Pennsylvanian Brachiopods and Biostratigraphy in Southern Sangre De Cristo Mountains, New Mexico

Total Page:16

File Type:pdf, Size:1020Kb

Pennsylvanian Brachiopods and Biostratigraphy in Southern Sangre De Cristo Mountains, New Mexico Pennsylvanian Brachiopods and Biostratigraphy in Southern Sangre de Cristo Mountains, New Mexico DALTON BLUFF—The most important Pennsylvanian stratigraphic sequence in the Sangre de Cristo area (measured section 36). Memoir 27 New Mexico Bureau of Mines & Mineral Resources A DIVISION OF NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY Pennsylvanian Brachiopods and Biostratigraphy in Southern Sangre de Cristo Mountains, New Mexico by Patrick K. Sutherland and Francis H. Harlow SOCORRO 1973 Contents Page Page vii LIST OF ILLUSTRATIONS 34 Leptalosia sp. 35 Krotovia globosa (Mather) ix ABSTRACT 35 Kozlowskia montgomeryi n. sp. 36 Kozlowskia haydenensis (Girty) 1 INTRODUCTION 37 Desmoinesia nambeensis n. sp. 1 Scope of Investigation 38 Desmoinesia sp. A 1 Marcou's 1853 Survey 38 Desmoinesia ingrata (Girty) 2 Pecos Village 39 Desmoinesia "missouriensis" (Girty) 3 Tigeras Canon 40 Desmoinesia muricatina (Dunbar and Condra) 4 Early Surveys in Santa Fe Area 41 Sandia brevis n. sp. 5 Acknowledgments 44 Sandia santafeensis n. sp. 44 Sandia welleri (Mather) 6 STRATIGRAPHY 45 Sandia welleri variant A 6 Introduction 46 Calliprotonia n. sp. A 6 La Pasada Formation 46 Echinaria n. sp. A 7 Flechado Formation 47 Echinaria cf. E. knighti (Dunbar and Condra) 8 Alamitos Formation 47 Echinaria cf. E. semipunctata (Shepard) 9 Sangre de Cristo Formation 47 Pulchratia? pustulosa n. sp. 48 Pulchratia? picuris n. sp. 10 FAUNAL EVALUATION 49 Buxtonia grandis n. sp. 10 Introduction 49 Buxtonia n. sp. A 10 Fusulinid Occurrences 50 Buxtonia n. sp. B 11 Conodont Occurrences 50 Buxtonia? sp. C 11 Brachiopod Correlations 51 Antiquatonia coloradoensis (Girty) 12 Morrowan 51 Antiquatonia hermosana (Girty) 12 Atokan 52 Antiquatonia portlockiana (Norwood and 12 Lower Desmoinesian Pratten) 13 Middle and Upper Desmoinesian 52 Antiquatonia n. sp. A 13 Missourian 53 Tesuquea formosa n. sp. 13 Virgilian 55 Reticulatia sp. A 55 Horridonia? daltonensis n. sp. 14 SYSTEMATIC DESCRIPTIONS OF 56 Linoproductus nodosus (Newberry) BRACHIOPODS 5 7 Linoproductus devargasi n. sp. 14 Introduction 58 Linoproductus planiventralis Hoare 14 Statistical Procedures 58 Linoproductus cf. L. platyumbonus Dunbar 15 Descriptions and Condra 15 Lingula cf. L. carbonaria Shumard 59 Linoproductus pumilus n. sp. 15 Lingula sp. A 60 Zia novamexicana n. sp. 15 "Orbiculoidea" youngi n. sp. 60 Leiorhynchoidea? rockymontana (Marcou) 16 "Orbiculoidea" sp. 61 Wellerella immatura Dunbar and Condra 16 Crania cf. C. modesta White and St. John 61 Rhynchopora magnicosta Mather 16 Schizophoria oklahomae Dunbar and Condra 62 Hustedia gibbosa? Lane 17 Schizophoria altirostris? (Mather) 63 Hustedia "mormoni " (Marcou) 18 Rhipidomella cf. R. carbonaria (Swallow) 64 Composita gibbosa Mather 18 Rhipidomella trapezoida n. sp. 64 Composita deflecta Mather 19 Isogramma sp. 64 Composita "ovata" Mather 19 Meekella n. sp. A 67 Composita umbonata n. sp. 20 Meekella cf. M. striatocostata (Cox) 67 Cleiothyridina pecosii (Marcou) 20 Orthotetes sp. 68 Cleiothyridina milleri n. sp. 20 Derbyia Bonita n. sp. 69 Crurithyris planoconvexa (Shumard) 21 Derbyia crassa (Meek and Hayden) 70 Spirifer goreii Mather 21 Derbyia cf. D. haesitans Dunbar and Condra 72 Neospirifer cameratus (Morton) 22 Plicochonetes? arkansanus (Mather) 74 Neospirifer tewaensis n. sp. 23 Neochonetes? platynotus (White) 75 Neospirifer alatus Dunbar and Condra 25 Neochonetes n. sp. A 76 Neospirifer dunbari? King 26 Neochonetes henryi n. sp. 78 Anthracospirifer newberryi n. sp. 27 Neochonetes whitei n. sp. 79 Anthracospirifer curvilateralis (Easton) 30 Mesolobus striatus Weller and McGehee 80 Anthracospirifer curvilateralis tanoensis 32 Mesolobus profundus n. sp. n. subsp. 33 Mesolobus euampygus (Girty) 82 Anthracospirifer curvilateralis chavezae 34 Chonetinella jeffordsi Stevens n. subsp. v Page Page 84 Anthracospirifer mcalesteri n. sp. 115 Section 42—Elk Mountain 85 Anthracospirifer "occiduus" (Sadlick) 115 Locality 43—Nambe Falls—Desmoinesian 85 Anthracospirifer "opimus" (Hall) 116 Section 47—Divide at Head of Rio Valdez 86 Anthracospirifer rockymontanus (Marcou) 118 Locality 51—Hyde Park Road 86 Anthracospirifer matheri (Dunbar and Condra) 118 Locality 56—Rio Pueblo—West 87 Spiriferellina campestris (White) 118 Section 60—Rio Pueblo Valley* 87 Spiriferellina ceres n. sp. 118 Section 61—Santa Fe Quarries 88 Punctospirifer morrowensis n. sp. 121 Section 62—Santa Fe Quarries 88 Punctospirifer cf. P. kentuckyensis (Shumard) 122 Locality 64—Santa Fe Quarries—North 88 Phricodothyris perplexa (McChesney) 122 Section 65 —South of Talpa 89 Beecheria millepunctata (Hall) 124 Section 67—Taos Canyon 89 Beecheria daltonensis n. sp. 127 Locality 68—Santa Fe Quarries—South 90 Beecheria stehlii n. sp. 127 Locality 78—Nambe Reservation 90 Beecheria gerberi n. sp. 128 Section 90—Santa Fe River, Cerro Gordo Road 129 Section 92—Bishop's Lodge 91 REFERENCES 130 Section 93—Lamy 132 Section 96—Alamitos Valley* 94 APPENDIX 1—Measured Sections and Collecting 132 Section 97—West of Pecos Valley* Localities (*denotes faunal list) 132 Section 98—Pecos (town) River Bluff 94 Section 10—Ridge Northeast of East Pecos Baldy 133 Locality 99—Near Rio En Medio 96 Locality 12—Trailriders Wall 133 Locality 105—South of Dalton Bluff 96 Locality 18—Windsor Creek 97 Section 22—Terrero Bluff, Pecos Valley 134 APPENDIX 2—Tables of Statistics 99 Section 25—Santa Barbara Valley 102 Section 26—Jicarita Peak 134 APPENDIX 3—Specimen Measurements 104 Section 29—Dalton Canyon 105 Section 36—Dalton Bluff* 135 FOSSIL PLATES 1-18 106 Section 40—Ridge East of Jicarilla Peak 109 Section 41—Nambe Falls 172 INDEX List Of Illustrations FIGURES Page Page 71 34—Lateral bifurcation patterns for Spirifer goreii 1 1—Table of stratigraphic sequence 73 35—Sulcal bifurcation patterns for Neospirifer cam- x 2—Index and locality map eratus 2 3—Map of Pecos (town) area (Marcou, 1858) 74 36—Lateral bifurcation patterns for Neospirifer cam- 2 4—Locality and geologic map, Pecos (town) area eratus 4 5—Sketch of bluff at Marcou's camp 16 75 37—Sulcal bifurcation patterns for Neospirifer tewa- 4 6—Map of area near "Tigeras village" (Marcou, ensis 1858) 76 38—Sulcal bifurcation patterns for Neospirifer alatus 7 7—Correlation of lower and middle Pennsylvanian 76 39—Lateral bifurcation patterns for Neospirifer alatus sections, Santa Fe to Pecos valley 77 40—Sulcal and lateral bifurcation patterns for Neo- Pocket 8—Correlation of fossiliferous units spirifer dunbari? Pocket 9—Brachiopod range chart 78 41—Plots of width vs length and thickness vs length 15 10—Cross section of "Orbiculoidea " youngi for Anthracospirifer newberryi and subspecies 24 11—Plot of width vs length for Neochonetes? platy- of A. curvilateralis notus 79 42—Sulcal and lateral bifurcation patterns for An- 26 12—Scatter diagram of width vs length for Neo thracospirifer newberryi chonetes henryi and N. whitei 80 43—Sulcal and lateral bifurcation patterns in Anthra 27 13—Frequency histogram of number of capillae for cospirifer curvilateralis tanoensis Neochonetes henryi and N. whitei 81 44—Evolution of Anthracospirifer curvilateralis tano- 30 14—Scatter diagram of width vs length for Mesolobus ensis and A. curvilateralis chavezae striatus 82 45—Sulcal and lateral bifurcation patterns of Anthra- 31 15—Frequency histogram of number of capillae for cospirifer curvilateralis chavezae Mesolobus striatus 83 46—Sulcal and lateral bifurcation patterns of Anthra- 32 16—Scatter diagram for width vs length and height vs cospirifer cf. A. curvilateralis chavezae length for Mesolobus profundus 84 47—Sulcal bifurcation patterns of Anthracospirifer- 33 17—Plot of width vs length and height vs length for mcalesteri Mesolobus euampygus 85 48—Lateral bifurcation patterns in Anthracospirifer- 35 18—Frequency plot of number of costellae for Koz mcalesteri lowskia montgomeryi and K. haydenensis 86 49—Sulcal and lateral bifurcation patterns for the lec- 36 19—Drawing along plane of symmetry of Kozlowskia totype of Anthracospirifer rockymontanus montgomeryi 112 50—Geologic and locality map of Nambe Falls area 37 20—Drawing along plane of symmetry of Kozlowskia 119 51—Geologic and locality man of Santa Fe Ouarries haydenensis 37 21—Frequency plots comparing species of the genus Desmoinesia PHOTOGRAPHS 42 22—Frequency plots comparing Sandia santafeensis and S. brevis ii frontis—Dalton Bluff 43 23—Scatter diagrams comparing Sandia santafeensis 3 2—Marcou's "grand perpendicular wall" and S. brevis 3 3—Marcou's "grand perpendicular wall" (close-up) 50 24—Frequency polygons comparing number of costae 4 4—Santa Fe Quarries for species of Antiquatonia 7 5—La Pasada Formation northeast of East Pecos 54 25—Drawing along plane of symmetry of Tesuquea Baldy formosa 8 6—Flechado Formation, Rio Pueblo valley 62 26—Plots of width vs length and thickness vs length 8 7—Alamitos Formation, Alamitos valley for species of Hustedia 8 8—Cross-bedding in Alamitos Formation 62 27—Frequency plot showing the number of costellae 94 9—Measured section 10 from north for species of Hustedia 97 10—Terrero Bluff, measured section 22 65 28—Plots of width vs length, and thickness vs length 100 11—Alamitos Formation, Santa Barbara valley for Composita gibbosa and Composita deflecta 103 12—Jicarita Peak 66 29—Plot of width vs length for Composita "ovata" and 104 13—La Pasada Formation, Dalton Canyon Composita "subtilita" 106 14—Highly fossiliferous 4th Cliff at Dalton Bluff 68 30—Plots of width vs length and thickness vs length 106 15—Algal limestone forming 3rd Cliff at Dalton Bluff for species of Cleiothyridina 107 16—Measured
Recommended publications
  • Paleozoic Biostratigraphy and Paleontology Along the Mogollon Rim, Arizona
    PALEOZOIC BIOSTRATIGRAPHY AND PALEONTOLOGY ALONG THE MOGOLLON RIM, ARIZONA This one-day field trip permits examination of Devonian, Pennsyl­ vanian, and Permian stratigraphy and biostratigraphy. Pennsylvanian and Permian fossil localities will also be visited. The field trip guide consists of three separate articles. These involve, in order, paleontology, stratigraphy, and a road log. The road log from Payson to Pine, on pages 34-36 of the New Mexico Geological Society Thirteenth Field Conference Guidebook (1962), might also prove useful. PALEONTOLOGY OF THE NACO FORMATION IN THE KOHL RANCH AREA, ARIZONA by Stanley S. Beus NorthernArizona University and Douglas C. Brew University of Minnesota This trip will traver-se part of the Basin and Range Province north­ east of Tempe and end up in the transition zone between the Basin and Range and Colorado Plateau provinces below the Mogollon Rim. The total distance is about 230 miles. We will examine outcrops of Devonian through Permian age, and collect Devonian, Pennsylvanian and Permian fossils. The major col­ lecting site will be in the Naco Formation near Kohl Ranch, discussed below. Possible localities are indicated in figure 1. GENERAL STRATIGRAPHY lenses. The lower unbedded portion is generally interpreted to represent a regolith formed in situ via solution of the The Naco formation of central Arizona is a predom­ Redwall Limestone, whereas the upper portion consists inantly marine sequence of interbedded limestones and predominantly of insoluble residues reworked by marine or terrigenous sedimentary rocks of Pennsylvanian age. The perhaps both nonmarine and marine agencies (Huddle and formation is separated from the underlying Mississippian Dobrovolny, 1945, 1952; Brew, 1970; McKee and Redwall Limestone by a conspicuous regional disconfor­ Gutschick, 1969).
    [Show full text]
  • Middle Permian Brachiopods from Setamai, the Type Locality of The
    Sci. Rep., Niigata Univ., Ser. E(Geology), No. 16, 1-33, 2001 Middle Permian brachiopods from Setamai,the type locality of the Kanokura Formation,southern Kitakami Mountains, northeast Japan Jun-ichi TAZAWA* and Yosuke IBARAKI** Abstract A Middle Permian (Kubergandian-Murgabian) brachiopod fauna is described from the type section of the lower Kanokura Formation in the Setamai area, southern Kitakami Moun tains, northeast Japan. This fauna contains the following nine species: Transennatia gratiosa, Tyloplecta cf. yangzeensis, Waagenoconcha sp., Linoproductus cora, Cancrinella sp., Leptodus nobilis, Derbyia grandis, Derbyia nipponica and Spiriferella keilhavii. The Setamai fauna is characterized by the mixuture of both the Boreal and Tethyan elements. Key words: Boreal-Tethyan mixed fauna, brachiopods. Middle Permian, Setamai, southern Kitakami Mountains. Introduction The Permian brachiopod specimens described in this paper were collected by the authors and late Prof. M. Minato of Hokkaido University from nine localities in the Kanokurasawa and Kacchizawa valleys in the Setamai area, the type locahty of the lower part of the Kanokura Formation, southern Kitakami Mountains, northeast Japan (Figs. 1,2). The Middle Permian Kanokura Formation was named by Onuki (1937) as the Kanokura Stage, but Onuki (1956)later changed the name to 'formation' with the outcrops along the Kanokurasawa valley as its type section. The stratigraphy of the Kanokura Formation in the Setamai area was described and discussed in detail by Minato et al.(1954,1978,1979), Onuki (1956, 1969), Murata (1964), Saito (1966, 1968) and Choi (1973, 1976). In palaeontology, many species of fusulinaceans (Choi, 1973), corals (Minato, 1955; Minato and Kato, 1965), brachiopods (Hayasaka, 1953; Hayasaka and Minato, 1956; Minato and Nakamura, 1956; * Department of Geology, Faculty of Science, Niigata University, Niigata 950-2181, Japan ** Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan (Manuscript received 24 November, 2(XX); accepted 21 December, 2000) J.
    [Show full text]
  • Geologic Map of the Hasty Quadrangle, Boone And
    U.S. DEPARTMENT OF THE INTERIOR SCIENTIFIC INVESTIGATIONS MAP 2847 U.S. GEOLOGICAL SURVEY Version 1.0 A 1370 CORRELATION OF MAP UNITS Fayetteville Shale (Upper Mississippian, Chesterian)—Fine-grained Contact mapped the eastern and western parts of this system as separate grabens. This study 1440 1260 1300 sandstone and siltstone of the Wedington Sandstone Member that grades 88 illustrates that the northern bounding fault is continuous across the area, with a curvilinear 1380 1420 1400 Qty downward into main body of black, slope-forming shale. Thickness varies 60 Normal fault—Showing fault dip (arrow) and rake (diamond-headed arrow) map trace. McKnight (1935) called the eastern extension of this northern fault the St. Joe 1450 2 1340 Mb Ql QUATERNARY where known. Bar and ball on downthrown side. Dashed where 1320 Mf Qtm from 250 to 370 ft fault and that name is adopted here. The southern boundary of the graben system within Mfw Wedington Sandstone Member—Brown, well-indurated, calcite-cemented approximately located the quadrangle is formed by two normal faults that partly overlap in sec. 7, T. 16 N., R. 19 2 1050 1490 QTto sandstone and siltstone. The Wedington caps a steep slope and is Normal, right-lateral, strike-slip fault—Bar and ball on downthrown side. W. Where observed, the main planes of faults forming the graben system dip steeply 950 1420 3 TERTIARY(?) 1290 1325 Mbv ° ° 1320 3 separated from the overlying Pitkin Limestone by thin black shale that Dashed where approximately located. In cross section A–A', A, movement (72 –83 ); where slip striations have been preserved on these faults or nearby smaller faults, Mf 1340 1335 Unconformity 1270 commonly forms a bench.
    [Show full text]
  • The Brachiopod Antiquatonia Coloradoensis (Girty) from the Upper Morrowan and Atokan (Lower Middle Pennsylvanian) of the United States
    U.S. Department of the Interior U.S. Geological Survey The Brachiopod Antiquatonia coloradoensis (Girty) from the Upper Morrowan and Atokan (Lower Middle Pennsylvanian) of the United States U.S. Geological Survey Professional Paper 1588 The Brachiopod Antiquatonia coloradoensis (Girty) from the Upper Morrowan and Atokan (Lower Middle Pennsylvanian) of the United States By Thomas W. Henry T OF EN TH U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1588 TM E R I A N P T E E D R . I O S . R Taxonomic and biostratigraphic analysis of a widespread and U stratigraphically restricted, semireticulate productid brachiopod M 9 A 8 4 R C H 3, 1 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1998 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Mark Schaefer, Interim Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Henry, Thomas W. The brachiopod Antiquatonia coloradoensis (Girty) from the upper Morrowan and Atokan (lower Middle Pennsylvanian) of the United States / by Thomas W. Henry. p. cm.—(U.S. Geological Survey professional paper ; 1588) Includes bibliographical references (p. – ). 1. Antiquatonia coloradoensis—United States. 2. Paleontology—Pennsylvanian. 3. Animals, Fossil—United States. I. Title. II. Series. QE797.S89H46 1988 564′.68—dc21 97–42005 CIP CONTENTS
    [Show full text]
  • A Teleosaurid (Crocodylia, Mesosuchia) from the Toarcian of Madagascar and Its Palaeobiogeographical Significance
    Pal~iont. Z. 55 I 3/4 313-319 Stuttgart, Dezember 1981 I A teleosaurid (Crocodylia, Mesosuchia) from the Toarcian of Madagascar and its palaeobiogeographical significance ERIC BUFFETAUT, GENEVIJ~VE TERMIER & HENRI TERM1ER, Paris* With 2 figures in the text Kurzfassung: Ein Oberkieferfragment eines Krokodiliers aus dem Toarcium von NW-Madagaskar wird als Stenosaurus sp. (Familie Teleosauridae) bestimmt. Es ist der ~ilteste aus Madagaskar bekannte Kro- kodilier und deutet aunistische B eziehungen mit Westeuropa und Siidamerika an. Die Verbreitung der ober- liassischen marinen Krokodilier, die derjenigen des Ammoniten Bouleiceras iihnelt, weist auf die Existenz einer epikontinentalen Seestraf~e vonder Tethys fiber die transerythr~iische Provinz bis zum siidlichen Tell Afrikas; diese Seestral~e bildete eine Verbindung zwischen Westeuropa und Siidamerika. A b s t r a c t : A fragment of the upper jaw of a crocodilian from the Toarcian of NW Madagascar is refer- red to Steneosaurus sp. (family Teleosauridae). It is the earliest known crocodilian from Madagascar. It indi- cates faunal relationships with western Europe and South America. The distribution of late Liassic marine crocodilians, similar to that of the ammonite Bouleiceras, suggests the existence of an epicontinental seaway from the Tethyan region to the southern part of Africa via the Transerythrean Province, which provided a marine connection between western Europe and South America. R ~ s u m ~ : Un fragment de mfichoire sup~rieure de Crocodilien du Toarcien du NW de Madagascar est rapport8 ~Steneosaurus sp. (famille Teleosauridae). C'est le plus ancien Crocodilien connu ~iMadagascar. I1 indique des relations fauniques avec l'Europe occidentale et l'Am&ique du Sud.
    [Show full text]
  • Discussion. Brachiopod Zonation and Age of the Permian Kapp Starostin Formation (Central Spitsbergen)
    Discussion. Brachiopod zonation and age of the Permian Kapp Starostin Formation (Central Spitsbergen) LARS STEMMERIK Stemmerik, L. 1988: Discussion. Brachiopod zonation and age of the Permian Kapp Starostin Formation (Central Spitsbergen). Polar Research 6, 179-180. Lars Stemmerik, Grgnlands Geologiske Unders~geke,0ster Voldgade 10, 0-1350KQbenhaun K, Denmark; May 1988. The following discussion will concentrate on the rhynchus kempei, and Muirwoodia greenlandica stratigraphical implications of the brachiopod for the Megousia weyprechti Zone and Ptero- zonation proposed by Nakamura et al. (1987). No spirifer alatus, Pleurohorridonia scoresbyensis, such brachiopod zonation can be recognised in Choristites s#derberghi, and Odontospirifer mir- Greenland where in contrast diagnostic species abilis for the Pterospirifer alatus Zone (Nakamura of the upper zones in the Kapp Starostin For- et al. 1987, p. 213). Furthermore, Liosotella spitz- mation co-occur throughout the entire section. bergiana, Paeckelmannia toulai and Kochi- It is therefore concluded that the correlations productus plexicostatus confined to the uppermost proposed by Nakamura et al. (1987) are not valid. zones in the Kapp Starostin Formation are found At best the overall similarities of the East Green- in East Greenland. land and Svalbard faunas may indicate a Kaz- The work of Dunbar (1955) does not imply a anian-early Tatarian age for the upper part of the two-fold zonation of the brachiopods in the Fold- Kapp Starostin Formation. vik Creek Group in East Greenland. As discussed The paper of Nakamura et al. (1987) has wide below the different collections described by Dun- stratigraphic implications both for local cor- bar (1955) include a mixture of species diagnostic relation of the Foldvik Creek Group (sensu for the Megousia weyprechti Zone, Pterospirifer Surlyk et al.
    [Show full text]
  • Carboniferous Formations and Faunas of Central Montana
    Carboniferous Formations and Faunas of Central Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 Carboniferous Formations and Faunas of Central Montana By W. H. EASTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 A study of the stratigraphic and ecologic associa­ tions and significance offossils from the Big Snowy group of Mississippian and Pennsylvanian rocks UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows : Eastern, William Heyden, 1916- Carboniferous formations and faunas of central Montana. Washington, U.S. Govt. Print. Off., 1961. iv, 126 p. illus., diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 348) Part of illustrative matter folded in pocket. Bibliography: p. 101-108. 1. Paleontology Montana. 2. Paleontology Carboniferous. 3. Geology, Stratigraphic Carboniferous. I. Title. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, B.C. CONTENTS Page Page Abstract-__________________________________________ 1 Faunal analysis Continued Introduction _______________________________________ 1 Faunal relations ______________________________ 22 Purposes of the study_ __________________________ 1 Long-ranging elements...__________________ 22 Organization of present work___ __________________ 3 Elements of Mississippian affinity.._________ 22 Acknowledgments--.-------.- ___________________
    [Show full text]
  • A Quantitative Study of Benthic Faunal Patterns Within the Pennsylvanian and Early Permian
    PALAIOS, 2006, v. 21, p. 316–324 Research Report DOI: 10.2110/palo.2005.P05-82e A QUANTITATIVE STUDY OF BENTHIC FAUNAL PATTERNS WITHIN THE PENNSYLVANIAN AND EARLY PERMIAN NICOLE BONUSO* AND DAVID J. BOTTJER Department of Earth Sciences, University of Southern California, 3651 Trousdale Parkway, Los Angeles, California, 90089-0740, USA e-mail: [email protected] ABSTRACT primary literature. Mudge and Yochelson’s (1962) monograph describes the stratigraphy and paleontology of the Pennsylvanian–Permian Mid- Using abundance data, this study explores quantitative patterns from continent of Kansas using over 300 fossil collections. Yancey and Stevens marine benthos, including implications for paleogeography, deposi- (1981) studied the Early Permian of Nevada and Utah extensively, re- tional environment, stratigraphic position, taxonomic groups (bra- corded abundance data from 55 localities, and identified paleocommun- chiopod or mollusc), substrate preferences, and ecological niches. ities based on the faunal comparisons and relative abundances within each Twenty-nine brachiopod- and bivalve-dominated fossil assemblages sample collected. As a result, three groups of commonly occurring com- from the Pennsylvanian and Early Permian of North and South Amer- munities emerged: (1) nearshore, mollusc-dominated; (2) open-shelf, non- ica, Thailand, and Australia were analyzed from carbonate-platform molluscan; and (3) deeper water, offshore mollusc-dominated. More re- environments; specifically, Nevada, Kansas, Oklahoma, Texas, Utah, cently, Olszewski and Patzkowsky (2001) documented the reoccurrence New Mexico, Venezuela, Kanchanaburi (Thailand), and Queensland of Pennsylvanian–Permian Midcontinent brachiopod and bivalve associ- (Australia). Samples were categorized by paleogeographic location, de- ations through time (Olszewski and Patzkowsky, 2001). Using a combi- positional environment, and age to help differentiate factors control- nation of data from Mudge and Yochelson (1962) and their own data, ling the faunal patterns.
    [Show full text]
  • Brachiopods from the Mobarak Formation, North Iran
    GeoArabia, 2011, v. 16, no. 3, p. 129-192 Gulf PetroLink, Bahrain Tournaisian (Mississippian) brachiopods from the Mobarak Formation, North Iran Maryamnaz Bahrammanesh, Lucia Angiolini, Anselmo Alessandro Antonelli, Babak Aghababalou and Maurizio Gaetani ABSTRACT Following detailed stratigraphic work on the Mississippian marlstone and bioclastic limestone of the Mobarak Formation of the Alborz Mountains in North Iran, forty-eight of the most important brachiopod taxa are here systematically described and illustrated. The ranges of the taxa are given along the Abrendan and Simeh Kuh stratigraphic sections, located north of Damgham. The examined brachiopod species date the base of the Mobarak Formation to the Tournaisian, in absence of age-diagnostic foraminifers. Change in brachiopod settling preferences indicates a shift from high energy, shallow-water settings with high nutrient supply in the lower part of the formation to quieter, soft, but not soppy substrates, with lower nutrient supply in the middle part of the Mobarak Formation. Brachiopod occurrence is instead scanty at its top. The palaeobiogeographic affinity of the Tournaisian brachiopods from North Iran indicates a closer relationship to North America, Western Europe and the Russian Platform than to cold-water Australian faunas, confirming the affinity of the other biota of the Alborz Mountains. This can be explained by the occurrence of warm surface-current gyres widely distributing brachiopod larvae across the Palaeotethys Ocean, where North Iran as other peri- Gondwanan blocks acted as staging-posts. INTRODUCTION The Mississippian Mobarak Formation of the Alborz Mountains (North Iran) has been recently revised by Brenckle et al. (2009) who focused mainly on its calcareous microfossil biota and refined its biostratigraphy, chronostratigraphy and paleogeography.
    [Show full text]
  • Arkansas Geology: Bluffs, Crevices, Pedestals, and Fossils
    EWS - 08 STATE OF ARKANSAS ARKANSAS GEOLOGICAL SURVEY BEKKI WHITE, DIRECTOR AND STATE GEOLOGIST ______________________________________________________________________________ EDUCATIONAL WORKSHOP SERIES 08 ______________________________________________________________________________ Arkansas Geology: Blus, Crevices, Pedestals, and Fossils Angela Chandler Little Rock, Arkansas 2015 EWS - 08 STATE OF ARKANSAS ARKANSAS GEOLOGICAL SURVEY BEKKI WHITE, DIRECTOR AND STATE GEOLOGIST ______________________________________________________________________________ EDUCATIONAL WORKSHOP SERIES 08 ______________________________________________________________________________ Arkansas Geology: Blus, Crevices, Pedestals, and Fossils Angela Chandler Little Rock, Arkansas 2015 STATE OF ARKANSAS Mike Beebe, Governor Arkansas Geological Survey Bekki White, State Geologist and Director COMMISSIONERS Dr. Richard Cohoon, Chairman………………………. Russellville William Willis, Vice Chairman………………………… Hot Springs Gus Ludwig…….…………………………………......... Quitman Ken Fritsche……………………………………………. Greenwood William Cains…………………………………………… Altus Quin Baber……………………………………………… Benton David Lumbert………………………………………….. Little Rock Little Rock, Arkansas 2015 Table of Contents Geologic Setting..…………………………………………………….. 1 Deposition of rock formations – Upper Mississippian (331-323 million years ago ).......................................................................... 4 Description of rock formations – Boston Mountain Plateau – Pitkin Limestone………………………………….. 5 Deposition of rock formations
    [Show full text]
  • Download Date 30/12/2018 22:47:41
    Stratigraphy and paleontology of the Naco Formation in the southern Dripping Spring Mountains, near Winkelman, Gila County, Arizona Item Type text; Thesis-Reproduction (electronic); maps Authors Reid, Alastair Milne, 1940- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 30/12/2018 22:47:41 Link to Item http://hdl.handle.net/10150/551821 STRATIGRAPHY AND PALEONTOLOGY OF THE NACO FORMATION IN THE SOUTHERN DRIPPING SPRING MOUNTAINS, NEARWINKELMAN, GILA COUNTY, ARIZONA by Ala stair M. Reid A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1966 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of require­ ments for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests of permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in their judg­ ment the proposed use of the material is in the interests of scholarship.
    [Show full text]
  • Pennsylvanian Crinoids of New Mexico
    Pennsylvanian crinoids of New Mexico Gary D. Webster, Department of Geology, Washington State University, Pullman, WA 99164, and Barry S. Kues, Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131 Abstract north of Alamogordo; (2) Morrowan and groups present on the outcrop were sam- Atokan specimens from the La Pasada For- pled, often repeatedly over the years. Crinoids from each of the five Pennsylvanian mation in the Santa Fe area; and (3) a mid- These collections, reposited at the Univer- epochs are described from 26 localities in dle Desmoinesian species from the Alami- sity of New Mexico (UNM), testify to the New Mexico. The crinoid faunas occupied tos Formation, north of Pecos. Bowsher rarity of identifiable crinoid cups and diverse shelf environments around many intermontane basins of New Mexico during and Strimple (1986) described 15 late crowns in these assemblages, even in cases the Pennsylvanian. The crinoids described Desmoinesian or early Missourian crinoid where crinoid stem elements are common. here include 29 genera, 39 named species, species (several not named) from near the In nearly all collections, crinoid cups rep- and at least nine unnamed species, of which top of the Bug Scuffle Member of the Gob- resent only a small fraction of 1% of the one genus and 15 named species are new. bler Formation south of Alamogordo in the total identifiable specimens. The only This report more than doubles the number of Sacramento Mountains. Kietzke (1990) exception is the fauna from the Missourian previously known Pennsylvanian crinoid illustrated a Desmoinesian microcrinoid Sol se Mete Member, Wild Cow Formation, species from New Mexico; 17 of these species from the Flechado Formation near Talpa.
    [Show full text]