PROTEIN STRUCTURE and FUNCTION, from a COLLOIDAL to a MOLECULAR VIEW" by HAROLD A

Total Page:16

File Type:pdf, Size:1020Kb

PROTEIN STRUCTURE and FUNCTION, from a COLLOIDAL to a MOLECULAR VIEW Carlsberg Res. Commun. Vol. 49, p. 1-55, 1984 PROTEIN STRUCTURE AND FUNCTION, FROM A COLLOIDAL TO A MOLECULAR VIEW" by HAROLD A. SCHERAGA Baker Laboratory of Chemistry, Cornell University, Ithaca, New York 14853, USA Presented as the 7th Linderstrom-Lang Lecture at the Carlsberg Laboratory, Copenhagen, on lOth May, 1983 Keywords: Hydrodynamic properties, internal interactions, ribonuclease, synthetic polypep- tides, conformational changes, protein folding, conformational energy calculations, structural elements of proteins, enzyme-substrate complexes 1. INTRODUCTION opment of theoretical methods to use these Forty years ago, proteins were described in experimental distance constraints, together with terms of ellipsoids of revolution in order to empirical potential energy functions, to gain an account for their hydrodynamic properties. understanding as to how interatomic inter- With the determination of the amino acid sequ- actions dictate the structural features of proteins ence of insulin (290) and other proteins, it and to try to compute the three-dimensional became meaningful to discuss protein structure structures of polypeptides and proteins in solu- and function in terms of the interatomic inter- tion. At the same time, both theoretical and actions within the protein molecule. Various experimental methods were used to elucidate physical chemical methods were developed and the pathway(s) of folding from a nascent poly- applied to elucidate such interactions. Many of peptide chain to the three-dimensional structure the pairwise interactions deduced from such of the native protein. The same theoretical and studies were found to exist, e.g. in bovine pan- experimental methods have also been applied to creatic ribonuclease A (303), when the X-ray study the biological function of the folded (na- crystal structure was subsequently determined tive) protein, e.g. the interaction of an enzyme (404, 405,407). The ability to identify pairwise with its substrate. The development of some of interactions by physical chemical means pro- our current views of protein structure and func- vided distance constraints with which to define tion will be described here by focussing on the the three-dimensional structure of a protein in impact of physical chemistry on the advance- solution. There then followed the rapid devel- ment of our knowledge in this field. "~The work reviewed here was supported by research grants from the National Institutes of Health, the National Science Foundation, and the National Foundation for Cancer Research Springer-Verlag 0105-1938/84/0049/0001/$11.00 H. A. SCHERAGA:Protein structure Scale I I o I00.~, No + CI- Glucose II Albumin Hemoglobin .a, - Globulin 69.000 68.000 90.000 a,- Lipoprolein y_ Globulin 200,000 156,000 Lipoprotein 1,300,000 Fibrinogen 4OO,O0O Figure 1. Early representation of protein molecules in terms of ellipsoids of revolution. Relative dimensions of several protein molecules in blood (293). 2. EARLY VIEW OF PROTEINS peptide chains) was altered to one in which the In the 1940's, proteins were thought of as protein swells (almost isotropically) (325). Thus, charged colloidal particles. A summary of their the concept that a protein is a rigid particle had acid-base equilibria and dielectric properties has to be abandoned in favor of one in which the been provided by COHN and EDSALL (47), and molecule is a dynamically flexible one (325). a description of their sizes and shapes, deter- The rigid-particle view had also been used to mined by various hydrodynamic and optical interpret titration data of proteins. LINDER- methods, has been presented by EDSALL (63). STROM-LANG (173) was the first one to exploit Figure 1 is a pictorial interpretation of such data, the newly-formulated DEBYE-HOCKEL theory in terms of ellipsoids of revolution (293). A (52, 53) for this purpose by applying it to a re-interpretation of hydrodynamic data with the spherical model of a protein, with the charge aid of shape-dependent [3- and 8-functions (325) distributed uniformly on its surface. Subse- led to an alteration of the pictorial represent- quently, the spherical model was extended to a ations of Figure 1; e.g. the computed axial ratio cylindrical one by HILL (113), and the uniform offibrinogen was reduced from ! 8:1 to 5:1 (327, distribution of charge was modified to a discrete 344), a result that is compatible with electron one (for a spherical model) by TANFORD and micrographs (103) of this protein. Further, the IORKWOOD (369, 371). In the succeeding years, view that urea denaturation of proteins leads to TANFORD (370) and KLOTZ (138) made consi- increased asymmetry (due to unfolding ofpoly- derable use of such models to provide clues that 2 Carlsberg Res. Commun. Vol. 49, p. 1-55, 1984 H. A. SCHERAGA:Protein structure interactions involving ionizable groups alter were confirmed when the a-helix was subse- their normally-observed pK's and binding con- quently found in the crystal structures of myo- stants for various ligands. globin (133) and hemoglobin (244), and the Simultaneously, the thermodynamic proper- [3-pleated sheet in the crystal structure of lyso- ties of protein solutions had also been treated zyme (18). with rigid spherical charged models. For exam- Simultaneously, the need was recognized ple, SCATCHARD and coworkers (294) ac- [even before the successful determinations of counted for the non-ideality of aqueous solu- protein structures by X-ray diffraction (18, 133, tions of proteins by interpreting the second virial 244)] for obtaining structural information about coefficient in the expression for the osmotic proteins in solution, and for determining how pressure in terms of interactions between the polypeptide chains fold into the native confor- various components of the system. mations of proteins and then interact with other Of course, it was realized that such simple molecules. Hence, methods were developed to models provided only the crudest description of synthesize homopolymers and copolymers of a protein, and efforts were made to try to probe amino acids as simple models (19, 20, 130) in the more detailed structure of the protein mole- order to elucidate the interactions present in cule. The aforementioned titration and binding proteins, and various physical chemical techni- experiments suggested that there were inter- ques [such as optical rotation and circular di- actions between functional groups that were chroism (204, 205, 298, 375, 377), infrared reflected in modified pK's and binding con- (203), Raman (381), and nuclear magnetic reso- stants. Such interactions also modified the ease nance (127, 406) spectroscopies, kinetics of of hydrolysis of peptide bonds, and LINDER- deuterium-hydrogen exchange (122, 176), and STROM-LANG (174, 175, 177), OTTESEN(234), immunochemical measures of folding equilibria RICHARDS (285) and others demonstrated this (291)] were developed to investigate these inter- very clearly by observations of limited proteo- actions. At the same time, the development of lysis by enzymes. But a detailed interpretation of thermodynamic and statistical mechanical me- such results had to await the pioneering work of thods began to emerge (150-152, 296, 297) to SANGER (290) who first determined the amino treat the interactions that determine conforma- acid sequence of a protein, insulin. tion, conformational changes, and intramolecu- lar structure in polypeptides and proteins. We shall therefore trace the parallel and symbiotic 3. TRANSITION TO A MOLECULAR elaboration of theoretical and experimental pro- APPROACH cedures to study protein structure and function With the determination of the amino acid in solution. sequence of insulin (290), and subsequently of ribonuclease (99, 114, 268, 347-349), lysozyme (32, 128) and other proteins, a new era in protein 4. INTERNAL INTERACTIONS chemistry was opened up. The protein was no Internal interactions in proteins affect their longer a colloidal particle, but an organic mole- various properties, and physical chemical stu- cule whose complete covalent structure was dies of such properties, accompanied by appro- describable. It then remained the province of the priate theoretical interpretation, provide infor- physical chemist to provide a description of its mation about such internal interactions. three-dimensional structure, of the interactions Initially, the experiments were carried out with that led to it, and of its interactions with other insulin, lysozyme and ribonuclease (301) molecules. because these were among the first proteins After a long series of trials by numerous whose amino acid sequences were determined, investigators, PAULING and COREY (241, 242) and attention was focussed on electrostatic ef- succeeded in elucidating the stereochemistry of fects and on hydrogen and hydrophobic inter- the polypeptide chain in terms of the ix-helix and actions. the I]-pleated sheet. These pioneering proposals Carlsberg Res. Commun. Vol. 49, p. 1-55, 1984 3 H. A. SCHERAGA:Protein structure ._.= -- CH2--CH2-C,o .... HO.-< )'-CH2-- Figure 2. Schematic representation of a hydrogen bond between the hydroxyl group of a tyrosyl residue and the carboxylate ion of a glutamyl residue between two rigid, helical polypeptide chains (150). 4.1. Electrostatic effects hydrogen bond will affect the observed pK's of Generalized electrostatic effects, which are the donor and acceptor groups (150). In the reflected in altered pK's observed iia acid-base illustration of Figure 2, the observed pK of the titrations of proteins, are usually treated by
Recommended publications
  • Atomic Modeling of Proteins Via Small Angle X-Ray Scattering (SAXS)
    Atomic modeling of proteins via Small Angle X-ray Scattering (SAXS) Susan Tsutakawa SIBYLS Beamline. Advanced Light Source Synchrotron, Lawrence Berkeley Natl Lab Six Take Home Messages on What can SAXS do for you? X-ray Scattering by Small Angle X-ray Scattering electrons provides distances measures all electron pair between electrons. distances in a protein in solution Atomic models can be quantitatively compared with SAXS data Atomic models are more SAXS can validate protein powerful than shape structure predictions because they can be tested. SAXS can reveal protein conformations occurring in solution at the atomic level If I could ask for any scientific app, what would it be? Accurate and reliable protein structure prediction For proteins with no known orthologs, structure predictions currently are not reliable. Amino Acid Protein Prediction Structure Prediction Sequence Server SIBYLS SAXS data I propose that Beamline input of SAXS data 12.3.1 can improve protein structure algoriths. As in crystallography, SAXS uses elastic scattering of X-rays, where the X-rays are scattered by an electron without a change in energy. Scattered X- rays constructively or destructively combine with each other. The X-ray scattering provides information on the distance between electrons. In SAXS, the intramolecular distances In Crystallography, these electrons are are constant; the scattering is related to each in crystallographic coherent, and the amplitudes are symmetry. added. SAXS is a distance method, measuring all electron pair distances. Scattering Curve Electron Pair Distance Histogram Fourier dmax Intensity (q) Intensity SAXS sample 30 ul q (Å-1) Protein 1-3 mg/ml Exact Buffer Distance information can validate an atomic model – as exemplified by validation of the May, 1953 model of DNA by fiber diffraction GeneticalImplications of the structure of Deoxyribonucleic Acid WatsonJ.D.
    [Show full text]
  • Small Angle X-Ray Scattering Experiments of Monodisperse Samples Close to the Solubility Limit
    Small angle x-ray scattering experiments of monodisperse samples close to the solubility limit Erik W. Martina, Jesse B. Hopkinsb, Tanja Mittaga1 a Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis TN b The Biophysics Collaborative Access Team (BioCAT), Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 1Corresponding author: email address: [email protected] Abstract The condensation of biomolecules into biomolecular condensates via liquid-liquid phase separation (LLPS) is a ubiquitous mechanism that drives cellular organization. To enable these functions, biomolecules have evolved to drive LLPS and facilitate partitioning into biomolecular condensates. Determining the molecular features of proteins that encode LLPS will provide critical insights into a plethora of biological processes. Problematically, probing biomolecular dense phases directly is often technologically difficult or impossible. By capitalizing on the symmetry between the conformational behavior of biomolecules in dilute solution and dense phases, it is possible to infer details critical to phase separation by precise measurements of the dilute phase thus circumventing complicated characterization of dense phases. The symmetry between dilute and dense phases is found in the size and shape of the conformational ensemble of a biomolecule – parameters that small-angle x-ray scattering (SAXS) is ideally suited to probe. Recent technological advances have made it possible to accurately characterize samples of intrinsically disordered protein regions at low enough concentration to avoid interference from intermolecular attraction, oligomerization or aggregation, all of which were previously roadblocks to characterizing self-assembling proteins. Herein, we describe the pitfalls inherent to measuring such samples, the details required for circumventing these issues and analysis methods that place the results of SAXS measurements into the theoretical framework of LLPS.
    [Show full text]
  • Solution Small Angle X-Ray Scattering : Fundementals and Applications in Structural Biology
    The First NIH Workshop on Small Angle X-ray Scattering and Application in Biomolecular Studies Open Remarks: Ad Bax (NIDDK, NIH) Introduction: Yun-Xing Wang (NCI-Frederick, NIH) Lectures: Xiaobing Zuo, Ph.D. (NCI-Frederick, NIH) Alexander Grishaev, Ph.D. (NIDDK, NIH) Jinbu Wang, Ph.D. (NCI-Frederick, NIH) Organizer: Yun-Xing Wang (NCI-Frederick, NIH) Place: NCI-Frederick campus Time and Date: 8:30am-5:00pm, Oct. 22, 2009 Suggested reading Books: Glatter, O., Kratky, O. (1982) Small angle X-ray Scattering. Academic Press. Feigin, L., Svergun, D. (1987) Structure Analysis by Small-angle X-ray and Neutron Scattering. Plenum Press. Review Articles: Svergun, D., Koch, M. (2003) Small-angle scattering studies of biological macromolecules in solution. Rep. Prog. Phys. 66, 1735- 1782. Koch, M., et al. (2003) Small-angle scattering : a view on the properties, structures and structural changes of biological macromolecules in solution. Quart. Rev. Biophys. 36, 147-227. Putnam, D., et al. (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Quart. Rev. Biophys. 40, 191-285. Software Primus: 1D SAS data processing Gnom: Fourier transform of the I(q) data to the P(r) profiles, desmearing Crysol, Cryson: fits of the SAXS and SANS data to atomic coordinates EOM: fit of the ensemble of structural models to SAXS data for disordered/flexible proteins Dammin, Gasbor: Ab initio low-resolution structure reconstruction for SAXS/SANS data All can be obtained from http://www.embl-hamburg.de/ExternalInfo/Research/Sax/software.html MarDetector: 2D image processing Igor: 1D scattering data processing and manipulation SolX: scattering profile calculation from atomic coordinates Xplor/CNS: high-resolution structure refinement GASR: http://ccr.cancer.gov/staff/links.asp?profileid=5546 Part One Solution Small Angle X-ray Scattering: Basic Principles and Experimental Aspects Xiaobing Zuo (NCI-Frederick) Alex Grishaev (NIDDK) 1.
    [Show full text]
  • Bridging the Solution Divide: Comprehensive Structural Analyses of Dynamic RNA, DNA, and Protein Assemblies by Small-Angle X-Ray
    Available online at www.sciencedirect.com Bridging the solution divide: comprehensive structural analyses of dynamic RNA, DNA, and protein assemblies by small-angle X-ray scattering Robert P Rambo1 and John A Tainer1,2 Small-angle X-ray scattering (SAXS) is changing how we macromolecules with functional flexibility and intrinsic perceive biological structures, because it reveals dynamic disorder, which occurs in functional regions and interfaces macromolecular conformations and assemblies in solution. [1,2]. Therefore, as structural biology evolves, it will SAXS information captures thermodynamic ensembles, need to provide structural insights into larger macromol- enhances static structures detailed by high-resolution ecular assemblies that display dynamics, flexibility, and methods, uncovers commonalities among diverse disorder. macromolecules, and helps define biological mechanisms. SAXS-based experiments on RNA riboswitches and ribozymes Solution structures from X-ray scattering and on DNA–protein complexes including DNA–PK and p53 For noncoding functional RNAs and intrinsically disor- discover flexibilities that better define structure–function dered proteins, defining their shapes and conformational relationships. Furthermore, SAXS results suggest space in solution marks a critical step toward understand- conformational variation is a general functional feature of ing their functional roles. Facilitating this goal are ab initio macromolecules. Thus, accurate structural analyses will bead-modeling algorithms for interpreting small-angle X- require a comprehensive approach that assesses both ray scattering (SAXS) data. These ab initio models flexibility, as seen by SAXS, and detail, as determined by X-ray represent low-resolution shapes and contribute signifi- crystallography and NMR. Here, we review recent SAXS cantly to interpretation of flexible systems in solution, computational tools, technologies, and applications to nucleic particularly for protein–DNA complexes.
    [Show full text]
  • Novel Ligands Targeting the DNA/RNA Hybrid and Telomeric Quadruplex As Potential Anticancer Agents
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Novel Ligands Targeting the DNA/RNA Hybrid and Telomeric Quadruplex as Potential Anticancer Agents Islam, Mohammad Kaisarul Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 10. Oct. 2021 Novel Ligands Targeting the DNA/RNA Hybrid and Telomeric Quadruplex as Potential Anticancer Agents A dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Mohammad Kaisarul Islam Institute of Pharmaceutical Sciences School of Biomedical Sciences King’s College London Supervisors Professor David E.
    [Show full text]
  • Recent Methods for Purification and Structure Determination Of
    International Journal of Molecular Sciences Review Recent Methods for Purification and Structure Determination of Oligonucleotides Qiulong Zhang 1,3,4,†, Huanhuan Lv 1,3,4,†, Lili Wang 1,3,4, Man Chen 1,3,4, Fangfei Li 1,3,4, Chao Liang 1,3,4, Yuanyuan Yu 1,3,4, Feng Jiang 1,2,3,4,*, Aiping Lu 1,3,4,* and Ge Zhang 1,3,4,* 1 Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, China; [email protected] (Q.Z.); [email protected] (H.L.); [email protected] (L.W.); [email protected] (M.C.); [email protected] (F.L.); [email protected] (C.L.); [email protected] (Y.Y.) 2 The State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China 3 Institute of Precision Medicine and Innovative Drug Discovery, HKBU (Haimen) Institute of Science and Technology, Haimen 226100, China 4 Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China * Correspondence: [email protected] (F.J.); [email protected] (A.L.); [email protected] (G.Z.); Tel.: +86-513-8210-6970 (F.J.); +852-3411-2456 (A.L.); +852-3411-2958 (G.Z.); Fax: +86-513-8210-6970 (F.J.); +852-3411-2461 (A.L. & G.Z.) † These authors contributed equally to this work. Academic Editor: Mateus Webba da Silva Received: 25 November 2016; Accepted: 14 December 2016; Published: 18 December 2016 Abstract: Aptamers are single-stranded DNA or RNA oligonucleotides that can interact with target molecules through specific three-dimensional structures.
    [Show full text]
  • ACA 2011 - Transactions Time Resolved Photochemistry Electron Density Bruker AXS
    American Crystallographic Association Number 4 Winter 2010 ACA 2011 - Transactions Time Resolved Photochemistry Electron Density Bruker AXS 3 Year Warranty on IµS APEX DUO - Dual Wavelength Perfected The Most Versatile System for Small Molecule Crystallography The APEX DUO combines the highest intensity Microfocus sealed tube sources for Mo and Cu radiation with the most sensitive CCD detector for crystallography. The APEX DUO allows collection of charge density quality data with Mo radiation and exploits all the advantages of Cu wavelength for absolute structure determination and diffraction experiments on ever smaller organic crystals. Data from both wavelengths can be collected successively in one experiment and switching between wavelengths is fully automated, fast and without user intervention. Crystallography think forward www.bruker-axs.com APEX Duo_ACA_1-2010.indd 1 1/8/2010 9:55:19 AM American Crystallographic Association www.AmerCrystalAssn.org Table of Contents 2 President’s Column 3 Notes from Council 4 From the Editor's Desk On the cover- see page 43 Acta F Showcases Structural Genomics Index of Advertisers 5-6 Awards to Crystallographers 7-8 Memories of Jim Stewart (1931 -2010) 9-10 ACA Living History - David Sayre 11 Science as Art / Art as Science 14 ACA 2010 - Crystallography World of Wonders 15 19th Annual BHT Regional Meeting 16 6th Meeting of the Argentinian Crystallograpic Assn. 18 High Pressure Single-Crystal Diffraction 19 Puzzle Corner 20-23 Book Reviews 24-27 Election Results for ACA Offices - 2011 Contributors to this Issue 28 ACA Corporate Members 29-37 2010 ACA Travel Award Winners 38-39 Contributors to ACA Award Funds 40-42 ACA 2011 - New Orleans - Preview 43 Calls for ACA Nominations - Travel Funds Available What's on the Cover 44 Calendar Announcing: ACA 2011 Small Molecule Course Contributions to ACA RefleXions may be sent to either of the Editors: Please address questions pertaining to advertisements, membership inquiries, or use of the ACA mailing list to: Connie (Chidester) Rajnak ......................
    [Show full text]
  • Homology Modeling (Comparative Modeling) Structure Prediction
    Cyrus Bench Homology: A highly automated, cloud-enabled, powerful, and user-friendly homology modeling pipeline using RosettaCM White Paper Lucas G. Nivón, Ryan Gomoto, and Yifan Song November, 2017 Author Affiliations: Cyrus Biotechnology, Inc. 500 Union Street Suite 320, Seattle WA 98101. Corresponding Author: Yifan Song, [email protected] or [email protected]. Abstract We describe a new protein structure prediction tool, Cyrus Bench Homology, offering the RosettaCM package on very large, cloud-based computational resources, and presented to users via an easy-to-use web application. Among recent protein structure homology modeling methods, RosettaCM has emerged as the best-performing tool by various metrics in blinded comparisons. However, in practice RosettaCM depends on a variety of external software to complete its standard pipeline for processing homology models and requires large computing resources to achieve top performance. These software and computational requirements have made a full RosettaCM pipeline very difficult to set up outside of large institutions that can provide thousands of CPUs and coordinate software licensing. Cyrus Bench Homology (available at cyrusbio.com) implements the full RosettaCM pipeline for homology prediction, with all software dependencies and computational resources auto-configured. We provide a practical summary of how to use Cyrus Bench Homology, describe the underlying algorithms with an emphasis on recent improvements and key intellectual antecedents, highlight the results of scientific testing, and apply this tool in a variety of examples. Many software tools for homology modeling explicitly aim for accessibility while sacrificing overall accuracy. Cyrus Bench Homology is novel in offering the most accurate structure prediction tool in a very easy-to-use package accessible to any bench scientist.
    [Show full text]
  • Cryo-Transmission Electron Microscopy Structure of a Gigadalton Peptide Fiber of De Novo Design
    Cryo-transmission electron microscopy structure of a gigadalton peptide fiber of de novo design Thomas H. Sharpa,b, Marc Bruninga,1, Judith Mantellb,c,1, Richard B. Sessionsb,1, Andrew R. Thomsona,1, Nathan R. Zaccaib,1, R. Leo Bradyb, Paul Verkadeb,c,d,2, and Derek N. Woolfsona,b,2 aSchool of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom; bSchool of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom; cWolfson Bioimaging Facility, University of Bristol, Bristol BS8 1TD, United Kingdom; and dSchool of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom Edited by David Baker, University of Washington, Seattle, WA, and approved July 6, 2012 (received for review November 21, 2011) Nature presents various protein fibers that bridge the nanometer of α-helical coiled coils, remain relatively poorly described at to micrometer regimes. These structures provide inspiration for the the assembly, molecular, and atomic levels (7–9). de novo design of biomimetic assemblies, both to address difficul- From a more-applied perspective, interest in peptide- and pro- ties in studying and understanding natural systems, and to provide tein-based fibrous biomaterials has increased recently because routes to new biomaterials with potential applications in nano- these materials have potential applications in biotechnology and technology and medicine. We have designed a self-assembling fi- synthetic biology—for example, as scaffolds for 3D cell culture, ber system, the SAFs, in which two small α-helical peptides are tissue engineering, and templating the assembly of functional in- programmed to form a dimeric coiled coil and assemble in a con- organic materials (10–13).
    [Show full text]
  • Strukturelle Analyse Der Dynamischen Konformationsänderung Des Prion-Proteins in Proteinmissfaltungskrankheiten
    Strukturelle Analyse der dynamischen Konformationsänderung des Prion-Proteins in Proteinmissfaltungskrankheiten DISSERTATION zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) Eingereicht im Fachbereich Chemie der Fakultät für Mathematik, Informatik und Naturwissenschaften an der Universität Hamburg vorgelegt von Anne Sommer Hamburg 2015 Die praktischen Arbeiten wurden im Zeitraum von Februar 2010 bis September 2014 in der Nachwuchsgruppe von Dr. Lars Redecke im Laboratorium für Strukturbiologie von Infektion und Entzündung der Universitäten Hamburg und Lübeck sowie am Institut für Biochemie und Molekularbiologie des Fachbereichs Chemie der Universität Hamburg in den Laboratorien der Arbeitsgruppe von Prof. Dr. Christian Betzel durchgeführt. 1. Gutachter: Prof. Dr. Ch. Betzel 2. Gutachter: Prof. Dr. B. Meyer Tag der Disputation: 07.08.2015 I. Inhaltsverzeichnis I I. Inhaltsverzeichnis II. Abkürzungsverzeichnis ...................................................................................................... V III. Zusammenfassung ........................................................................................................... IX IV. Summary ........................................................................................................................... XI 1. Einleitung .............................................................................................................................. 1 1.1. Prionen-Erkrankungen ...................................................................................................
    [Show full text]
  • X-Ray Scattering of Helix, Analysis of Structure of Fibrous Proteins, Effect of Inter Molecular Packing
    Module 30 X-ray Scattering of helix, analysis of structure of fibrous proteins, effect of inter molecular packing Learning Objectives Introduction Helix X-ray fibre diffraction Theory of X-ray fibre diffraction Humidity and Molecular orientation Introduction: 30.1. The Discovery of X-rays: Wilhelm Conrad Röntgen, a German Scientist, while conducting a number of experiments on cathode rays in 1895 (cathode ray is emanation of electrons from the cathode end of a vacuum-pumped glass tube) observed a new form of radiation other than cathode rays. This new form of radiation was named as X-rays by him. Fig 30.1: Wilhelm Conrad Röntgen 30.2. X-ray Diffraction: The properties of X-rays were studied by various scientists. In 1912, a group of physicists at the University of Munich were interested in both crystallography and the behaviour of X-rays. P. P. Ewald and A. Sommerfeld were studying the passage of light waves through crystals. At a colloquium, discussing some of this work, Max von Laue, pointed out that if the wavelength of the radiation became as small as the distance between the atoms in the crystal, a diffraction pattern should result. There was some evidence that, X-rays might have wavelength in this range, and W. Friedrich agreed to make an experimental test. An X-ray beam passed through a crystal of copper sulphate gave a definite diffraction pattern. 30.3. Helix: Helix is a smooth curve in a three dimensional space satisfying the condition that the tangent to the curve at any point makes a constant angle with the fixed line called axis.
    [Show full text]
  • Synchrotron Radiation X-Ray Diffraction Techniques Applied to Insect Flight Muscle
    International Journal of Molecular Sciences Review Synchrotron Radiation X-ray Diffraction Techniques Applied to Insect Flight Muscle Hiroyuki Iwamoto Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan; [email protected]; Tel.: +81-791-58-2506 Received: 26 April 2018; Accepted: 5 June 2018; Published: 13 June 2018 Abstract: X-ray fiber diffraction is a powerful tool used for investigating the molecular structure of muscle and its dynamics during contraction. This technique has been successfully applied not only to skeletal and cardiac muscles of vertebrates but also to insect flight muscle. Generally, insect flight muscle has a highly ordered structure and is often capable of high-frequency oscillations. The X-ray diffraction studies on muscle have been accelerated by the advent of 3rd-generation synchrotron radiation facilities, which can generate brilliant and highly oriented X-ray beams. This review focuses on some of the novel experiments done on insect flight muscle by using synchrotron radiation X-rays. These include diffraction recordings from single myofibrils within a flight muscle fiber by using X-ray microbeams and high-speed diffraction recordings from the flight muscle during the wing-beat of live insects. These experiments have provided information about the molecular structure and dynamic function of flight muscle in unprecedented detail. Future directions of X-ray diffraction studies on muscle are also discussed. Keywords: insect flight muscle; X-ray diffraction; synchrotron radiation; X-ray microbeam; time-resolved measurement 1. Introduction Like light microscopy and electron microscopy, X-ray diffraction is one of the techniques used to resolve the fine structure of objects by using the scattering of electromagnetic waves or electron beams.
    [Show full text]