April 2020; Published: 22 April 2020 Abstract: The role of kisspeptin in stimulating hypothalamic GnRH is undisputed. However, the role of kisspeptin signaling in testicular function is less clear. The testes are essential for male reproduction through their functions of spermatogenesis and steroidogenesis. Our review focused on the current literature investigating the distribution, regulation and effects of kisspeptin and its receptor (KISS1/KISS1R) within the testes of species studied to date. There is substantial evidence of localised KISS1/KISS1R expression and peptide distribution in the testes. However, variability is observed in the testicular cell types expressing KISS1/KISS1R. Evidence is presented for modulation of steroidogenesis and sperm function by kisspeptin signaling. However, the physiological importance of such effects, and whether these are paracrine or endocrine manifestations, remain unclear. Keywords: kisspeptin; kisspeptin receptor; spermatozoa; Leydig cells; Sertoli cells; testes; testosterone; LH; FSH; spermatogenesis 1. Introduction Kisspeptin is an established regulator of puberty onset [1,2], sexual maturation and adult reproductive activity [3]. -
A Comparative Survey of the RF-Amide Peptide Superfamily
EDITORIAL published: 10 August 2015 doi: 10.3389/fendo.2015.00120 Editorial: A comparative survey of the RF-amide peptide superfamily Karine Rousseau 1*, Sylvie Dufour 1 and Hubert Vaudry 2 1 Laboratory of Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d’Histoire Naturelle, CNRS 7208, IRD 207, Université Pierre and Marie Curie, UCBN, Paris, France, 2 Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, International Associated Laboratory Samuel de Champlain, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Mont-Saint-Aignan, France Keywords: RF-amide peptides, receptors, evolution, functions, deuterostomes, protostomes The first member of the RF-amide peptide superfamily to be characterized, in 1977, was the cardioexcitatory peptide, FMRFamide, isolated from the ganglia of the clam Macrocallista nimbosa (1). Since then, a large number of such peptides, designated after their C-terminal arginine (R) and amidated phenylalanine (F) residues, have been identified in representative species of all major phyla. The discovery, 12 years ago, that the RF-amide peptide kisspeptin, acting via GPR54, was essential for the onset of puberty and reproduction, has been a major breakthrough in reproductive physiology (2–4). It has also put in front of the spotlights RF-amide peptides and has invigo- rated research on this superfamily of regulatory neuropeptides. The present Research Topic aims at illustrating major advances achieved, through comparative studies in (mammalian and non- mammalian) vertebrates and invertebrates, in the knowledge of RF-amide peptides in terms of evolutionary history and physiological significance. Since 2006, by means of phylogenetic analyses, the superfamily of RFamide peptides has been divided into five families/groups in vertebrates (5, 6): kisspeptin, 26RFa/QRFP, GnIH (including LPXRFa and RFRP), NPFF, and PrRP. -
Serum Levels of Spexin and Kisspeptin Negatively Correlate with Obesity and Insulin Resistance in Women
Physiol. Res. 67: 45-56, 2018 https://doi.org/10.33549/physiolres.933467 Serum Levels of Spexin and Kisspeptin Negatively Correlate With Obesity and Insulin Resistance in Women P. A. KOŁODZIEJSKI1, E. PRUSZYŃSKA-OSZMAŁEK1, E. KOREK4, M. SASSEK1, D. SZCZEPANKIEWICZ1, P. KACZMAREK1, L. NOGOWSKI1, P. MAĆKOWIAK1, K. W. NOWAK1, H. KRAUSS4, M. Z. STROWSKI2,3 1Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland, 2Department of Hepatology and Gastroenterology & The Interdisciplinary Centre of Metabolism: Endocrinology, Diabetes and Metabolism, Charité-University Medicine Berlin, Berlin, Germany, 3Department of Internal Medicine, Park-Klinik Weissensee, Berlin, Germany, 4Department of Physiology, Karol Marcinkowski University of Medical Science, Poznan, Poland Received August 18, 2016 Accepted June 19, 2017 On-line November 10, 2017 Summary Corresponding author Spexin (SPX) and kisspeptin (KISS) are novel peptides relevant in P. A. Kolodziejski, Department of Animal Physiology and the context of regulation of metabolism, food intake, puberty and Biochemistry, Poznan University of Life Sciences, Wolynska Street reproduction. Here, we studied changes of serum SPX and KISS 28, 60-637 Poznan, Poland. E-mail: [email protected] levels in female non-obese volunteers (BMI<25 kg/m2) and obese patients (BMI>35 kg/m2). Correlations between SPX or Introduction KISS with BMI, McAuley index, QUICKI, HOMA IR, serum levels of insulin, glucagon, leptin, adiponectin, orexin-A, obestatin, Kisspeptin (KISS) and spexin (SPX) are peptides ghrelin and GLP-1 were assessed. Obese patients had lower SPX involved in regulation of body weight, metabolism and and KISS levels as compared to non-obese volunteers (SPX: sexual functions. In 2014, Kim and coworkers showed that 4.48±0.19 ng/ml vs. -
Hypothalamic Mechanisms Associated with Corticotropin-Releasing Factor- Induced Anorexia in Chicks T ⁎ Jinxin Wanga, Justin Matiasa, Elizabeth R
Neuropeptides 74 (2019) 95–102 Contents lists available at ScienceDirect Neuropeptides journal homepage: www.elsevier.com/locate/npep Hypothalamic mechanisms associated with corticotropin-releasing factor- induced anorexia in chicks T ⁎ Jinxin Wanga, Justin Matiasa, Elizabeth R. Gilberta,b, Tetsuya Tachibanac, Mark A. Clinea,b, a Department of Animal and Poultry Sciences, School of Neuroscience, USA b Virginia Polytechnic Institute and State University, Blacksburg 24061, VA, USA c Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan ARTICLE INFO ABSTRACT Keywords: Central administration of corticotropin-releasing factor (CRF), a 41-amino acid peptide, is associated with potent Arcuate nucleus anorexigenic effects in rodents and chickens. However, the mechanism underlying this effect remains unclear. Chick Hence, the objective of the current study was to elucidate the hypothalamic mechanisms that mediate CRF- Corticotropin-releasing factor induced anorexia in 4 day-old Cobb-500 chicks. After intracerebroventricular (ICV) injection of 0.02 nmol of Hypothalamus CRF, CRF-injected chicks ate less than vehicle chicks while no effect on water intake was observed at 30 min Paraventricular nucleus post-injection. In subsequent experiments, the hypothalamus samples were processed at 60 min post-injection. The CRF-injected chicks had more c-Fos immunoreactive cells in the arcuate nucleus (ARC), dorsomedial nucleus (DMN), ventromedial hypothalamus (VMH), and paraventricular nucleus (PVN) of the hypothalamus than ve- hicle-treated chicks. CRF injection was associated with decreased whole hypothalamic mRNA abundance of neuropeptide Y receptor sub-type 1 (NPYR1). In the ARC, CRF-injected chicks expressed more CRF and CRF receptor sub-type 2 (CRFR2) mRNA but less agouti-related peptide (AgRP), NPY, and NPYR1 mRNA than ve- hicle-injected chicks. -
Searching for Novel Peptide Hormones in the Human Genome Olivier Mirabeau
Searching for novel peptide hormones in the human genome Olivier Mirabeau To cite this version: Olivier Mirabeau. Searching for novel peptide hormones in the human genome. Life Sciences [q-bio]. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. English. tel-00340710 HAL Id: tel-00340710 https://tel.archives-ouvertes.fr/tel-00340710 Submitted on 21 Nov 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC THESE pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Discipline : Biologie Informatique Ecole Doctorale : Sciences chimiques et biologiques pour la santé Formation doctorale : Biologie-Santé Recherche de nouvelles hormones peptidiques codées par le génome humain par Olivier Mirabeau présentée et soutenue publiquement le 30 janvier 2008 JURY M. Hubert Vaudry Rapporteur M. Jean-Philippe Vert Rapporteur Mme Nadia Rosenthal Examinatrice M. Jean Martinez Président M. Olivier Gascuel Directeur M. Cornelius Gross Examinateur Résumé Résumé Cette thèse porte sur la découverte de gènes humains non caractérisés codant pour des précurseurs à hormones peptidiques. Les hormones peptidiques (PH) ont un rôle important dans la plupart des processus physiologiques du corps humain. -
Discovery of an Ancient Role As Muscle Relaxants
Original citation: Cai, Weigang, Kim, Chan-Hee, Go, Hye-Jin, Egertová, Michaela, Zampronio, Cleidiane, Jones, Alexandra M., Park, Nam Gyu and Elphick, Maurice R. (2018) Biochemical, anatomical, and pharmacological characterization of calcitonin-type neuropeptides in starfish : discovery of an ancient role as muscle relaxants. Frontiers in Neuroscience, 12 . 382. doi:10.3389/fnins.2018.00382 Permanent WRAP URL: http://wrap.warwick.ac.uk/103092 Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions. This article is made available under the Creative Commons Attribution 4.0 International license (CC BY 4.0) and may be reused according to the conditions of the license. For more details see: http://creativecommons.org/licenses/by/4.0/ A note on versions: The version presented in WRAP is the published version, or, version of record, and may be cited as it appears here. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications ORIGINAL RESEARCH published: 08 June 2018 doi: 10.3389/fnins.2018.00382 Biochemical, Anatomical, and Pharmacological Characterization of Calcitonin-Type Neuropeptides in Starfish: Discovery of an Ancient Role as Muscle Relaxants Weigang Cai 1, Chan-Hee Kim 2, Hye-Jin Go 2, Michaela Egertová 1, Cleidiane G. Zampronio 3, Alexandra M. Jones 3, Nam Gyu Park 2* and Maurice R. Elphick 1* 1 School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom, 2 Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan, South Korea, 3 School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, United Kingdom Calcitonin (CT) is a peptide hormone released by the thyroid gland that regulates blood Ca2+ levels in mammals. -
Orphan G Protein-Coupled Receptors and Obesity
European Journal of Pharmacology 500 (2004) 243–253 www.elsevier.com/locate/ejphar Review Orphan G protein-coupled receptors and obesity Yan-Ling Xua, Valerie R. Jacksonb, Olivier Civellia,b,* aDepartment of Pharmacology, University of California Irvine, 101 Theory Dr., Suite 200, Irvine, CA 92612, USA bDepartment of Developmental and Cell Biology, University of California Irvine, 101 Theory Dr, Irvine, CA 92612, USA Accepted 1 July 2004 Available online 19 August 2004 Abstract The use of orphan G protein-coupled receptors (GPCRs) as targets to identify new transmitters has led over the last decade to the discovery of 12 novel neuropeptide families. Each one of these new neuropeptides has opened its own field of research, has brought new insights in distinct pathophysiological conditions and has offered new potentials for therapeutic applications. Interestingly, several of these novel peptides have seen their roles converge on one physiological response: the regulation of food intake and energy expenditure. In this manuscript, we discuss four deorphanized GPCR systems, the ghrelin, orexins/hypocretins, melanin-concentrating hormone (MCH) and neuropeptide B/neuropeptide W (NPB/NPW) systems, and review our knowledge of their role in the regulation of energy balance and of their potential use in therapies directed at feeding disorders. D 2004 Elsevier B.V. All rights reserved. Keywords: Feeding; Ghrelin; Orexin/hypocretin; Melanin-concentrating hormone; Neuropeptide B; Neuropeptide W Contents 1. Introduction............................................................ 244 2. Searching for the natural ligands of orphan GPCRs ....................................... 244 2.1. Reverse pharmacology .................................................. 244 2.2. Orphan receptor strategy ................................................. 244 3. Orphan receptors and obesity................................................... 245 3.1. The ghrelin system .................................................... 245 3.2. -
FOH 8 Metabolic Syndrome.Indd
Metabolic Syndrome 3 out of 5 criteria for diagnosis Pathological levels? Fasting glucose Waist circumference Blood pressure Triglycerides HDL-Cholesterol Our Routine Laboratory Tests Intact Proinsulin Adiponectin OxLDL / MDA Adduct CRP (high sensitive) IDK® TNFa Haptoglobin Vitamin B1 Tests for your Research Adenosine Resistin ADMA Xpress Relaxin ADMA (Mouse/Rat) OPG AOPP total sRANKL Carbonylated Proteins IDK® TNFa RBP/RBP4 IDK® Zonulin US: all products: Research Use Only. Not for use in diagnostic procedures. www.immundiagnostik.com Metabolic Syndrome Adiponectin total (human) (ELISA) (K 6250) Determination of the adiponectin level as a prevention for Type-2-Diabetes Retinol-binding protein RBP/RBP4 (ELISA) (K 6110) Influence on glucose homeostasis and the development of insulin sensitivity / resistance Convenient marker for Type-2-Diabetes and for cardiovascular risk Resistin (ELISA) (on request) Link between adipositas and insulin resistance? ID Vit® Vitamin B1 (colorimetric test) (KIF001) Diabetes patients exhibit a low Vitamin B1 plasma level Also available: Other Vitamin B ID Vit® tests IDK® Zonulin (ELISA) (K 5601 ) Understanding the dynamic interaction between zonulin and diabetes. High zonulin levels are associated with Type-1-Diabetes Vasoconstriction / Vasodilatation Relaxin (ELISA) (K 9210) Endogenous antagonist of endothelin. Vasodilatator, increases microcirculation Urotensin II ( RUO) (on request) Most powerful vasoconstrictor known Oxidative Stress / Arteriosclerosis ADMA Xpress (Asymmetric -
A Summary About Relaxin and Its Reproductive Function
Endocrinology & Metabolism International Journal Review Article Open Access A summary about relaxin and its reproductive function Abstract Volume 4 Issue 5 - 2017 Relaxin is a pleiotropic hormone included in the insulin-like-growth factor family (IGF) Alana Aragon-Herrera,1 Sandra Feijoo- that is produced in a variety of reproductive tissues including corpus luteum, uterus, testis, Bandin,1,2 Diego Rodriguez-Penas,1 Manuel prostate and others. Relaxin facilitates parturition, participates in uterine contractility, 2,3 2,3 promotes angiogenesis, plays a role in spermatogenesis or promotes spermatozoa motility Portoles, Esther Rosello-Lleti, Miguel 2,3 1,2 and acrosome reaction, among others physiological functions. In this review, we will focus Rivera, Jose Ramon Gonzalez-Juanatey, on the principal roles of relaxin in female and male reproduction. Francisca Lago1,2 1Cellular and Molecular Cardiology Research Unit and Keywords: relaxin, reproduction, parturition, pregnancy, spermatogenesis, male Department of Cardiology of Institute of Biomedical Research reproduction, angiogenesis and University Clinical Hospital, Spain 2Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares, Spain 3La Fe University Hospital, Spain Correspondence: Alana Aragón-Herrera, Unidad de Investigación en Cardiología Celular y Molecular (7), Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Planta -2, Edificio de Consultas Externas, Hospital Clínico Universitario, Travesía Choupana s/n, 15706 Santiago de Compostela, Spain,