Final Report 6/30/2011

Total Page:16

File Type:pdf, Size:1020Kb

Final Report 6/30/2011 FINAL REPORT 6/30/2011 ______________________________________________________________________________ _______ Full data for all device tests conducted by the Working Group is available for download at: ftp://twg:[email protected] Contents 1. Introduction ............................................................................................................................................. 6 2. Organization and Functioning of the WG and TWG............................................................................. 7 2.1 Organization of the WG and TWG ............................................................................................................. 7 2.2 Participation in the TWG ............................................................................................................................ 9 2.3 Work Plan .................................................................................................................................................. 9 2.4 Functioning of the TWG ........................................................................................................................... 12 2.5 Overview of the Testing Process ............................................................................................................. 12 2.6 Anonymity of Testing Results ................................................................................................................... 14 2.7 Abstract of Sub-Team Report Summaries ............................................................................................... 14 2.7.1 Aviation ................................................................................................................................... 15 2.7.2 Cellular ................................................................................................................................... 16 2.7.3 General Location and Navigation ........................................................................................... 17 2.7.4 High Precision, Timing and Networks ..................................................................................... 21 2.7.5 Space-based Receivers ......................................................................................................... 24 3. Sub-Team Reports ................................................................................................................................ 27 3.1 Aviation Sub-Team ........................................................................................................................ 27 Executive Summary ................................................................................................................................ 27 3.1.1 Work Plan Item 1: Establish Pertinent Analytical and Test Methodologies and Assumptions Underlying the Test Regime ................................................................................................................... 28 3.1.2 Work Plan Item 2: Select the Categories of Receivers and Receivers to be Tested .............. 31 3.1.3 Work Plan Item 3: Develop Operational Scenarios ................................................................. 32 3.1.4 Work Plan Item 4: Establish the Methodology for Analyzing Test Results .............................. 37 3.1.5 Work Plan Item 5: Derive the Test Conditions Based on the Established Operational Scenarios 39 3.1.6 Work Plan Item 6: Write the Test Plan and Procedures ......................................................... 40 3.1.7 Work Plan Item 7: Identify and Engage Appropriate Neutral Test Facility(ies) for the Testing Portion of the Work Plan ......................................................................................................................... 42 3.1.8 Work Plan Item 8: Perform Testing ......................................................................................... 42 3.1.9 Work Plan item 9: Analyze Test Results Based on Established Methodology ........................ 45 3.1.10 Work Plan Item 10: Assess Operational Scenarios Using Analytics and Test Results ....... 47 3.1.11 Work Plan Item 11: Assess Whether any Mitigation Measures are Feasible and Appropriate 50 3.2 Cellular Sub-Team ......................................................................................................................... 54 3.2.1 Work Plan Item 1: Establish Pertinent Analytical and Test Methodologies and Assumptions Underlying the Test Regime ................................................................................................................... 55 3.2.2 Work Plan Item 2: Select the Categories of Receivers and Receivers to be Tested ............. 60 3.2.3 Work Plan Item 3: Develop Operational Scenarios ................................................................. 63 3.2.4 Work Plan Item 4: Establish the Methodology for Analyzing Test Results .............................. 64 3.2.5 Work Plan Item 5: Derive the Test Conditions Based on the Established Operational Scenarios 64 3.2.6 Work Plan Item 6: Write the Test Plan and Procedures ......................................................... 64 3.2.7 Work Plan Item 7: Identify and Engage Appropriate Neutral Test Facility(ies) for the Testing Portion of the Work Plan ......................................................................................................................... 72 3.2.8 Work Plan Item 8: Performance Testing ................................................................................. 73 3.2.9 Work Plan item 9: Analyze Test Results Based on Established Methodology ........................ 75 Figure 3.2.3 CDF of Final of Passing Blocker Levels across All Devices and Test Suites for the lower 10MHz ................................................................................................................................................................ 79 3.2.10 Conclusions regarding L Band Interference Impact to Cellular GPS Receivers ............... 113 3.2.11 Work Plan Item 10: Assess Operational Scenarios Using Analytics and Test Results ..... 117 3.2.12 Work Plan item 11: Prevention and Mitigation Measures ................................................. 117 3.2.13 Summary of Live Sky Testing by LightSquared and TechnoCom Wireless...................... 120 3.3 General Location / Navigation Sub-Team ................................................................................. 122 3.3.0 Executive Summary .............................................................................................................. 122 3.3.1 Establish Pertinent Analytical and Test Methodologies and Assumptions Underlying the Test Regime 129 3.3.2 Work Plan Item 2: Select the Categories of Receivers and Receivers to be Tested ............ 130 3.3.3 Work Plan Item 3: Develop Operational Scenarios ............................................................... 132 -2- 3.3.4 Work Plan Item 4: Establish the Methodology for Analyzing Test Results ............................ 133 3.3.5 Work Plan Item 5: Derive the Test Conditions Based on the Established Operational Scenarios 133 3.3.6 Work Plan Item 6: Write the Test Plan and Procedures ....................................................... 133 Combined Sub-Team Perspective ........................................................................................................ 133 3.3.7 Work Plan Item 7: Identify and Engage Appropriate Neutral Test Facility(ies) for the Testing Portion of the Work Plan ....................................................................................................................... 133 3.3.8 Work Plan Item 8: Perform Testing ....................................................................................... 134 3.3.9 Work Plan Item 9: Analyze Test Results Based on Established Methodology ..................... 136 3.3.10 Work Plan Item 10: Assess Operational Scenarios Using Analytics and Test Results ..... 167 3.3.11 Work Plan Item 11: Assess Whether any Mitigation Measures Are Feasible and Appropriate 176 3.4 High Precision, Timing, and Networks Sub-Team .................................................................... 180 1. Executive Summary .......................................................................................................................... 180 1.1 GPS Community Positions ............................................................................................... 180 1.2 LightSquared Positions ..................................................................................................... 181 2. Introduction and Background ............................................................................................................ 183 3. Test Methodologies and Assumptions .............................................................................................. 186 3.1 Background Assumptions ........................................................................................................ 186 3.2 LightSquared Rollout Plan ....................................................................................................... 186 3.3 Harmful Interference ................................................................................................................ 187 3.3.1 Introduction .................................................................................................................... 187 3.3.2 Coverage Measure ........................................................................................................ 187
Recommended publications
  • Adaptive Beamforming for High-Data-Rate Wireless Systems
    Adaptive Beamforming for High-Data-Rate Wireless Systems Brian Lawrence Department of Electrical & Computer Engineering McGill University Montr´eal, Canada May 2010 A thesis submitted to McGill University in partial fulfillment of the requirements for the degree of M.Eng. c 2010 Brian Lawrence ii Abstract Single-port beamforming, otherwise known as microwave or radio-frequency (RF) beam- forming, is advantageous over digital beamforming in terms of cost and power consumption, as the former only requires one downconversion receiver and analog-to-digital converter (ADC) in total, while the latter requires one downconversion receiver and ADC per an- tenna. We develop a novel, single-port beamforming algorithm based on the minimum mean-square error (MMSE) criterion. This new method is designed to minimize the num- ber of weight changes required to estimate the optimal weights, thereby making it easier to implement in practice, and more suitable for high-data-rate applications than the popular perturbation algorithms, which require their weights be continuously switched. Numerical simulations reveal that the proposed algorithm demonstrates promising performance in the presence of multiple interfering signals, and is less susceptible to performance degrada- tion than the perturbation algorithm when subjected to finite-resolution phase shifters and amplitude-control devices. iii Sommaire La formation de faisceauxa ` acc`es simple, ´egalement appel´e formation de faisceaux micro- ondes ou radiofr´equences (RF), a l’avantage sur la formation de faisceaux num´erique au niveau du coˆut et de la consommation d’´energie puisqu’elle ne requiert qu’un r´ecepteur in- fradyne et convertisseur analogique-num´erique (ADC) plutˆot qu’un par antenne.
    [Show full text]
  • Exploiting 3D-Printing in Passive UHF RFID Electromagnetic Projects
    32nd URSI GASS, Montreal, 19-26 August 2017 Exploiting 3D-Printing in Passive UHF RFID Electromagnetic Projects L. Catarinucci*, R. Colella, and L. Tarricone Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy Abstract 2. 3D-Printed Device for Dielectric Characterization of 3D-Printed Substrates: In this work, the appropriateness of the combination of Design and Results 3D-printing and RFID is faced. Firstly, a T-Resonator for the dielectric characterization of substrates, including 3D- The rigorous dielectric characterization of 3D-printed printed ones, is presented, and the dependence on the air substrates when varying frequency and infill percentage, percentage of both permittivity and loss tangent of PLA is a mandatory step for their use in the design of MW substrates has been found in the UHF RFID band. Then, a circuits and antennas. Among the others, a microstrip wearable bracelet tag and a Yagi-Uda-inspired long-range device based on the well-known T-resonator method tag, which exploit the peculiarities of 3D-printinted would be easy enough to be realized and particularly substrates, have been designed, realized, and validated. suitable for permittivity measurement of planar substrates [6 - 8]. On the contrary, two issues must be taken into 1. Introduction account. The former is related to its use for loss tangent estimation, which is sensibly affected by the external Passive UHF RFID is growing at a rapid pace and covers loading of the resonator itself [7]. The latter is related to many different types of applications. At the same time, the practical measurement: the whole “T” must perfectly additive manufacturing 3D-printing technology promises adhere to the substrate under test (SUT) so to guarantee high added value in many fields, including the results to be accurate enough.
    [Show full text]
  • Efficient Antennas for Wearable Wireless Sensor Nodes
    Efficient Antennas for Wearable Wireless Sensor Nodes Author Vatankhah Varnoosfaderani, Mohammad Published 2016 Thesis Type Thesis (PhD Doctorate) School Griffith school of Engineering DOI https://doi.org/10.25904/1912/704 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/366335 Griffith Research Online https://research-repository.griffith.edu.au Efficient Antennas for Wearable Wireless Sensor Nodes Mr. Mohammad Vatankhah Varnoosfaderani BS, MS Griffith School of Engineering Griffith University Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy March 2016 I Table of Contents 1 Chapter 1: Introduction....................................................................................................... 2 2 Chapter 2: Literature Review .............................................................................................. 7 2.1 Why and when the study on wearable antennas started? ................................................ 7 2.2 How does the body affect the performance of an antenna? ............................................. 7 2.3 What are the effects of the body on the performance of an antenna? ............................... 8 2.3.1 Resonant frequency shift...................................................................................... 8 2.3.2 Changing the radiation pattern of the antenna .......................................................10 2.3.3 Power absorption................................................................................................11
    [Show full text]
  • Motivation and Possibilities of Affordable Low-Frequency Radio Interferometry in Space
    Astronomy & Astrophysics manuscript no. paper November 4, 2018 (DOI: will be inserted by hand later) Motivation and possibilities of affordable low-frequency radio interferometry in space Applications to exoplanet research and two instrument concepts P. Janhunen1, A. Olsson2, R. Karlsson2, and J.-M. Grießmeier3 1 Finnish Meteorological Institute, Geophysical Research (FMI/GEO), POB 503, FIN-00101 Helsinki, Finland e-mail: [email protected] 2 Swedish Institute of Space Physics, Uppsala Division, POB 537, SE-75121, Uppsala Sweden e-mail: [email protected] 3 Institut f¨ur theoretische Physik, TU Braunschweig, Mendelssohnstrasse 3, D-38106 Braunschweig, Germany e-mail: [email protected] Received April, 2003; accepted ????, 200? Abstract. The motivation to build spaceborne interferometric arrays for low-frequency radio astronomy is widely recognised because frequencies below the ionospheric cutoff are inaccessible for ground-based radio telescopes. We discuss the theoretical possibilities to use low-frequency spacecraft arrays to detect signals from magnetized extrasolar planets, including earthlike ones. A major uncertainty that prohibits us from knowing if it is possible to detect exoplanet cyclotron maser signals is the incomplete knowledge of the properties of the interstellar plasma. We also present some ideas of how to construct efficient and affordable space-based radio telescopes. We discuss two possibilities, a log-periodic antenna in the spin plane and a two-spacecraft concept where one spacecraft holds a large parabolic wire mesh reflector and the other one contains the receiver. In the latter case, the effective area could be of the order of 1 km2. The purpose of the paper is to stress once more the importance of spaceborne low- frequency measurements by bringing in the intriguing possibility of detecting earthlike exoplanet radio emissions and to demonstrate that building even very large low-frequency antennas in space is not necessarily too expensive.
    [Show full text]
  • Approximate Method of Analysis of Log-Periodic Antennas with In-Phase Currents
    Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 239-243 (2018) ASTESJ www.astesj.com ISSN: 2415-6698 Special issue on Advancement in Engineering Technology Approximate method of analysis of log-periodic antennas with in-phase currents Boris Levin* Holon Institute of Technology, Israel A R T I C L E I N F O A B S T R A C T Article history: Log-periodic antennas have high electrical characteristics over a wide frequency range. Received: 23 August, 2017 The large length of the antennas is their significant disadvantage caused by the fact that Accepted: 07 January, 2018 each active region consisting of several radiators operates in a narrow frequency range. Online: 30 January, 2018 To extend this range, it is proposed to use radiators with concentrated capacitive loads, providing in-phase currents with a linear amplitude distribution law. An approximate Keywords: calculation of the fields and directional characteristics of a complex multielement radiating Antenna theory, structure is performed using a new method of electrostatic analogy based on the assumption Directional antennas, that the ratio of emf in the radiator centers is equal to the charge ratio on the conductors In-phase current distribution, of the electrically neutral system. The problem of optimization of considered antennas by Method of electrostatic analogy, methods of mathematical programming is formulated. Numerical calculation 1. Introduction capacitive loads: the method of impedance long-line and the method of a long-line with loads. The loads calculated by these The use of concentrated loads included along the axis of a methods were used as the initial values for numerical solution of linear antenna allows solving the synthesis problem, i.e., to obtain the problem by methods of mathematical programming.
    [Show full text]
  • Phased Array Antenna Design for Mimo and Beamforming Technologies on 5G
    TALLINN UNIVERSITY OF TECHNOLOGY School of Information Technologies Thomas Johann Seebeck Department of Electronics Akmalidin Alisher O’g’li Alimov, 177321IVEM PHASED ARRAY ANTENNA DESIGN FOR MIMO AND BEAMFORMING TECHNOLOGIES ON 5G Master’s Thesis Supervisor: Yannick Le Moullec PhD Tallinn 2019 TALLINNA TEHNIKAÜLIKOOL Infotehnoloogia teaduskond Thomas Johann Seebecki elektroonikainstituut Akmalidin Alisher O’g’li Alimov, 177321IVEM FAASINIHUTUSEGA VÕREANTENNI DISAIN 5G MIMO JA SUUNATUD SIGNAALIEDASTUSE TEHNOLOOGIAS Magistritöö Juhendaja: Yannick Le Moullec PhD Tallinn 2019 Author’s declaration of originality I hereby certify that I am the sole author of this thesis. All the used materials, references to the literature and the work of others have been referred to. This thesis has not been presented for examination anywhere else. Author: Akmalidin Alisher O’g’li Alimov 04.05.2019 3 Abstract Phased Array Antenna Design For MIMO and Beamforming Technologies on 5G The application of phased array antennas is expanding rapidly with the introduction of 5G technology where MIMO and beamforming technologies are key enablers of high data rate exchange. Among others, 5G technology is creating new business opportunities in logistics, for example, using delivery drones and robots that exploit a low latency remote control to deliver items. To benefit from a high data rate exchange and real-time control, such drones and robots need to be equipped with array antennas. However, designing a compact antenna that would support MIMO and beamforming technologies is a challenging task since these technologies require different antenna element spacing in the phased array antenna construction. In this thesis, a 6x6 (16 active elements) phased array antenna is proposed with MIMO performance prioritized over beamforming since beam shaping requires intensive signal processing, which may rapidly drain the battery of e.g.
    [Show full text]
  • Technical Specifications
    Technical Specifications Ambilight Ambilight Version 3 sided Ambilight Features o Built-in Ambilight+hue o Ambilight Music o Game Mode o Wall colour adaptive o Lounge mode Picture/Display Display 4K Ultra HD OLED Diagonal screen size (inch) 55 inch Diagonal screen size (metric) 139 cm Diagonal screen size (inch) 55 inch Panel resolution 3840 x 2160 Aspect ratio 16:9 Pixel engine P5 Perfect Picture Engine Picture enhancement o Perfect Natural Motion o Ultra Resolution o Micro Dimming Perfect o HDR Perfect o 4500 PPI Android OS Android™ 7.0 (Nougat) Pre-installed apps o Google Play Movies* o Google Play Music* o Google Search o YouTube Memory size o 16 GB o extendable via USB storage Smart TV Features User Interaction o MultiRoom Client and Server o SimplyShare Interactive TV HbbTV Programme o Pause TV o USB Recording* SmartTV apps* o Online Video Stores o Open Internet Browser o Social TV o TV on Demand o YouTube Ease of Installation o Auto detect Philips devices o Network installation wizard o Settings assistant wizard o Device connection wizard Ease of Use o One-stop Smart Menu button o On-screen User manual Firmware upgradeable o Firmware auto upgrade wizard o Firmware upgradeable via USB o Online firmware upgrade Screen Format Adjustments o Basic - Fill Screen o Fit to Screen o Advance - Shift o Zoom, Stretch Philips TV Remote app* o Apps o Channels o Control o NowOnTV o TV Guide o Video On Demand Remote Control o with Keyboard o 1x Easy Remote Processing Processing Power Quad Core Sound Audio o Output power: 50 Watt (RMS) o 2.1
    [Show full text]
  • RF Design for GPS RECEIVERS APPLICATION NOTE
    RF Design FOR GPS RECEIVERS APPLICATION NOTE u-blox ag • Zuercherstrasse 68 • CH-8800 Thalwil • Switzerland • Phone +41 1 722 74 44 • Fax +41 1 722 74 47 • www.u-blox.com RF Design for GPS receivers - Application Note PRELIMINARY u-blox ag Title RF Design for GPS receivers Doc Type APPLICATION NOTE PRELIMINARY Doc Id GPS-X-02015-A Author: Andreas Thiel Date: 26. June 02 For most recent documents, please visit www.u-blox.com We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express authority is strictly forbidden. All trademarks mentioned in this document are property of their respective owners. Copyright © 2002, u-blox ag THIS DATASHEET CONTAINS INFORMATION ON U-blox PRODUCTS IN THE SAMPLING AND INITIAL PRODUCTION PHASES OF DEVELOPMENT. THE SPECIFICATIONS IN THIS DATASHEET ARE SUBJECT TO CHANGE AT u-blox' DISCRETION. u-blox ASSUMES NO RESPONSIBILITY FOR ANY CLAIMS OR DAMAGES ARISING OUT OF THE USE OF THIS DATASHEET, OR FROM THE USE OF MODULES BASED ON THIS DATASHEET, INCLUDING BUT NOT LIMITED TO CLAIMS OR DAMAGES BASED ON INFRINGEMENT OF PATENTS, COPYRIGHTS OR OTHER INTELLECTUAL PROPERTY RIGHTS. u-blox MAKES NO WARRANTIES, EITHER EXPRESSED OR IMPLIED WITH RESPECT TO THE INFORMATION AND SPECIFICATIONS CONTAINED IN THIS DATASHEET. PERFORMANCE CHARACTERISTICS LISTED IN THIS DATASHEET ARE ESTIMATES ONLY AND DO NOT CONSTITUTE A WARRANTY OR GUARANTEE OF PRODUCT PERFORMANCE. GPS-X-02015-A Page 2 RF Design for GPS receivers - Application Note PRELIMINARY u-blox ag CONTENTS 1 Overview...................................................................................................................... 5 1.1 Basic GPS RF-Signal Characteristics.......................................................................................................
    [Show full text]
  • Vituixcad Loudspeaker Simulator
    VituixCAD The Loudspeaker Simulation Tool by Kimmo Saunisto Online Manual Copyright © Joni Laakso 2018 [email protected] 2018-03-12 VituixCAD Page 2 of 44 Version 1.1 Contents VituixCAD .............................................................................................................................................................................. 3 General information ......................................................................................................................................................... 3 System requirements ....................................................................................................................................................... 3 Installation and Upgrade .................................................................................................................................................. 3 Support ............................................................................................................................................................................. 3 Quick User Guide .................................................................................................................................................................. 4 Preface ............................................................................................................................................................................. 4 Checklist for designing a loudspeaker .............................................................................................................................
    [Show full text]
  • Altec Lansing Launches New Line of Google Assistant Built in Speakers at 2018 Ces® for Ultimate Sound and Connectivity at Home
    ALTEC LANSING LAUNCHES NEW LINE OF GOOGLE ASSISTANT BUILT IN SPEAKERS AT 2018 CES® FOR ULTIMATE SOUND AND CONNECTIVITY AT HOME New Line of Google Assistant Built in Speakers Bring Durability and Sound Quality to the Connected Home LAS VEGAS, NV (January 8, 2018 - CES Booth #16029)– Altec Lansing, innovator in ​ ​ ​ ​ ​ audio, unveils an entirely new line of Google Assistant built in speakers to bring durability ​ and superior sound to the connected home. The new line of speakers features the ability to ask questions and get information as well as control your smart home, they also connect via Bluetooth or Wi-Fi to listen to your favorite music streaming services. Each speaker is designed to deliver the crisp, clear sound you expect from the legacy audio brand, while also maintaining its durability. The new line and more will be previewed at CES® this week ​ ​ at the Las Vegas Convention Center, January 9-12, 2018, at the Central Hall, Booth #16029. GVA1 - Live (MSRP of $129.99, Available Q2/Q3 2018): A sleek speaker to fit in any room ​ of the home, enjoy crisp and clear sound while utilizing the Google Assistant to control music through compatible services Spotify, Pandora and more. With multi-room pairing, connect up to 50 speakers at once for a surround sound effect. Go room to room in the ​ home with this conveniently sized speaker, or if you are out of Wi-Fi range simply switch over to Bluetooth to stay connected! ● 2” Ferrite Woofer and 2” x 2 Passive Radiator ● Wireless range of up to 50 feet ● Wi-Fi and Bluetooth Pairing ● The Google Assistant built in GVA3 - Live To-Go (MSRP of $149.99, Available Q2/Q3 2018) The latest in superior sound ​ ​ on-the-go, this speaker features the Google Assistant to control your smart home, listen to music and find out the news of the day, whether lounging inside or relaxing in the yard.
    [Show full text]
  • Tusat1—The Innovative Creation of a Low-Cost Communications Satellite
    SSC01-VIII-6 A Highly Modular Scientific Nanosatellite: TEST David L. Voss, A. Kirchoff, D. P. Hagerman, D.C.H Tan, J.J. Zapf, Jeff Dailey, Art White, H D. Voss Taylor University, 236 Reade, Upland, IN 46989 (765) 998-4871 [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] M. Maple and Farzad Kamalabadi University of Illinois, 1406 W. Green St, Urbana, IL 61801 [email protected], ABSTRACT: A powerfully instrumented, reliable, low-cost 3-axis stabilized nanosatellite is in final design using novel technologies. The Thunderstorm Effects in Space: Technology (TEST) nanosatellite implements a new, highly modular satellite bus structure and common electrical interface that is conducive to satellite modeling, development, testing, and integration flow. TEST is a low-cost ($0.1 – 0.2 M) nanosatellite (30kg) in final development by Taylor University and the University of Illinois through the Air Force Office of Space Research (AFOSR) University Nanosatellite program. TEST implements a strong variety of plasma, energetic particle, and remote sensing instrumentation with the objective of understanding how lighting and thunderstorms influence the upper atmosphere and the near-space environment. As a disruptive technology, the TEST modular design and instrumentation challenges portions of satellite systems (such as future DOD DMSP and NASA LWS Geospace Missions), while complementing large multi-probe and remote sensing programs. TEST includes a variety of proven instrumentation: two 1m Electric Field (EP) probes, a thermal plasma density Langmuir Probe (LP), a 0.5 to 30 kHz Very Low Frequency (VLF) Receiver, two large geometric factor cooled (-60° C) Solid State Detector (SSD) spectrometers for energetic electrons and ions (10 keV < E <1 MeV), a 3-axis Magnetometer (MAG), a O2 Hertzberg UV Photometer, a 391.4 nm Transient Photometer and a 630 nm Imager for airglow and lightning measurements.
    [Show full text]
  • Microstrip Patch Electrically Steerable Parasitic Array Radiators
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2013 Microstrip Patch Electrically Steerable Parasitic Array Radiators Justin Luther University of Central Florida Part of the Electrical and Electronics Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Luther, Justin, "Microstrip Patch Electrically Steerable Parasitic Array Radiators" (2013). Electronic Theses and Dissertations, 2004-2019. 2721. https://stars.library.ucf.edu/etd/2721 MICROSTRIP PATCH ELECTRICALLY STEERABLE PARASITIC ARRAY RADIATORS by JUSTIN LUTHER B.S. University of Central Florida, 2008 M.S. University of Central Florida, 2010 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Electrical Engineering and Computer Science in the College of Engineering & Computer Science at the University of Central Florida Orlando, Florida Spring Term 2013 Major Professor: Xun Gong © 2013 Justin Luther ii ABSTRACT This dissertation explores the expansion of the Electrically Steerable Parasitic Array Radiator (ESPAR) technology to arrays using microstrip patch elements. Scanning arrays of two and three closely-coupled rectangular patch elements are presented, which incorporate no phase shifters. These arrays achieve directive radiation patterns and scanning of up to 26° with maintained impedance match. The scanning is effected by tunable reactive loads which are used to control the mutual coupling between the elements, as well as additional loads which compensate to maintain the appropriate resonant frequency.
    [Show full text]